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Abstract: Nb2O5/graphene nanocomposites without any surfactant are synthesized by an in situ
microwave irradiation technique. Structural and morphological studies revealed that the prepared
composites were composed of Nb2O5 nanoparticles intercalated into the graphene sheet. The thermal
stability of graphene oxide, Nb2O5, and Nb2O5/graphene nanocomposite was studied by the
TGA. The electrochemical properties are assessed by cyclic voltammetry, chronopotentiometry and
electrochemical impedance spectroscopy analyses. The specific capacitance of Nb2O5/graphene
nanocomposites is greater (633 Fg−1) than pure Nb2O5 nanoparticles (221 Fg−1) and graphene
(290 Fg−1) at a current density of 1 Ag−1. The long-term cyclic measurement confirms higher
cyclic stability of the nanocomposite with capacitance retention of 99.3% after 5000 cycles without
performance degradation. The composites exhibit higher electrochemical conductivity and allow
effective ions and charge transport over the entire electrode surface with aqueous electrolyte. The
electrochemical study suggests that Nb2O5/graphene nanocomposites have the potential to be an
effective electrode for superior performance supercapacitor applications.

Keywords: nanocomposites; electrode material; supercapacitors; charge transport; cyclic stability

1. Introduction

In recent years, the depletion of natural energy sources due to the industrialization of technological
advancements has been alarming. Among the most important requirements is the judicious use of
available energy, and an efficient mechanism for energy storage [1]. Renewable energy sources are great
replacements for conventional fossil fuels [2]. The predicted future energy crisis demands efficient
energy conversion and storage devices [3,4]. Electrochemical capacitors, known as supercapacitors,
possess the high power output of conventional dielectric capacitors and the high energy storage
of batteries. The current challenge is to sustainably achieve higher power density and instant
charge-discharge [5,6]. In general, electrochemical capacitors can be divided into two categories,
depending on the storage process. The first type of Supercapacitor is termed the pseudocapacitor, with
charge storage by Faradic reactions [7]. Materials under this category include conducting polymers
and metal oxides. The second type is the electric double-layer capacitor (EDLC), which involves
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an electrostatic process for storage. These types of materials include the carbon family, including
activated carbon, carbon aerogels, carbon nanotubes, and graphene, which exhibit high surface area.
These electrode materials play a vital role in the performance of supercapacitors, based on their
electrochemical performance [8–10]. Hence, lucid design of efficient materials is a prerequisite for
high-performance supercapacitors.

Several materials have been studied as electrodes for supercapacitors in order to improve the energy
and power density requirements. Among them, the transition metal oxide Nb2O5 has been explored
recently due to its higher valance state and excellent structural stability with pseudocapacitance
behavior. It is widely used in many potential applications, such as solar cells [11], electrochromic
materials [12], photocatalysis of water to produce hydrogen [13], gas sensing [14], and especially
photo-degradation of harmful organic contaminants in water [15] due to outstanding advantages
of low toxicity, thermodynamic stability, and relatively high photocatalytic activity. Nb2O5 has
many forms, such as a-Nb2O5 (amorphous), TT-Nb2O5 (pseudohexagonal), T-Nb2O5 (orthorhombic)
and M- Nb2O5 (monoclinic), which can be obtained through controlled thermal treatment [16].
Structure-dependent electrochemical performance has been investigated on Nb2O5 and it has been
observed that orthorhombic Nb2O5 (T-Nb2O5) has comparatively better electrochemical performance
than the monoclinic phase [17]. Amorphous and pseudo-hexagonal Nb2O5 exhibits lower specific
capacitance values.

However, the poor electronic conductivity of Nb2O5 nanoparticles limits their electrochemical
utilization [18]. Additionally, the fabrication of nanoparticles involves heavy agglomeration due
to van der Wall’s force that limits the applicability due structural instability. Graphene (G) offers
large 2D space with a large surface area for the decoration of nanoparticles for fast ion transport.
The 2D structure of G provides suitable platform to accommodate electrochemically active materials.
In addition, G also offers opportunities to develop nanocomposites with wide range of materials for
diverse applications [19,20].

To date, several methods have been adopted to synthesize Nb2O5 nanocomposites. Wang et
al. reported the Nb2O5/graphene synthesized by hydrothermal method [21]. T-Nb2O5/graphene
was prepared through a facile hydrothermal method by Kong et al. [22]. Murugan et al. reported a
hydrothermal method [23]. However, these methods have been limited by lower capacitance with
lower stability of the Nb2O5/graphene nanocomposite; other disadvantages include the long processing
time, exorbitant cost, and higher processing temperature, which would hinder large-scale production.
The microwave irradiation method can be used as an alternative heat source for other synthesis
methods, leading to fast heating, achieving the desired temperature in a short duration and increasing
the reaction kinetics compared with the conventional methods. The supercapacitor properties have
generally been studied using organic electrolytes, which are expensive and hazardous. In this study,
aqueous electrolyte was used because it is less expensive, while being environmentally friendly and
easy to use, and possessing greater ionic conductivity than organic electrolytes, which are required to
improve rate capability and high power density.

In this report, a new approach is demonstrated for synthesizing high-quality Nb2O5 nanoparticles
combined with graphene without any surfactant via a one-step in situ microwave irradiation method.
This process is inexpensive, straightforward, and can be readily adopted for the production of larger
quantities of nanoparticles. This ultrafast, eco-friendly microwave irradiation method is used to
prepare graphene and demonstrated the decoration of G surface with Nb2O5 nanoparticles. Further
heat treatment at 700 ◦C leads to the reduction of remaining graphene oxide into graphene, while
the amorphous Nb2O5 nanoparticles are recrystallized into T-Nb2O5 nanoparticles. Furthermore,
the microwave irradiation method improves the physico-chemical properties of the T-Nb2O5/graphene
nanocomposite. The synergistic effect of T-Nb2O5 and G composite exhibits promising properties with
higher capacitance and very good sustainability in aqueous electrolyte.
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2. Experimental Section

2.1. Material Synthesis

High purity natural graphite powder (Alfa easer 99.999%), KMnO4 (SRL Extra pure AR), NaNO3

(Merck), H2SO4 (Merck), H2O2 (Merck), HCl (Merck), and ammonium niboate (v) oxalate hydrate
(C4H4NbO9.XH2O) (Aldrich), ammonium hydroxide (NH4OH) (Merck) were used for the synthesis of
electro-active materials.

Preparation of graphene oxide (GO) by the modified Hummer’s method has already been
described in an earlier report [24]. The microwave method was employed to prepare Nb2O5

nanoparticle-decorated G nanocomposite. In a typical reaction, 80 mg of GO was mixed in 100 mL
DI water and sonicated for 2 h. After the sonication, the obtained GO solution was mixed with
0.02 M of ammonium niobate (V) oxalate hydrate by constantly stirring for 60 min. Subsequently,
ammonium hydroxide was added to the solution at a pH of 12 with continuous stirring for 30 min
to get the brownish solution. This solution was loaded in a microwave oven operated at 850 W for
10 min. followed by natural cooling to RT. Subsequently, 3 mL of hydrazine hydrate was added into
the solution and stirred for 1 h followed by heating for 3 min. The final product of greyish black
precipitate was filtered, washed successively and dried at 60 ◦C overnight in hot air oven to improve
the crystallinity. The prepared Nb2O5/G was calcined at 600 ◦C for 4 h in N2 atmosphere. The same
process was repeated without GO to synthesize pure Nb2O5 nanoparticles.

2.2. Characterization

The structural properties of Nb2O5/G nanocomposite were studied by Rigaku Miniflex (Rigaku
Miniflex, Japan) X-ray diffractometer with CuKα radiation in the scan range of 5–80◦. The morphology
study of the nanocomposite was accomplished by scanning electron microscope (TESCAN VEGA3,
Czech Republic) and Transmission electron microscope (FEI Technai, Hitachi, Germany). The presence
of functional groups was confirmed by FTIR (Bruker optics systems, Germany) spectral analysis
performed by KBr pellet method. Thermal stability (SII-TG/DTA A6300, Japan) of the nanocomposite
was studied in N2 atmosphere at 20 ◦C/min in the temperature range RT to 1000 ◦C. The structural
properties of composite were studied by Raman spectral analysis (Lab RAM HR micro Raman
system, France). The BET analysis was performed using N2 adsorption-desorption isotherms at
77 K using the (Quanta Chrome Instruments (version 6.0), Florida). The binding energy states of the
composite were studied by X-ray photoelectron spectroscopy analysis using a (Shimadzu ESCA 3400,
India) spectrometer.

2.3. Fabrication of Working Electrode

To prepare the working electrode, Nb2O5/G electro-active material was mixed with ethanol and a
few drops of nafion paste in the weight ratio of 8:1:1. The mixed solution was sonicated for a few min to
achieve the homogeneity. The prepared paste was coated on the glassy carbon electrode. The prepared
working electrode was dried at 80 ◦C for 2 min. The electrolyte was prepared by mixing 1 M H2SO4

with distilled water and stirring for 30 min. The cyclic voltammograms (CV) and chronopotentiometry
(CP) were recorded at the potential range of 0.45–1.0 V at different scan rates of 5 to 100 mVs−1 and
different current densities. The electrochemical impedance spectroscopy (EIS) was analyzed in the
frequency range from 0.01 Hz to 105 Hz using a three-electrode system at room temperature.

3. Results and Discussion

3.1. X-ray Diffraction Analysis

Figure 1 shows XRD patterns of G, Nb2O5, Nb2O5/G nanocomposites. The diffraction peaks of
graphene observed at 2θ = 24.43◦ and 43.14◦, and are very well matched with the data profile of JCPDS
No. 75-1621, as shown in Figure 1a. The broad, low-intensity diffraction patterns of (002) and (100)
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planes were assigned to the hexagonal structure and poor crystalline nature of the sp2 bonded carbon.
No other diffraction peaks were observed, confirming the removal of oxygen functional groups from
the GO by the reduction process. Figure 1b,c reveals the crystalline nature of Nb2O5, Nb2O5/G and
diffraction peaks are assigned to orthorhombic phase (JCPDS No. 30-0873). The high-intensity peaks
belong to Nb2O5 nanoparticles and Nb2O5/G composites, confirming the strong crystalline nature of
the prepared materials. The (002) diffraction peak of G in Figure 1c also confirmed the formation of
Nb2O5 decorated nanocomposite.
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Figure 1. Powder X-ray diffraction patterns of (a) graphene, (b) Nb2O5, and (c) Nb2O5/G composite.

3.2. Scanning Electron Microscopy Investigations

The SEM images (Figure 2a,b) show Nb2O5 nanoparticle-incorporated graphene sheets.
The coagulation of the nanoparticles was controlled by the polar oxygenated functional groups, which
served as preferred sites for Nb2O5 nanoparticles. The calcination process leads the nanoparticles to
become aggregated, forming a porous structure with rough surface [25]. The images show that the G
sheets are assembled by swelling radially from the center. This swelling offers a relatively large contact
area at the electro-active material–electrolyte interface, providing short and more efficient ion transport.

3.3. TEM Analysis

HR-TEM images of Nb2O5 nanoparticles homogeneously anchored on the G surface are shown in
Figure 3a,b. The decoration of Nb2O5 nanoparticles onto a significantly shaped crumpled sheet indicates
the intercalation of Nb2O5 into the G layers controlling the re-stacking of G during the reduction
process. Figure 3c shows the Nb2O5 nanoparticles with lattice spacing of 0.39 nm corresponding
(001) plane of orthorhombic structure, consistent with the results of XRD analysis [22]. The SAED
pattern show in Figure 3d confirms the highly crystalline nature of Nb2O5 nanoparticles. The Nb2O5

nanoparticles are well dispersed, ensuring the formation of a homogeneous composite structure.
The morphology of nanocomposite provides sufficient electrochemically active sites, subsequently
improving the electrochemical properties.
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3.4. Analysis of Functional Groups

Figure 4 shows the FTIR vibrational spectra of G, Nb2O5, and Nb2O5/G nanocomposites. Figure 4a
shows the spectrum for graphene with the absorption peak at 1643 cm–1 and broad absorption stretch at
3427 cm–1, which are attributed to the C=C skeletal vibration and atmospheric moisture. In Figure 4b,
the absorption peaks at 3413 and 1623 cm–1 correspond to the stretching vibration of -OH groups due
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to adsorbed H2O. The wide band at 640 cm–1 is ascribed to the symmetric stretching of Nb-O-Nb, and
the shoulder peak at 853 cm−1 corresponds to asymmetric stretching of Nb=O bands, indicating the
crystalline nature of Nb2O5 [26,27]. The peaks at 3415 cm–1 and 1622 cm–1 are assigned to the O-H
stretching and C=C skeletal vibration of graphene sheets in the Nb2O5/G nanocomposite (Figure 4c).
The peak intensity is mostly decreased for the composite owing to the reduction of GO to G and
signifying a very strong interaction between Nb2O5 nanoparticles and residual surface hydroxyl groups.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 19 
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3.5. Optical Properties

Figure 5 depicts the Raman spectra of GO, graphene, Nb2O5 and Nb2O5/G nanocomposite.
Figure 5a shows the spectrum for GO with two bands centered at 1332 and 1598 cm−1 as prominent D
and G bands respectively. Figure 5b shows the scattering spectrum of graphene with the D band (1327)
related to the disorder band of sp3 carbon and G (1585) band corresponding to sp2 bonded carbon
atmos. Compared with graphene oxide, a shift in the lower band was observed for the graphene,
indicating the strong reduction of GO. Figure 5c depicts the spectrum of Nb2O5 with broad band at
695 cm–1 assigned to the symmetric and asymmetric stretching mode of Nb-O bond linkage. The peaks
at 231 and 307 cm–1 are characteristics of Nb-O-Nb bonds, confirming the orthorhombic phase of
Nb2O5 nanoparticles [28]. The Raman spectrum of Nb2O5/G composite is red shifted compared to
pure graphene, providing evidence for the interactions between Nb2O5 nanoparticles and graphene
sheets, as shown in Figure 5d.

3.6. Thermal Behavior

Figure 6 shows the thermal behavior of the synthesized GO, Nb2O5 and Nb2O5/G composite
investigated by TGA carried out in N2 atmosphere. Figure 6a shows the weight loss due to the
removal of adsorbed water molecules at 100 ◦C and the organic matter originating from the GO in
the temperature range from 150 to 250 ◦C. Further increasing the temperature, gradual weight loss
occurred up to 1000 ◦C due to the liable oxygen containing functional groups with a total weight loss
of 70%. Figure 6b shows the TGA curve of Nb2O5, started with a minor step from RT to 1000 ◦C,
which indicates the release of H2O molecules. The next strong weight loss of 22.8% perceived from
150 to 300 ◦C reflects the disintegration of organic molecules. The weight loss of 2.2% at 600 ◦C was
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associated with the recrystallization due to the transformation of niobium pentoxide hydrate to a
pseudohexagonal phase of Nb2O5 nanoparticles [29]. The weight loss of less than 0.5% from 800 to
1000 ◦C means the morphology deviation and a change in the crystal structure from pseudohexagonal
to orthorhombic phase, with an overall weight loss of 34.5%. The Nb2O5/G nanocomposite possesses
gradual weight loss up to 600 ◦C and above of 800 ◦C, similar behavior that of Nb2O5 was observed as
shown in Figure 6c with total weight loss of 32%. The Nb2O5/G composite has the higher thermal
stability and lower weight loss compared with GO and pure Nb2O5 nanoparticles.
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3.7. Binding Energy States

The XPS survey spectrum of the prepared Nb2O5/G composite with signature bands for Nb, C and
O is shown in Figure 7a. This evidences the decoration of Nb2O5 nanoparticles onto the surface of
G sheet. Figure 7b shows the high-resolution Nb3d spectra with binding energy of 207.35 eV (3d5/2)
and 210.15 eV (3d3/2), signifying that Nb exists in the Nb5+ chemical state [30]. Figure 7c depicts the
O1s spectrum of Nb2O5/G composite with two peaks for oxygen; first one at 531.02 eV consistent with
presence of lattice oxygen in Nb2O5 and second one at 532.5 eV due to lattice oxygenated surface of
the G. Figure 7d displays the high-resolution C1s spectra of Nb2O5/G with three peaks for various
carbon family sp2 bonded carbonyls at 284.16 eV (C=C), epoxy/hydroxyl groups at 285.4 eV (C-C) and
carbonyls at 287.2 eV (C=O). The chemical interaction between graphene and Nb2O5 nanoparticles is
attributed to the construction bonds of Nb-O-C [31].Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 19 
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3.8. Surface Area Analysis

The surface area analysis results (Figure 8a) reveal that both the samples exhibit a Type IV
isotherm with a hysteresis loop of H4 in the P/P0 range of 0.4 to 1.0, suggesting the characteristics of a
mesoporous structure. The specific surface area of the Nb2O5/G nanocomposite is higher (94 m2g−1)
than that of pure Nb2O5 nanoparticles (32 m2g−1). The Specific Surface Area (SSA) of graphene was
estimated to be 145.05 m2g−1 [32]. This is attributed to the porosity of G and Nb2O5 nanoparticles
deposited on G sheets, which prevents the G sheets from aggregating and restacking after the removal
of solvents. This leads to a porous structure of Nb2O5/G nanocomposite, and hence to a higher surface
area [33]. The porous structure facilities the more efficient diffusion of electrolyte ions to the active sites.



Nanomaterials 2020, 10, 160 9 of 16

Figure 8b indicates the pore size distribution of 3.5 nm and 4.5 nm for the composite and pure Nb2O5,
respectively. This mesoporous structure and high surface area of the composite play an important
role in providing shorter diffusion paths, rapid electrolyte transport and additional active sites for
electrochemical reaction on the electrode surface to enhance the electrochemical performance [34].Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 19 
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3.9. Electrochemical Evaluation

3.9.1. Cyclic Voltammogram

Figure 9a displays the typical cyclic voltammogram (CV) curves of the Nb2O5 electrode material
for the potential range from −0.45 to 1.0 V at various scan rates in 1 M H2SO4 aqueous electrolyte.
The CV curves of Nb2O5 exhibit oxidation reduction peaks for the sweep rate from 5 to 100 mVs−1,
which are evidently the characteristics of Faradic behavior. With the increasing scan rate, the redox
peaks become stable, indicating a strong kinetic reversibility. At higher scan rates the increase in the
anodic peak current density with a decrease in the cathodic peak indicates the low resistance of the
electrode. The CV curves shown in Figure 9b exhibit a quasi-rectangular shape without oxidation and
reduction peaks, suggesting the higher stability of Nb2O5/G composite electrodes for a wider potential
range. Moreover, the quasi-rectangular shape of CV curves reveals exceptional reversibility and faster
surface reaction. This confirms the ideal capacitive behavior with excellent electrochemical property
and electrical conductivity. The CV curves recorded at low scan rates are due to the strong reversible
process. These results confirm that the Nb2O5/G composite electrode has excellent capacitance behavior
and low contact resistance, provided by high surface area. Figure 9c shows the comparison of CV
curves of Nb2O5 and Nb2O5/G composites electrodes at a scan rate of 100 mVs−1. The composite
electrode showed a higher integral area than the pure Nb2O5 electrode, confirming the higher specific
capacitance. In the composite electrodes the ionic charge accumulates at the electrode/electrolyte
interface due to high surface area and the porosity of the G. The higher capacitance suggests that
Nb2O5 nanoparticles might be intercalated at the pores to support the EDLC formation. The charge
storage mechanism of Nb2O5/G composites is shown in Scheme 1.
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3.9.2. Chronopotentiometry Measurements

The charge-discharge performance was analyzed in the potential range from 0.45 to 1.0 V vs.
Ag/AgCl, in 1 M H2SO4 aqueous electrolyte. Figure 10a shows the charge-discharge curves of
Nb2O5, and displays nonlinear and symmetrical shapes for the corresponding discharge period
with a slight plateau without internal resistance (IR) drop. The charge and discharge platforms
correspond to the oxidation and reduction of Nb2O5 nanoparticles. While increasing the current



Nanomaterials 2020, 10, 160 11 of 16

density, the charge-discharge process decreases gradually due to the adsorption/desorption of H+ ions
during the charge-discharge process. The CP curves of the Nb2O5/G electrode without linear and
symmetrical shapes confirm the characteristics of non-Faradic behavior at different current densities
are shown in Figure 10b. The perfect symmetry of the CP curves indicates represents the excellent
reversibility in non-Faradic reactions. The discharge portion displays a longer discharge time at
low current density, indicating higher capacitance. The decrease in current density and increased
discharge time are due to the higher surface area and conductivity of graphene. The CP curves show
no obvious IR drop due to the low thermal resistance, well-formed electrode/electrolyte interface and
high reversibility and good capacitive nature of the electrode materials.
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Figure 10c displays the comparison CP curves of Nb2O5 and Nb2O5/G nanocomposite at a
current density of 1 Ag−1. The composite exhibits higher discharge time than pure Nb2O5 electrode.
The Nb2O5 nanoparticles possess poor electrical conductivity and fast degradation as compared
to the Nb2O5/G composite electrode material. The combination of Nb2O5 nanoparticles with G
increases the conductivity thereby effectively creating conducting paths for the electrons to achieve
ideal capacitive behavior. Thus, increasing the overall discharge time of composite electrodes is
beneficial to improving the specific capacitance by shortening the diffusion and moving length of the
electrolyte ions. The G ensures the strong conductive network for the ions transport due to the higher
interfacial contact area between Nb2O5 and G. The specific capacitance (Cs) values of pure Nb2O5 and
Nb2O5/G nanocomposites were obtained from CP curves using the formula,

Cs = I × ∆t/m × ∆V (1)
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where, I—discharge current, ∆V—potential window, t—discharge time, m—mass of the active material
in the electrode. The calculated specific capacitance values were 633, 271, 445, 314.8, 238.1, 168.9 and
221, 168.5, 82.1, 34.5, 19 Fg−1 for Nb2O5/G nanocomposite and pure Nb2O5 electrodes, respectively,
at different current density values. The capacitance of pure graphene was measured to be 290 Fg−1 [35].
The specific capacitance values of the composite electrode have been compared with previously
reported results as shown in Table 1.

Table 1. The specific capacitance and retention of Nb2O5/G nanocomposite electrodes synthesized by
different methods.

Electro-Active
Material Synthesis Method Specific

Capacitance (F/g)
Number of

Cycles Retention Ref.

Nb2O5/graphene Hydrothermal 34 50 ~80 [36]
Nb2O5/graphene Hydrothermal 58 50 91% [21]

T-Nb2O5/graphene Facile-hydrothermal 80 ~3000 ~100% [22]

Graphene/Nb2O5
In situ hydrothermal

method 321 500 91% [23]

Nb2O5/graphene In situ microwave
method 633 5000 100% Present

work

The calculated specific capacitance (Cs) values of Nb2O5 and Nb2O5/G nanocomposite electrode
at different current densities are shown in Figure 11. The response of both the electrodes decreased
with increasing current density from 1 to 5 Ag−1. The specific capacitance of the composite electrode
was higher than pure Nb2O5 electrode. The enhanced capacitive performance of the composite is due
to the synergistic effect of higher conductivity of G and mesopores structure of Nb2O5 nanoparticles.
Additionally, well-dispersed Nb2O5 nanoparticles can avoid the restacking of G sheets to ensure higher
surface area for the storage [37]. Meanwhile, Nb2O5/G nanocomposite could provide higher contact
area, improving the electrochemical performance [38].Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 19 
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Figure 12 depicts the capacitance retention of the Nb2O5/G nanocomposite electrode tested up
to 5000 cycles. The composite electrodes maintain a stability of 99.3% after 5000 cycles without
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decay, indicating the excellent electrochemical stability of electrode, which is higher than pure Nb2O5

electrode material. This is attributed to the relatively easy path for electrode/electrolyte interface
reactions. Moreover, the 2D network of the G sheet with low resistance allows rapid and effective
electron transport providing higher stability. The Coulombic efficiency (η) was calculated from the CP
curves using the following equation,

η = (td/tc) × 100 (2)

where td and tc are the discharge time and charge time. The Nb2O5/G nanocomposite electrode retains
the Coulombic efficiency of 99.5%, as derived from its symmetrical charge-discharge curves.Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 19 
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3.9.3. Electrochemical Impedance Analysis

Typical electrochemical impedance spectroscopy (EIS) plots of Nb2O5 and Nb2O5/G nanocomposite
electrodes in the frequency range of 0.01 Hz to 105 Hz are presented in Figure 13. The semicircle
in the high-frequency region represents the solution resistance (Rs). The slope in the low-frequency
range is attributed to Warburg resistance, which results from the frequency dependence of ions
diffusion. The solution resistance (Rs) of composite and pure Nb2O5 is measured to be 0.61 and 2.2 Ω
respectively. The equivalent circuit best fits the experimental data provided in the inset of Figure 13,
where RS—solution resistance, Rct—charge transfer resistance, and CPE—constant phase element
values are given in Table 2. The estimated solution resistance (Rs) value for the composite (0.61 Ω) is
much lower than pure Nb2O5 (2.2 Ω), revealing the higher accessibility of active sites in composite for
electrolyte ions. The composite electrodes display lower Rs value than the Nb2O5 due to the intrinsic
electrical conductivity. The lower Rs value of the composite electrodes suggests that the introduction
of G significantly enhances the electrical conductivity of the composite [39] due to strong interface
between Nb2O5 and the G framework, which enhances the electrochemical activity.
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Table 2. Calculated values of RS, Rct, CPE1 and CPE2 through fitting of the experimental impedance
spectra based on the equivalent circuit in Figure 13.

Sample RS (Ω) Rct (Ω) CPE1-T (F) CPE1-p (F) CPE2-T (F) CPE1-p (F)

Nb2O5/G 0.61 20.05 0.0009 1.05 0.30 0.905
Nb2O5 2.2 58.53 0.0009 1.05 0.39 0.9

4. Conclusions

Nanocomposites of Nb2O5/G were synthesized via a facile in situ microwave irradiation method.
The XRD results confirmed the reduction of graphene oxide into graphene and orthorhombic structure
of Nb2O5 in the composite. The aromatic ring of C=C bands from oxygen functionalities of G appeared
in the composite as confirmed from FTIR studies. The HR-TEM analysis reveals the decoration of
Nb2O5 nanoparticles on G sheets. Higher specific capacitance of 633 Fg−1 was measured for Nb2O5/G
nanocomposites much higher than pure Nb2O5 nanoparticles (221 Fg−1) and graphene (290 Fg−1) at
1 Ag−1. The cyclic stability of 99.3% was achieved at 5000 cycles, which confirmed that the composite
electrode can be a better choice for energy storage applications for supercapacitor.
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