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In recent years, the quest for an efficient and sustainable adsorbent material that can effectively remove harmful

and hazardous dyes from industrial effluent has become more intense. The goal is to explore the capability of

thermally modified nanocrystalline snail shells (TMNSS) as a new biosorbent for removing methylene blue

(MB) dye from contaminated wastewater. TMNSS was employed in batch adsorption experiments to remove

MB dye from its solutions, taking into account various adsorption parameters such as contact time,

temperature, pH, adsorbent dosage, and initial concentration. SEM, EDS, XRD, and FTIR were used to

characterize the adsorbent. The study further developed and adopted adaptive neuro-fuzzy inference system

(ANFIS) and density functional theory (DFT) studies to holistically examine the adsorption process of MB onto

the adsorbent. EDX and FTIR confirm the formation of CaO with a sharp peak at 547 cm−1, and C–O and

O–H are present, as well. SEM and XRD show an irregularly shaped highly crystalline nanosized (65 ± 2.81

nm) particle with a lattice parameter value of 8.611617 Å. The adsorption efficiency of 96.48 ± 0.58% was

recorded with a pH of 3.0 and an adsorbent dose of 10 mg at 30 °C. The findings from the study fit nicely

onto Freundlich isotherms, with Qm = 31.7853 mg g−1 and R2 = 0.9985. Pseudo-second-order kinetics

recorded the least error value of 0.8792 and R2 = 0.9868, thus indicating chemisorption and multilayer

adsorption processes. The exothermic and spontaneous nature of the adsorption process are demonstrated

by DH° and DG°. The performance of the ANFIS-based prediction of removal rate, which was demonstrated

by a root mean square error (RMSE) value of 2.2077, mean absolute deviation (MAD) value of 1.1429, mean

absolute error (MAE) value of 1.8786, and mean absolute percentage error (MAPE) value of 2.0178, revealed

that the ANFIS model predictions and experimental findings are in good agreement. More so, DFT provides

insights into the molecular interactions between MB and the adsorbent surface, with a calculated adsorbate–

adsorbent binding affinity value of −1.3 kcal mol−1, thus confirming the ability of TMNSS for MB sequestration.

The findings of this study highlight the promising potential of thermally modified nanocrystalline snail shells as

sustainable and efficient adsorbents for MB sequestration.
1 Introduction

Increased economic activity is the main cause of water pollu-
tion, and scientists are highly concerned about the resultant
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dangers to the ecosystem, plants, and animals.1 Most signi-
cant is the ongoing increase in pollution of water bodies
through the release of dyes and other organic pollutants from
industries, facilitated by the rapid increase in global
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population.2 Due to the color's propensity to cling on even aer
standard removal techniques, managing water contamination,
as a result, is challenging.3 Dye pollution in water tends to block
light absorption, whereby photosynthesis is signicantly
impacted.4–6 The cleansing of wastewater from color dyestuff
becomes signicant for the environment due to the widespread
use of dye compounds and their various dangerous and harmful
byproducts.7

Several researchers have used a variety of approaches to
remove these contaminants in their investigations to lessen the
impact of pollution on the water environment.8 The majority of
these methods fall into one of three categories, which include
biological, physical (adsorption, membrane ltration, coagula-
tion, etc.), and chemical.9–11 Ion exchange, ozone generation,
chemical precipitation, and advanced oxidation are examples of
chemical approaches. Enzymes or microbes are used in bio-
logical processes, such as the activated sludge technique.1,10,12

Adsorption is usedmore oen than other approaches because it
is relatively easy to build and operate, environmentally friendly,
energy-efficient, and affordable. This is supported by
a substantial body of literature.12–18

Previous studies have examined the application of bio-
sorbents for adsorption, which have proven to be affordable,
environmentally acceptable, and plentiful biological materials
that include a variety of functional groups, including carboxyl,
sulfate, phosphate, and amino groups.19–22 A variety of biolog-
ical materials have been employed as biosorbents for the
removal of dyes, heavy metals, and other contaminants from
wastewater or their respective aqueous solutions. The ideal
sorbent should be reasonably inexpensive, widespread, easily
modiable, and have higher removal effectiveness.23 Animal-
based waste products are hazardous to the well-being of
people and various other living beings when they are dumped in
the environment without being processed or composted, or
when they are simply washed into waterways. It should be noted
that there is little chance of using those waste products bene-
cially if they are dumped recklessly.24 To remove contaminants
from wastewater, some researchers have concentrated on using
these animal waste products as an inexpensive, easily accessible
adsorbent.

Animal-derived wastes such as sh bones,25,26 pig bones,26,27

egg shells,28,29 ark shell,19 crab,28,30 and poultry litter 31–33 have
been researched as potential adsorbents for the uptake of
harmful or lethargic material from wastewater. In the current
study, the potential of snail shells to remove methylene blue
(MB) from polluted aqueous solutions was investigated. This
was done in line with the ongoing search for less expensive,
practical, and efficient materials for removing pollutants and
remediation of the environment. Snail shells are abundant and
affordable organic wastes which could provide a viable alter-
native to replace the expensive and scarce commercial activated
carbon. Many nations, including Nigeria, value snails as
a delectable meal. Local populations offer an accessible supply
of protein, dumping their shells as garbage.23 The presence of
these wastes in the environment is dangerous to both humans
and the ecosystem. Their interaction with other wastes in the
environment creates serious pollution that makes the
12704 | RSC Adv., 2024, 14, 12703–12719
surroundings unbearable. Therefore, converting these abun-
dant wastes into a value-added product in the form of adsorbent
is a viable way of contributing to the waste management system
and remediating dye pollution in water. In this study, these
shells are used as adsorbents, turning waste into valuable
material for sequestrating the methylene blue dye.

Similar techniques have been used in the majority of recent
studies to assess the effectiveness of heavy-metal and dye
removal under various environmental factors, including solu-
tion pH and beginning dye concentration.34,35 Aer modeling
and conrmation using the data, the maximum dye removal
value, isotherm, and adsorption kinetics have been deter-
mined.36,37 Under specic experimental circumstances, the
adsorbate's potential to cling to the adsorbent at ambient
conditions is assessed. It took a long time and involved a lot of
steps to determine the relative contributions of the various
adsorption methods (e.g., starting concentration), utilizing
various agro-waste adsorbent characteristics. Integral adsorp-
tion processes were not taken into account in the aforemen-
tioned studies. Understanding the relative signicance of each
variable will help nd the best option for increasing adsorption
capacity and managing dyes in real water and wastewater more
effectively.

In the last few years, machine learning has drawn interest
due to its signicant signicance in computing, energy, chem-
ical science, and biology.36,38 As opposed to empirical models,
which can hardly predict results and make the connections
among working conditions and adsorption capacity unobtain-
able,39,40 machine learning is opted for today via modeling and
learning the processes of adsorption on agricultural (biomass)
waste.40 To resolve this challenge, it could be preferable to
simulate and understand how dyes adhere to agricultural waste.
The complexity, quantity, and duration of tests can be reduced
by using high-quality exceptional machine-learning models to
forecast the efficiency of the adsorption processes. Further-
more, they can be employed to show a mathematical relation,
that is, a non-linear form of relationship between independent
and dependent input variables. In addition, the chemical
compounds in the snail shell were observed and screened using
density functional theory, and the selected compounds were
optimized using Spartan 14 soware via 6.31-G* as a basis set.
The adsorbent and the adsorbate were further subjected to
docking soware to observe the inhibition strength of the
adsorbent against MB (adsorbate). To the best of our knowl-
edge, the combinational approaches along with experimental
data have not been reported previously. Therefore, this work
aimed at studying the kinetics, equilibrium, and thermody-
namics, along with modelling, using articial intelligence, the
inhibition strength of thermally modied nanocrystalline snail
shells for MB adsorption.

2 Materials and methods
2.1 Materials

The snail shell was collected from Oyingbo market, Ebute
Metta Lagos (N 6° 290 8.59200, E 3° 230 16.904400), Southwest of
Nigeria. Distilled water was obtained from Lead City
© 2024 The Author(s). Published by the Royal Society of Chemistry
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University's central research laboratory. Methylene blue,
C16H18N3SCl ($97%), was obtained from Sigma-Aldrich.
Sodium hydroxide and hydrochloric acid were purchased
from Bendosen Laboratory Chemicals. All reagents used in
this study are analytical grade.
2.2 Methods

2.2.1 Adsorbent preparation. The snail shells were
purchased in a neighborhood market in Nigeria's Ibadan Oyo
state. Tap water was used to thoroughly clean the selected
shells, and distilled water was used to further eliminate
contaminants and undesired materials. Then, the shells were
partially broken into fragments. To remove all the moisture,
the shells were dried at 100 °C for 12 hours in an oven. The
dried, cleaned snail shells were nely ground into a powder
and sieved to obtain a particle size of 100 mm and below. The
snail shell powder was then calcined for 2 h at 800 °C in
a muffle furnace, and the cooled calcined samples were sieved
to achieve very ne particles, which were kept in a desiccator
for further use.

2.2.2 Adsorbate preparation. In this study, analytical-grade
chemicals were utilized without any additional purication. To
prepare the standard solution of MB, 100 mg of MB was dis-
solved in a 100 mL volumetric ask, followed by the addition of
a few mL of distilled water, and the mixture was shaken to
achieve complete dissolution; distilled water was added to mark
to obtain a concentration of 1 mg mL−1 (1000 ppm) MB solu-
tion. This stock solution was then diluted to the required
concentrations, and the pH of the solution was adjusted using
1.0 M NaOH or HCl to the desired values using a digital pH
meter. Serial dilution was used to produce different concen-
trations from the corresponding stock solution. The standard
working solution (5, 10, 15, 20, and 25 ppm) of MB was prepared
from the stock solution.

2.2.3 Surface chemistry analysis of the biosorbents. The
morphological changes in the adsorbents were investigated
using a scanning electron microscope (SEM) tted with EDX
(JSM-6610LV, JEOL, United States) using a Mira III-TeScan LMU
device operating at 15 kV. The range of magnication was 5000–
70 000. Carbon glue was used to distribute the adsorbent on an
aluminum sample holder before examination. To prevent the
induction of electric current, the sample was subsequently
coated with gold using a sputter coater, and Fourier transform
infrared spectroscopy (FTIR; Bruker Vector 22 spectrometer) at
400–4000 cm−1 range was used to the determine the functional
group in the adsorbent material. The diffraction pattern of the
samples was determined using X-ray diffraction (XRD) (Rigaku
Ultima IV, Kuraray Co. Ltd Japan) using 40 kV applied voltage,
30 mA intensity, and 2q = 3–80° angular range, with 0.02
steps(s). A Cu Ka radiation source (l = 1.540562) was utilized
with a nickel lter in the 2q range of 3–80°.

2.2.4 Adsorption equilibrium study. The batch adsorption
study goes thus: 10 mL solution containing 25 mg L−1 MB was
exposed to 10 mg of TMNSS in 250 mL Erlenmeyer asks. The
aliquots were taken out and ltered aer these were le to
settle for 120 minutes at 180 rpm in a thermoregulated orbital
© 2024 The Author(s). Published by the Royal Society of Chemistry
shaker (Thermo Fisher Scientic, USA). The residual MB
concentration in the ltrate was measured with a UV-vis
spectrophotometer (Buck Scientic, 200 series, USA). Eqn (1)
and (2) were used to determine the quantity of the pollutants
that were adsorbed.

qe ¼ ðC0 � CeÞV
m

(1)

%R ¼ C0 � Ce

C0

� 100; (2)

where qe stands for the adsorption capacity of pollutant adsor-
bed at equilibrium (mg g−1), C0 represents the initial liquid-
phase concentrations of the pollutants (mg L−1), Ce is the
equilibrium liquid-phase concentrations of the pollutants (mg
L−1), V is the volume of the solution (L), m is the weight of the
sorbent utilized (g), and % R is the percentage of pollutant
removed, respectively. A more in-depth understanding of the
adsorption process was achieved by tting the collected data to
the kinetic and adsorption models.
2.3 Isotherm models

Various models were employed to describe the relationship
between the equilibrium concentration of adsorbate in the
liquid phase and the solid phase at room temperature. This was
carried out to establish the best model that correlates with the
adsorption equilibrium curves. The present investigation
employed the following non-linear adsorption models:
Freundlich (eqn (4)), Langmuir–Freundlich (eqn (5)), and Elo-
vich (eqn (6)). The non-linear equations of these isotherm
models are shown below:

qe ¼ qmKLCe

1þ KLCe

(3)

qe = KF(Ce)
1/n (4)

qe ¼ qmKaCe

KaCe þ 1
(5)

qe = qm(1 − (e(kwjCe)a)), (6)

where n represents the adsorption intensity; qm = maximum
adsorption capacity (mg g−1); and KL represents the Langmuir
constant, KF = Freundlich constant; Ka = affinity constant for
adsorption (L mg−1); and Kw = index of heterogeneity. The
energy heterogeneity of the adsorbent is measured by KF/qm and
a on the adsorbent surface.41
2.4 Effects of process variables

Ameasured quantity of 10 mg TMNSS was utilized to investigate
the impact of varying MB concentrations from 25 to 300 mg L−1

on MB adsorption. Additionally, the inuence of pH was
examined by using initial solution pH values within the range of
3.0 to 11.0, and the effect of adsorbent dose was explored with
doses ranging from 10 to 100 mg. The pH of the solution was
adjusted using 0.1 M HCl and 0.1 M NaOH. Finally, the study
RSC Adv., 2024, 14, 12703–12719 | 12705
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assessed the inuence of temperature on the adsorption
process with a xed MB concentration of 25 mg L−1, ranging
from 283 to 323 K.

In a parallel experiment to the one described above, kinetic
studies were conducted with a constant MB concentration.
Residual MB concentrations were measured at intervals of 5, 10,
40, 60, 80, 100, and 120minutes aer aliquots were extracted from
the reaction medium. This analysis establishes the connection
between the adsorption rate and the amount of pollutant
removed, offering crucial insights into the reaction pathways. The
experimental data were tted to the pseudo-rst-order (PFOM),
pseudo-second-order (PSOM), and Elovich models. By using these
models, one may determine the correlation coefficient or R2.

The general expression for the PFOM is:

dqt

dt
¼ k1ðqe � qtÞ; (7)

where k1 = PFOM sorption rate constant (min−1), qe = amount
of adsorbed adsorbate at equilibrium (mg g−1), and qt =

amount of adsorbed adsorbate at time t (min) (mg g−1).
The non-linear expression for the PFOM is:

qt = qe − qee
−k1t (8)

The PSOM equation is given as:42

dqt

dt
¼ k2ðqe � qtÞ2; (9)

while the non-linear form is given as:

qt ¼ k2qe
2t

ð1þ qek2tÞ (10)

Furthermore, the thermodynamic parameters were deter-
mined using the Vant Hoff equation.

lnKC ¼ DS�

R
� DH�

RT
; (12)

where DS° = entropy change (J mol−1 K−1), DH° = enthalpy
change (J mol−1), R = universal gas constant (8.314 J mol−1. K−1),
T = absolute temperature (K), and KC is the dimensionless ther-
modynamic equilibrium constant calculated using eqn (13).43

KC = Mw × 55.5 × 1000 × qe, (13)

whereMw = the atomic weight of MB (63.54 g mol−1), the factor
55.5 is the number of moles of pure water per liter (1000 g L−1

divided by 18 g mol−1), and qe (mg g−1) is the adsorption
equilibrium constant for the adsorption of Cu2+ at different
temperatures (10–50 °C) onto WMR and WMR-CH.

DG(Gibbs free energy (J mol−1)) = DH − TDS (14)
2.5 Point of zero charge (pHpcz) determination

Understanding the point of zero charge of the adsorbent is crucial
for a comprehensive grasp of the adsorption mechanism, as it
12706 | RSC Adv., 2024, 14, 12703–12719
reveals the net surface charge of the adsorbent. Additionally,
insights into the electrostatic interactions between the adsorbent
and adsorbate can be gained through the pH and point of zero
charge, which signies the pH at which the adsorbent surface
achieves net electrical neutrality. The solid addition method was
employed to determine the point of zero charge pH of the
adsorbent. In this approach, a series of beakers with 20 mL of
distilled water each were prepared, and the pH of each beaker was
adjusted from 2 to 12 using 0.1 M of HCl and NaOH. Subse-
quently, 0.1 g of the adsorbents was added to each beaker and
immediately covered with foil paper. The suspension was shaken
in the oven for 2 hours and then allowed to rest for 24 hours for
pH stabilization. The nal pH was then measured.
2.6 Machine learning

2.6.1 ANFIS model architecture. The adaptive neuro-fuzzy
inference system (ANFIS) is a computational approach that
combines neural networks and fuzzy logic. Jang44 invented it in
the 1990s to overcome classic fuzzy systems' limitations and
improve modeling. ANFIS mixes fuzzy logic's interpretability
and language expressiveness with the neural networks' learning
and adaptability. It can model complex systems, anticipate
accurately, and deliver insights into data-driven decision-
making with this hybrid architecture. ANFIS uses a fuzzy
inference system as the structure for rule-based modeling and
a neural network to adaptively alter the fuzzy system's param-
eters.45 ANFIS can combine data-driven learning with human
expert knowledge to create a powerful hybrid model. ANFIS
adjusts fuzzy system parameters via gradient descent or back-
propagation, and it can modify the rule base and rule conse-
quents to the input–output data.46 For modeling and decision-
making, the hybrid structure of ANFIS allows it to capture
complicated relationships and handle data ambiguity.47 The
architectural framework of ANFIS comprises ve layers, as
depicted in Fig. 1. These layers are described as follows:

Fuzzy layer. The ANFIS model begins by fuzzifying input
variables. Fuzzication is mapping crisp input values to fuzzy
sets, which represent language phrases or categories. Each
input variable's fuzzy sets are dened by its membership
functions. This layer handles uncertain and imprecise input
data. In this layer, the system receives data as eqn (15) depicts.

O1
i = mAi

(a) (15)

Product layer. Each fuzzy rule's membership is determined by
fuzzied inputs. The rule evaluation step uses fuzzy logic
operators (e.g., AND, OR) to calculate each rule's ring strength.
This ring strength indicates the rule's activation based on
input variables. The membership functions transform input
data into fuzzy sets in this layer as in eqn (16).

O2
i = wi = mAi

(a) × mBi
(b), i = 1, 2 (16)

Normalized layer. Each rule's consequence represents the
ANFIS model's forecast. It has a premise portion, a linear
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 ANFIS model parameter optimization.
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function of the input variables, and a consequent part,
a rule parameter. The rule consequent converts fuzzy rule
ring strength to a sharp output value. Based on training
data, the product rule in this layer generates fuzzy rules as
follows.

Oi
3 ¼ wi ¼ wi

w1 þ w2

; i ¼ 1; 2 (17)

Defuzzication layer. Here, each rule's ring strength is
divided by all rules' ring strengths. It guarantees that rules
contribute to the output proportionally to their strengths. In
this layer, deffuzifation of the output was observed. The re-
ported signals observed in the normalization layer are sponta-
neously multiplied with the fuzzy rule's function in which the
output O4

i is expressed as shown in eqn (18):

O4
i = �wif = �wi(sia + rib + ti) (18)

Output layer. Defuzzication combines all rule outputs to
provide a clear value. The weighted averages of rule outputs,
based on normalized ring strengths, are combined. Eqn (19)
shows the systems's output in this layer:
Table 1 ANFIS model parameters

Parameters Values

FIS structure Takagi-Sugeno-type
FIS function Gens3 (fuzzy c-means)
Number of clusters 2–4
Number of exponents for matrix
portioning

2

Maximum iteration 100
Stopping criteria Maximum number

of iterations
Minimum improvement 1 × 10−5

© 2024 The Author(s). Published by the Royal Society of Chemistry
Oi
5 ¼

X
i

wifi ¼
P
i

wifiP
i

wi

(19)

The ANFIS model for methylene blue sequestration utilizing
thermally modied nanocrystalline snail shells benets from
parameter optimization. We may optimize the model's predic-
tion powers and increase its accuracy in capturing the seques-
tration process's equilibrium, kinetic, and thermodynamic
behavior by ne-tuning its parameters. Clustering is a signi-
cant step in the process of building the ANFIS model. In this
study, the data set was divided into clusters using fuzzy c-means
(FCM) clustering, where each of the data points to some extent
belongs to each cluster. Iterative minimization techniques are
used in this method to cluster a nite set of data, X = (x1,
x2...xm), into clusters of integers, where xi, i = 1,.m is an l-
dimensional vector.48 FCM clustering is preferred for applica-
tions where speed is crucial, because of its capacity to accelerate
computations.49 FCM was adopted in this study to build the
fuzzy inference system. Until the partition matrix changes, the
iterative process continues until the next rounds are less than
a predened threshold. For the FCM method, a range of 2 to 4
clusters was optimized to nd the best model for predicting the
removal rate of methylene blue. Table 1 provides a list of
additional model parameters for the FCM-ANFIS method used
in this experiment.

Using 30% of the holdout data for testing and 70% of the
total data set for training, the best model was chosen. The
developed model's total cluster numbers are evaluated using
the following metrics: mean absolute deviation (MAD), mean
absolute error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). These statistical indicators
are estimated using eqn (20)–(22):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

h
yk �cyki
N

vuuut
(20)
RSC Adv., 2024, 14, 12703–12719 | 12707
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MAD ¼ 1

N

XN
k¼1

jyk � yj (21)

MAPE ¼ 1

N

XN
k¼1

�����
yk �cyk

yk

������ 100%; (22)

where yk = experimental values, byk= predicted values, dyk_median

= median yk_median = median of the values“ as this does not
appear as dened in the preceding equations. Please make any
necessary changes to the proof. –>of the values, �y =mean value,
and N = number of hold-out data.
2.7 Density functional theory studies

The equilibrium geometries of the chemical compounds ob-
tained from snail shells were completely optimized at the DFT
level via the 6-31G* basis set. The density functional theory
used in this work was executed using the three-parameter
B3LYP density functional, and it also includes Becke's
gradient exchange correction as well as the Lee, Yang, Parr
correlation functional. In this work, every calculation was
performed using the Spartan ‘14 program implemented on
a core i5 2.40 GHz and 2.50 GHz computer. The chemical
compounds in the snail shell were observed and screened, and
Fig. 2 (a and b) SEM micrographs of calcined snail shells (CaO) (a × 150
size of calcined snail shells (CaO).

12708 | RSC Adv., 2024, 14, 12703–12719
the selected compounds were N-[(2R)-2,4,5-trihydroxy-6-
(hydroxymethyl)oxan-3-yl]acetamide (NTHA) and methyl N-
[(2S,3R,4R,5S,6R)-5-[(2S,3R,4R,5S,6R)-3-amino-5-
[(2S,3R,4R,5S,6R)-3-amino-5-[(2S,3R,4R,5S,6R)-3-amino-5-
[(2S,3R,4R,5S,6R)-3-amino-5-[(2S,3R,4R,5S,6R)-3-amino-5-
[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)
oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-
hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydrox-
ymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]
oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-
[(2R,3S,4R,5R,6S)-5-amino-6-[(2R,3S,4R,5R,6R)-5-amino-4,6-
dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-2-
(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-6-(hydroxymethyl)
oxan-3-yl]carbamate (MAOAC).50 The selected compounds were
optimized using Spartan 14 soware via 6.31-G* as a basis set51

to obtain the full geometry of the compounds. The optimized
compounds (adsorbents) and methylene blue (adsorbate) were
converted to .pdb format and further subjected to docking
soware to observe the inhibiting strength of the adsorbent
against methylene blue (adsorbate). The improvement of the
investigated substances resulted in several descriptors, which
were used for further investigation. Also, the two compounds
were docked against the adsorbate (methylene blue) using
Discovery Studio, Autodock Tools, and AutoDock Vina soware
00 magnification and b × 30000 magnification). (c) The mean particle

© 2024 The Author(s). Published by the Royal Society of Chemistry
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so as to observe the inhibition ability of the ligands under
study against methylene blue (adsorbate).

2.8 Statistical analysis

Graph Pad Prism® (Version 6.04) was used to perform a T-test
and calculate the means of all the experimental parameters that
were investigated at n = 3. All data were shown as mean ± SD
(standard deviation), with the level of signicance set at p < 0.05.
All equilibrium and kinetic plots were made using KyPlot®
version 2.0 soware with the non-linear mathematical versions
of the equilibrium and kinetic models. The soware used the
Quasi Newton (least square) optimization tool for tting the
data to the models.

3 Results and discussion
3.1 Surface morphology of the biosorbent

SEM was used to determine the nature of the adsorbent
morphology, while EDX was used to examine and ascertain the
morphological restructuring due to the thermal treatment. The
Fig. 3 EDX chart of calcined snail shells (CaO): (a) elemental distributio
persibility on adsorbent surfaces.

© 2024 The Author(s). Published by the Royal Society of Chemistry
SEM micrographs and average particle size of CaO from calcined
snail shells are presented in Fig. 2a and b, while the EDX micro-
graphs of CaO are presented in Fig. 3a–d. Fig. 2a and b show an
irregularly shaped material with an average particle size of 65 ±

2.81 nm, as shown by the Gaussian plot using image J soware.
Furthermore, EDX analysis shows the distribution and the

percentage composition of each atom on the adsorbent surface,
otherwise known as chemical mapping. This analysis is one of
the major characterizations utilized to conrm the doping of
any composite material. The presence, distribution, and
percentage composition of calcium and oxygen in CaO from
calcined snail shells are presented in Fig. 3a–d, which show and
ascertain the formation of oxides of calcium due to the thermal
degradation of CaCO3 into carbon oxide and CaO, respectively.
This is in agreement with the result obtained in the FTIR
analysis, in which a weak adsorption value of 512 cm−1 was
observed in the uncalcined SS compared to a prominent strong
metal oxide adsorption band at 547 cm−1 for TMNSS, as pre-
sented in Table 2. The result of the analysis conrms the
formation of metal oxides as shown in the EDX chart.
n; (b) elemental composition in wt%; (c and d) micrograph of the dis-
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Table 2 FTIR absorption values of the adsorbent and their assignments

Wavenumber range
(cm−1)

Uncalcined
SS (cm−1) TMNSS (cm−1)

Difference
(cm−1) Functional group

3630–3600 3644 3639 −5 O–H (stretch)
3000–2850 2978 2978 0 C–H (stretch)

2896 2888 −6
1810–1775 1786 1793 7 C]O (stretch)
1500 – 1350 1469 1388 −81 C–C (aromatic stretch) and C–O stretch
1350–1000 1157 1161 −89
900–690 857 868 11 C–H (out of plane bend)
800–400 512 547 35 Me–O

Fig. 4 FTIR spectra of (a) uncalcined snail shell and (b) TMNSS.
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3.2 Surface chemistry of the biosorbent

The TMNSS surface functional groups were determined using
FTIR spectroscopy. The wave number values and the absorp-
tion characteristics of all the biosorbent materials are pre-
sented in Table 2, while Fig. 3 shows the FTIR spectra of
uncalcined and calcined snail shells (CaO). Characteristic
absorption values of 3644 cm−1 and 3639 cm−1 for SS and CaO,
respectively, were observed in the adsorbent, as presented in
Table 2 and Fig. 4. This is attributed to O–H stretch with
a range value of 3630–3100 cm−1. The observed shis, as
shown in Fig. 4a and b, in the absorption values suggest
Fig. 5 Crystallogram of the calcined snail shell (CaO) adsorbent.
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thermal modication (for CaO) of the biomass material (snail
shell). Furthermore, the C–H stretch value between 3000 and
2850 cm−1 shows the alkyl C–H stretch, and the pristine CaO
recorded a similar value of 2978 cm−1. The characteristic metal
oxide (Me–O adsorption band in the range of (400–
800 cm−1)52,53 was noted in the snail shell, although weak at
705 cm−1, and a strong Me–O adsorption band was observed in
CaO, as noted in Table 2 and Fig. 4, respectively, thereby sug-
gesting the formation of a Ca–O functional group due to the
removal of carbon dioxide. It could be inferred that the
appearance, disappearance, and band shi observed in the
adsorption is attributed to the morphological restructuring,
resulting in modication of the adsorbent surfaces.

XRD analysis was used to determine and identify whether
a material is crystalline or amorphous in nature, as a result of
the sharpness and intensity shown by any analyzed material.
Furthermore, studies have shown that 800 °C is the optimum
temperature in which CaCO3 and Ca(OH)2 from snail shells,
quicklime, and egg shells are converted into CaO.54 CaCO3 is
one of themain components of snail shells. Aer being calcined
at 800 °C for two hours, this was entirely converted into CaO.
Fig. 5 shows the XRD patterns of the calcined snail shell ob-
tained to further reveal details about the microstructure of the
material at an X-ray wavelength of l = 1.540562 Å Cu Ka. The
diffractogram patterns were theoretically calculated using
mathematical methods. The XRD diffractogram reveals patterns
that show crystallinity. The following lattice parameters, Miller
indices (hkl), and crystal structure were therefore determined.
The mean lattice parameter “a” in angstrom, a (Å), for the
calcined snail shell (CaO) recorded a consistent value of
8.611617 Å with ve consecutive hkl values of 111, 210, 220, 220,
and 311 at the 2q values of 17.91°, 22.95°, 29.26°, 33.96°, and
34.01°. This shows that the adsorbent is crystalline in nature.
The nding of this study is in agreement with previous
studies,53,55 thereby corroborating the results obtained in the
SEM-EDX and FTIR analysis.

3.3 Kinetic studies

The kinetic investigation involves a systematic approach to
assess the rate at which pollutants are best eliminated from an
aqueous solution.56 It also aids in evaluating whether the
adsorption process occurred via physisorption, chemisorption,
or a more complex interaction.57 The experimental data were
modeled using Elovich, pseudo-rst-order (PFO), and pseudo-
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 3 Kinetic data for the adsorption of methylene blue onto TMNSS

Model R2 Error Parameters

PFOM 0.9838 1.0735 Qe = 22.7163 mg g−1, k1 = 0.8741 min−1

PSOM 0.9868 0.8792 Qe = 0.1306 mg g−1, k2 = 23.0972 g mg−1 min−1

Elovich 0.9886 0.8832 b = 0.8978 g mg−1, a = 26 769 784.95 mg g−1 min−1

Fig. 6 Kinetic plot for the adsorption of methylene blue onto TMNSS.
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second-order (PSO) models (Table 3). The effect of contact time
experiment (Fig. 6) shows that almost 95% of the MB was
removed aer 50 min, indicating a rapid adsorption process.
The PSO model, which had the lowest error value of 0.8792 and
correlation coefficient of 0.9868, more accurately describes the
uptake of the dyes from the solution. This model shows that
during the adsorption process, MB and polar functional groups
on the TMNSS surface interacted chemically.
Fig. 7 Adsorption isotherm plot for the adsorption of methylene blue
onto TMNSS.

© 2024 The Author(s). Published by the Royal Society of Chemistry
3.4 Isothermal studies

To further illustrate how the TMNSS and MB interacted and
demonstrate the equilibrium link between the sorbate
concentration and adsorption capacity of the sorbent, experi-
mental data were tted with isotherm models, as shown in
Fig. 7. This study uses Langmuir, Freundlich, and Sips.
According to the correlation coefficient and error values shown
in Table 4, the Freundlich model t was more accurate for the
uptake of MB onto TMNSS. It successfully predicts that the
adsorption process is multilayer, showing that the MB adsorp-
tion is proportional to the fraction of occupied sites. Addition-
ally, the reactive groups present on the adsorbent surface, as
seen by the FTIR spectra in Fig. 4, serve as a demonstration of
the materials’ heterogeneity. The zenith of the adsorption
capacity of MB unto TMNSS is 31 mg g−1.

For the comparative study, Table 5 presents the maximum
adsorption capacities of other adsorbents obtained from
previous literature alongside TMNSS, which were employed for
Table 4 Adsorption isotherm data for the adsorption of methylene
blue onto TMNSS

Model R2 Parameters

Freundlich 0.9985 KF = 31.7853 (mg g−1) (L mg−1)1/n; n = 1.8926
Sips 0.9985 Qo = 13.0798; K = 4.6697; n = 0.5384
Temkin 0.9702 a = 49.2380; L g−1; KT = 1.45980J mg
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Table 5 Comparison of maximum adsorption capacities for MB onto
TMNSS with other various modified adsorbents reported in the
literature

Adsorbent
Maximum adsorption
capacity (qmax) Ref.

Cereal chaff 20.30 58
Coconut-husk-based
activated carbon

66.00 59

Rice husks 40.60 60
Coir pith carbon 5.87 59
Biochar 12.03 61
Corn cob-activated carbon 0.84 62
Orange peel 18.60 63
Thermally modied
nanocrystalline snail shells

31.79 This study
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the removal of MB from aqueous solutions. It is clear that
TMNSS adsorbent can be classied as both cost-effective and
efficient among the other adsorbents for methylene blue
Fig. 8 Effects of (a) initial concentration, (b) time, (c) temperature, and (
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removal. Furthermore, it is noteworthy that the adsorption
capacity of TMNSS surpasses some adsorbents studied previ-
ously, while also showing a similar level of efficiency to others.
This demonstrates that TMNSS is a potential adsorbent for the
removal of MB from aqueous phases.
3.5 Effects of process variables on the adsorption of MB

3.5.1 Effect of initial concentration. Fig. 8a illustrates the
effects of varying the initial concentration on the percentage
removal (%) of MB by TMNSS over 120 minutes. The initial
concentration ranges from 25 to 300 mg L−1. Fig. 8a illustrates
clearly that when MB concentration increases, the MB
percentage removal typically declines. A signicant difference
was observed between the concentration 50 mg L−1 and
100 mg L−1 at p = 0.0394, while no observable signicant
difference was recorded between 25 mg L−1 and 50 mg L−1 of
MB, with p > 0.05, 0.0913. When the MB concentration was
25 mg L−1, the percentage removal (%) peaked at 96.48± 0.58%
and began to decline at 300 mg L−1 to 78.14 ± 1.16%, in which
d) pH on the adsorption of methylene blue onto TMNSS.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 6 Thermodynamics study parameters of the adsorption of
methylene blue onto the thermally modified nanocrystalline snail shell
adsorbent

Temp (K)

TMNSS

DG
(J mol−1)

DH
(kJ mol−1)

DS
(J mol−1)

293 −48.39 −2.18 +157.700
303 −49.96
313 −51.53
323 −53.11
333 −54.69
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a recorded observable signicant difference value p = 0.0001
was noted. This phenomenon was a result of a greater driving
force—that is, a suitable binding site—at lower concentrations,
where a greater degree of adsorption was observed. Meanwhile,
when the concentration of the adsorbate increases, there is
competition for attachment, which causes more MB to stay
unattached in the solution due to a shortage or limited avail-
ability of adsorption sites due to saturation of the adsorbent
surface.

3.5.2 Effect of pH. An essential parameter in the adsorption
process is pH. Fig. 8d shows the removal of the dye under
different pH levels. In our investigation, we observed that MB
percentage removal under a range of different pH values varied
slightly between acidic and alkaline conditions. The uptake of
MB from its solution slightly decreases at the pH range of 3–5.
This shows that TMNSS displays excellent MB removal
percentages in the acidic medium at pH 3 (93.5± 0.43%), which
recorded the best results. Moreover, a remarkably signicant
difference was noted at p < 0.05 between the recorded
percentage uptake at pH 3 and 5. Moreso, based on the sorbent
pHpzc of 11.04 ± 0.00, this observation suggests that other non-
ionic attractions, hydrogen bonding, hydrophobic interactions,
and p–p stacking interactions are responsible for the adsorp-
tion of MB on TMNSS rather than electrostatic interaction.

The adsorption mechanism noted could be a result of the
negative charge in the adsorbent surface being neutralized by
the positive charge of H+. Moreover, the addition of HCl in the
dilution of powdered methylene blue increased the acid site of
the adsorbents. Thus, at acidic conditions, it is possible for the
MB to be more basic, making it easy to attach to the acid site of
the adsorbents.

3.5.3 Effect of temperature. The ndings of this study, as
presented in Fig. 8c, show that MB adsorption increases from
20 °C and peaks at 30 °C, aer which it is observed to decline as
the temperature increases. The adsorbent's kinetic energy is
thought to increase with temperature, which increases adsorp-
tion efficiency. Secondly, functional groups on the adsorbent
Fig. 9 Point of zero charge of the adsorbent.

© 2024 The Author(s). Published by the Royal Society of Chemistry
surface experience bond breaking as the temperature increases.
This may result in the adsorbents' increased active site count,
which in turn can enhance adsorption. At 30 °C, the process
reaches its peak, with 95.68 ± 0.32% adsorption removal. Upon
comparing the recorded percentage MB uptake value at 20 °C
(91.76 ± 0.66%) and 30 °C (95.68 ± 0.32%), a signicant
difference was noted with p-value of 0.0011. It was observed that
the MB adsorption was somewhat decreased between 40 and
60 °C, as shown in Fig. 8c. This could be a result of bond
weakening at the adsorbate molecules's attachment to the
adsorbent's active site at such high temperatures. The nding is
in tandem with earlier reported studies.36

The observed pattern of MB removal capability to decrease
with increasing temperature suggests that the adsorption
kinetic is an exothermic mechanism. The results are consistent
with previous investigations.64,65
3.6 Point of zero charge studies

The pHpzc value determines the surface charge of the adsorbent,
the chemistry of the aqueous environment, and the adsorbent–
adsorbate interaction. This is very important especially when
adsorption is predominantly via electrostatic interactions. This
is because, at solution pH lower than the adsorbent pHpzc,
excess H+ in solution is attracted to the adsorbent's surface,
thereby making the net surface charge positive and favoring the
adsorption of negatively charged species. Meanwhile, when the
solution pH is higher than the pHpzc, the net surface charge
becomes negative due to the desorption of H+, favoring the
adsorption of positively charged moieties.66 The interfacial
characteristics are based on the pH at the point zero charge
(pHpzc), which can be used to determine which ionic species the
TMNSS can adsorb at a particular pH. For this test, 50 mL of
sodium chloride (NaCl) 0.1 N electrolyte, buffered to pH 2.00–
12.00 by adding HCl (0.01 M) and NaOH (0.01 M), were
combined with 0.10 g of the adsorbent as the sorbent mass.
Plotting DpH (nal pH − initial pH) vs. initial pH allowed the
pHpzc of the adsorbent to be identied as presented in Fig. 9.
The study was done at room temperature, and the suspension
was agitated for 24 hours before the nal pH of each suspension
was determined. Fig. 9 shows that the pHpzc of TMNSS is 11.04
± 0.00, indicating that the surface of TMNSS possesses a wide
pH range for positively charged surfaces; hence, the materials
RSC Adv., 2024, 14, 12703–12719 | 12713
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are expected to have great electrostatic affinity for negatively
charged moieties.
3.7 Thermodynamic studies

The thermodynamic parameters for the adsorption of MB onto
TMNSS are presented in Table 6. The negative values for Gibbs
free energy (DG°) values indicate the feasibility and sponta-
neous adsorption of theMB on the adsorbent.35,51 TheDH° value
is also negative (−2.18 kJ mol−1), indicating that the uptake of
the MBmolecules using TMNSS is an exothermic process, while
the positive DS° (+157.700 J mol−1) value indicates increasing
randomness in the adsorbent-solution interphase during the
uptake.51
3.8 Mechanism of adsorption

The effect of electrostatic attraction on dye adsorption was
investigated. The pH study revealed that the impact of pH
adjustment on the adsorption efficiency of TMNSS was
minimal. According to the recorded pHpzc value of the adsor-
bent, the surface of the adsorbent comprises mostly positively
charged ions within the pH range (3–10). However, this is not
favorable for the sorption of MB, which is cationic in nature
because, in an aqueous solution, MB is present as a neutral (MB
°), cationic species (MB+), or undissociated molecule (MB°). At
pH = 3, MB exists predominantly as a neutral species; at pH =

pKa = 3.8, both neutral and positively charged MB species
coexist; at pH > 6, MB+ is almost the only species present.67

Therefore, it is reasonable to assume that electrostatic interac-
tion is not the primary mechanism in the adsorption of MB. As
a result, it can be assumed that other mechanisms play a larger
part in the adsorption process. Similarly, the isotherm model
predicts that the adsorbent has a heterogeneous surface, which
might lead to the involvement of other mechanisms in the
adsorption process. When both the adsorbent and the adsor-
bate have positively charged surfaces, a cation–electron donor
acceptance (EDA) interaction between the protonated group on
the adsorbate and the ring structure of the adsorbent may take
place at low pH.67 The adsorption process is described as
including the interaction of p-electrons between the aromatic
rings of MB and the p-electrons from TMNSS, along with the
hydrophobic interaction between the long-chain carbon on the
adsorbent and the aromatic groups in the adsorbates.68
Table 7 Performance outcome of the ANFIS model at different
clustering for methylene blue removal rate prediction

Cluster number Stages RMSE MAD MAE MAPE

2 Training 2.5632 1.1953 0.0276 5.214
Testing 2.3324 1.1352 0.0232 4.438

3 Training 2.6217 1.2063 0.0256 3.163
Testing 2.2689 1.6324 0.0232 2.056

4 Training 2.5277 1.1809 2.2734 2.6634
Testing 2.2077 1.1429 1.8786 2.0178
3.9 Performance metrics of the neuro-fuzzy model

3.9.1 ANFIS model performance analysis. The ANFIS model
performance metrics for MB sequestration using TMNSS
provide insights into the accuracy and effectiveness of the
model by predicting the sequestration process. The ANFIS
model's performance indicators for the methylene blue
sequestration process employing thermally altered nano-
crystalline snail shells point to favorable outcomes. Table 7
presents the performance of the developed ANFIS model for
predicting the removal rate of the MB. The model's ability to
precisely anticipate the sequestration process is demonstrated
by the low values of RMSE, MAD, MAE, and MAPE.
12714 | RSC Adv., 2024, 14, 12703–12719
These results highlight the ANFIS model's capability to
optimize the adsorption settings and advance knowledge of the
equilibrium, kinetic, and thermodynamic aspects of methylene
blue sequestration. The RMSE value of 2.2077 during the testing
phase indicates the average size of the discrepancies or errors
between the predicted and actual values. Better prediction
accuracy is shown by a lower RMSE value. The ANFIS model in
this instance exhibits a reasonably low RMSE, indicating that it
is capable of accurately capturing the thermodynamic, kinetic,
and equilibrium behavior of methylene blue sequestration. The
recorded mean size of the absolute disparities between the ex-
pected and actual values is represented by the MAD value of
1.1429 at the testing phase. It gives a hint as to the model's
typical accuracy. Better agreement between the expected and
actual values is indicated by a lower MAD value. The ANFIS
model's relatively low MAD suggests that it can provide precise
predictions for the sequestration of methylene blue. The
average magnitude of predicted-to-actual errors is 1.8786 at the
testing phase. MAE evaluates the model's average prediction
accuracy like MAD. Prediction accuracy improves with reduced
MAE. The low MAE of ANFIS suggests it can estimate methylene
blue sequestration using thermally modied nanocrystalline
snail shells. The average percentage difference between the
projected and actual values is represented by the MAPE value of
2.0178 at the testing phase. The relative accuracy of the
predictions is revealed by MAPE. An improved prediction
performance is shown by a lower MAPE value. The compara-
tively low MAPE of the ANFIS model shows that it can provide
predictions for methylene blue sequestration using thermally
altered nanocrystalline snail shells that are rather accurate.

While there is some variation in the performance metrics
between the training and testing phases, the ANFIS model
generally demonstrates good predictive capabilities for meth-
ylene blue sequestration using thermally modied nano-
crystalline snail shells. The small improvement noticed during
the testing phase when compared to the training phase
suggests that the model effectively adapts to new data and
performs well in estimating the sequestration process. During
training, the RMSE is 2.5277; during testing, it is 2.2077. The
model's predicted accuracy using the novel data set is slightly
better. RMSE decreases between phases, indicating that the
model generalizes well to additional observations. In addition,
the MAD value is 1.1809 for training and 1.1429 for testing.
This marginal decline demonstrates that the model regularly
makes correct predictions with a signicantly lower average
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 10 Plots comparing the experimental and predicted removal rates of methylene blue at the training phase.
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absolute deviation in testing. Low MAD values imply that the
model's predictions are close to the observed values regardless
of phase.69 Further to this, during training, the MAE is 2.2734;
during testing, it is 1.8786. This implies a somewhat reduced
average absolute error on unseen data for the model's
predictions. The model's predictions are closer to real values
when applied to new data in the testing phase due to the
reduced MAE value. Similarly, the MAPE is 2.6634 during
training and 2.0178 during testing. During testing, the model's
predictions had a slightly lower average percentage deviation
from the actual values. The reduced MAPE value during the
testing phase suggests that the model's predictions are more
accurate when applied to new data, closely aligning with the
actual values. The removal rate of methylene blue utilizing
thermally modied nanocrystalline snail shells can be signif-
icantly affected by changes in the input variables, such as
temperature, time, dosage, concentration, and pH. Under-
standing how these factors affect the adsorption process
enables its optimization and offers useful information for
using the ANFIS model to accurately forecast the removal rate
under various operating conditions. By examining how the
model responds to variations in these input variables, we can
gain insights into their inuence on the removal rate.

Temperature greatly affects methylene blue elimination.
Higher temperatures improve adsorption by increasing molec-
ular mobility and surface contact. Thus, the ANFIS model's
predicted removal rate increases with temperature. Further-
more, the ANFIS model is more likely to predict higher removal
© 2024 The Author(s). Published by the Royal Society of Chemistry
rates with increased time, as longer contact times allow for
more interaction between the methylene blue molecules and
the adsorbent surface, leading to higher removal rates. In
addition, higher dosages providemore available surface area for
adsorption and, thus, can lead to higher removal rates. There-
fore, it is expected that an increase in dosage will result in
higher removal rates as predicted by the ANFIS model.

Finding an optimal cluster number is crucial to strike
a balance between capturing relevant information and avoid-
ing overtting.70 Therefore, the selection of cluster number in
this FCM-clustered ANFIS model must factor in the features of
the data set and the distribution of the data points. This is
because a lower number of clusters may oversimplify the
representation of the data, while a higher cluster number can
result in overtting if the complexity is not compensated by
enough data. The number of clusters in the FCM clustering
approach affects how well the ANFIS model performs, as
indicated by the RMSE values. For clusters 2, 4, and 5, the
RMSE values are 2.3324, 2.2689, and 2.2077, respectively, at
the testing phase. This variation implies that the outcome of
the model may be inuenced by the number of clusters. An
improved t of the model to the observed data is shown by
a decreased RMSE. In this instance, the drop in RMSE from
2.3324 (2 clusters) to 2.2077 (4 clusters) indicates that better
model performance results from adding more clusters. The
additional clusters' ability to capture data at a greater degree
of detail and produce more precise predictions may be
responsible for this increase.
RSC Adv., 2024, 14, 12703–12719 | 12715



Fig. 11 Plots comparing the experimental and predicted removal rates of methylene blue at the testing phase.

Table 8 Calculated binding affinity and residues involved in the
interaction

Binding affinity (kcal mol−1)

NTHA −1.3
MAOAC 42.2

RSC Advances Paper
The ANFIS model performance is shown graphically in
addition to the model's statistical metrics results. Fig. 10 and
11 present the comparison between the experimental and
ANFIS-predicted values of the MB removal rate during the
training and testing phases, respectively. Moreover, these plots
display a uniform pattern and trend with minimal variation,
Fig. 12 The 3-dimensional structure of NTHA-MB complex.
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indicating the ANFIS model's capacity to capture the overall
trends and behavior of the MB sequestration process using
TMNSS. The model can describe the kinetics and properties of
MB sequestration, since the experimental and ANFIS-predicted
values match. Further to this, the ANFIS model appears to have
learned and assimilated the correlations between input vari-
ables and methylene blue removal rate. This consistency
suggests the model is accurately forecasting sequestration
behavior. The comparison plot shows a marginal difference
between experimental and ANFIS-predicted values, indicating
the model's accuracy. Due to system uncertainties and
complexities, the ANFIS model may deviate. However, the
predicted values match the experimental values, validating the
ANFIS model's efficacy. The model's validity and reliability
increase when ANFIS-predicted values match experimental
values. The closeness between the two sets of values implies
that the ANFIS model may accurately estimate methylene blue
elimination using thermally modied nanocrystalline snail
shells. This improves the model's sequestration prediction and
practicality.
3.10 Molecular docking study

The selected ligands from the adsorbents, N-[(2R)-2,4,5-trihydroxy-
6-(hydroxymethyl)oxan-3-yl]acetamide (NTHA) and methyl N-
[(2S,3R,4R,5S,6R)-5-[(2S,3R,4R,5S,6R)-3-amino-5-[(2S,3R,4R,5S,6R)-
3-amino-5-[(2S,3R,4R,5S,6R)-3-amino-5-[(2S,3R,4R,5S,6R)-3-amino-
5-[(2S,3R,4R,5S,6R)-3-amino-5-[(2S,3R,4R,5S,6R)-3-amino-4,5-dihy-
droxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-
6-(hydroxymethyl)oxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-
2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-
[(2R,3S,4R,5R,6S)-5-amino-6-[(2R,3S,4R,5R,6R)-5-amino-4,6-
dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-2-
(hydroxymethyl)oxan-3-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-3-
yl]carbamate (MAOAC), were docked against the adsorbate (MB),
and the recorded binding affinity for the studied ligands were
−1.3 kcal mol−1 for NTHA and 42.2 kcal mol−1 for MAOAC. As
reported by ref. 71, a lower binding affinity value denotes
a compound with better ability to inhibit the studied receptor;
therefore, NTHA proved to have greater capacity than MAOAC, as
presented in Table 8. Also, it showed that NTHA greatly enhanced
the ability of TMNSS for MB sequestration, which agrees with the
experimental report (Fig. 12).

4 Conclusion

This comprehensive research has offered valuable insights into
the capability of TMNSS as an appropriate and sustainable
biosorbent, proving its effectiveness in removing methylene
blue dye from wastewater and providing a thorough under-
standing of the adsorption process. The SEM micrographs
reveal an irregularly shaped biosorbent with an average particle
size of 65 ± 2.81 nm determined using Image J soware.
Analysis of the XRD results indicates a highly crystalline mate-
rial, with a recorded lattice parameter value of 8.611617 Å. EDX
and FTIR conrm the formation of CaO with sharp peaks at
547 cm−1, and C–O and O–H are present, as well. The maximum
adsorption efficiency of 96.48 ± 0.58% was recorded with a pH
of 3.0, an adsorbent dose of 10 mg, and at 30 °C, while the pHpzc

value is 11.04 ± 0.00, indicating basic surface characteristics.
Freundlich isotherms recorded a maximum adsorption capacity
(Qm) and R2 value of 31.7853 mg g−1 and 0.9985, respectively,
among others, which demonstrates the remarkable adsorption
capacity of the snail shell-based adsorbents, conrming their
suitability for MB dye sequestration. The adsorption kinetic
investigations t into the pseudo-second order kinetic model
with recorded least error and R2 values of 0.8792 and 0.9868,
respectively, thereby showing that the rapidity of the adsorption
process is governed by the chemisorption mechanism. The
recorded DH° and DG° values of −2.18 kJ mol−1 and +157.700 J
mol−1, respectively, show that the adsorption thermodynamics
is spontaneous and endothermic, underscoring its feasibility
under diverse environmental conditions.

In addition, the integration of articial intelligence tech-
niques allowed us to develop predictive models, which can
facilitate process optimization and practical applications. The
most accurate MB sequestration calculations recorded values of
2.5277 for root mean square error (RMSE), 1.809 for mean
absolute deviation (MAD), 2.6634 for mean absolute percentage
error (MAPE), and 1.6276 for correlation determination (R1),
thus showing that the GP-ANFIS model is in tandem with the
experimental nding. Moreso, DFT calculations provided
molecular-level insights into the interaction between methylene
blue and the adsorbent surface, enhancing our understanding
of the adsorption mechanism. The ligand N-[(2R)-2,4,5-
© 2024 The Author(s). Published by the Royal Society of Chemistry
trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide (NTHA) was
docked against the adsorbate (methylene blue) with a recorded
binding affinity value of −1.3 kcal mol−1, thereby possessing
a better adsorption capacity.

The ndings of this study underscore the potential of ther-
mally modied nanocrystalline snail shells as an eco-friendly
and efficient biosorbent for dye removal. This research not
only contributes to the advancement of sustainable wastewater
treatment but also highlights the interdisciplinary nature of
addressing environmental challenges through the convergence
of chemistry, materials science, articial intelligence, and
computational modeling.
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