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Abstract

Profiling of biological relationships between different molecular
layers dissects regulatory mechanisms that ultimately determine
cellular function. To thoroughly assess the role of protein post-trans-
lational turnover, we devised a strategy combining pulse stable
isotope-labeled amino acids in cells (pSILAC), data-independent acqui-
sition mass spectrometry (DIA-MS), and a novel data analysis frame-
work that resolves protein degradation rate on the level of mRNA
alternative splicing isoforms and isoform groups. We demonstrated
our approach by the genome-wide correlation analysis between
mRNA amounts and protein degradation across different strains of
HeLa cells that harbor a high grade of gene dosage variation. The
dataset revealed that specific biological processes, cellular organelles,
spatial compartments of organelles, and individual protein isoforms
of the same genes could have distinctive degradation rate. The
protein degradation diversity thus dissects the corresponding
buffering or concerting protein turnover control across cancer cell
lines. The data further indicate that specific mRNA splicing events
such as intron retention significantly impact the protein abundance
levels. Our findings support the tight association between transcrip-
tome variability and proteostasis and provide a methodological foun-
dation for studying functional protein degradation.
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Introduction

Correlation analysis (Altman & Krzywinski, 2015) has been widely

used in biological and biomedical reports due to the easily interpretable

message it delivers, i.e., whether there is a positive or negative associa-

tion between the two biological traits and whether this association is

statistically significant. As a prominent example, the mRNA–protein

correlation has been frequently investigated to reveal to what extent

mRNA levels can predict protein levels (Vogel & Marcotte, 2012; Jova-

novic et al, 2015; Edfors et al, 2016; Liu et al, 2016; Silva & Vogel,

2016; Fortelny et al, 2017; Franks et al, 2017).

To thoroughly investigate the mRNA–protein correlation, it is

indispensable to distinguish between two scales: the absolute and the

relative (Liu et al, 2016). While the absolute correlation is performed

across genes in one particular sample, the relative correlation must be

performed across samples, e.g., as a correlation of fold changes

between conditions. Furthermore, the relative correlation analysis

can be performed in a gene-specific manner (Fortelny et al, 2017) to

understand gene-specific properties. The absolute correlation is

known to be heavily driven by the genome-wide variation of mRNA

and protein abundances (i.e., copies per cell). Thus, absolute mRNA–

protein correlation is usually high if both transcriptomic and

proteomic measurements are precise. On the other hand, the relative

correlation of the fold changes per gene may directly reflect the signif-

icance of the post-transcriptional regulation between different condi-

tions (Liu et al, 2016; Silva & Vogel, 2016; Fortelny et al, 2017).

With the technology development, many gene-specific traits,

other than mRNA and protein quantities, can be measured at the

genome level, or in large scale. For example, the protein-specific

degradation rates (kloss as a proxy in steady state cells in this report,

Materials and Methods) can now be quantified by “pulse labeling”
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with stable isotope-labeled amino acids in cells, i.e., pulse SILAC (or

pSILAC) technique (Pratt et al, 2002; Schwanhausser et al, 2009,

2011; Eichelbaum & Krijgsveld, 2014; Jovanovic et al, 2015). At the

absolute scale, previous pSILAC studies have repeatedly discovered

that the protein turnover rate can be influenced by protein abun-

dance, because higher abundant proteins normally tend to be less

degraded (Claydon & Beynon, 2012; Liu et al, 2017a, 2019). Further-

more, others and we have shown that the relationship between kloss
and mRNA concentration is informative in understanding the protein

turnover regulation between conditions (Schwanhausser et al, 2011;

McShane et al, 2016; Liu et al, 2017a, 2019). By per-gene relative

analysis, we revealed that the protein degradation for subunits of

heteromeric protein complexes was preferably regulated to buffer

against the chromosomal aneuploidy impact due to trisomy 21 or

high-grade genomic instability between different HeLa cell strains

(Liu et al, 2017a, 2019). However, to date, a detailed, systematic

investigation of mRNA–kloss correlation has been still lacking. Such

an analysis could be fundamental for understanding of the cellular

proteotype shaping processes and protein buffering mechanisms,

because previous reports have suggested the adaption of translation

rates might play a very limited role in buffering of proteins (Albert

et al, 2014; Bader et al, 2015), and that the protein turnover regula-

tion could ensure the robustness of protein expression when tran-

script levels alter significantly (Stingele et al, 2012; Liu et al, 2017a).

Furthermore, eukaryotic mRNA alternative splicing (AS) consti-

tutes an important source of protein diversity (Maniatis & Tasic,

2002). It has been reported that most (i.e., ~ 95%) of multi-exon

human genes can undergo AS events (Wang et al, 2008; Mollet et al,

2010). Aberrant AS has been shown to be associated with many

diseases (Garcia-Blanco et al, 2004; Kahles et al, 2018). To study the

impact of AS on proteome diversity, several tools and workflows have

been developed which convert RNA-Seq data into sample-specific

sequence databases to facilitate mass spectrometry (MS)-based identi-

fication of the AS-specific peptides (Sheynkman et al, 2014; Zhu et al,

2014; Tran et al, 2017; Wu et al, 2019). However, due to the stochas-

ticity and limited sensitivity of MS analysis, as well as the inefficiency

of bottom-up strategies in detecting AS proteoforms (Smith & Kelleher,

2013; Wang et al, 2018b), determining the overall fraction of biologi-

cally relevant AS remains an unsolved problem (Blencowe, 2017;

Tress et al, 2017a). We have developed an approach differentiating

the major and unique AS isoforms for each AS group. Based on the

abundance of the major transcript AS isoform, we confirmed that

protein abundance is generally correlated to transcript AS levels in a

spliceosome-disrupted system (Larochelle, 2017; Liu et al, 2017b).

Inspired by the importance of both mRNA–kloss biological rela-

tionship and the AS resolution in analyzing mRNA–protein correla-

tion, in this study we investigated the quantitative correlation

between mRNA AS levels and proteoform degradation rates. Previ-

ously, Zecha et al (2018) used a method combining pSILAC and

tandem mass tag (TMT) labeling for studying proteoform-resolved

protein turnover. However, their survey investigated the absolute

level, and no global, relative correlation analysis was performed.

Furthermore, in that particular report, the authors did not use any

sample-specific proteomic database derived from the corresponding

RNA-Seq data to improve AS isoform detection (Zecha et al, 2018).

Herein, we present an integrative analysis comprising of (i) a sensitive

and reproducible data-independent acquisition mass spectrometry

(DIA-MS) measurement (Gillet et al, 2012; Bruderer et al, 2017; Amon

et al, 2019; Mehnert et al, 2019), (ii) an optimized pSILAC-DIA work-

flow, (iii) a sample-specific RNA-Seq-derived protein sequence data-

base, and (iv) a novel transcript abundance directed strategy for

calling and quantifying AS proteoforms. We then analyzed the protein

turnover of differential AS groups across multiple HeLa cell lines

collected from different laboratories (Liu et al, 2019). Our results at

the isoform resolution demonstrate that the mRNA–protein degrada-

tion correlation has profound biological implications.

Results

An improved pSILAC-DIA-MS workflow for measuring
protein degradation

It has been proposed that targeted proteomic approaches will enable

the consistent detection of AS-specific peptides across samples (Rost

et al, 2015; Schreiner et al, 2015; Tress et al, 2017a). Further,

increasing MS analytical sensitivity is essential for identifying new

AS-specific peptides (Schreiner et al, 2015). Here, we employed an

optimized, sensitive DIA-MS method on a high-resolution Orbitrap

platform (Bruderer et al, 2017; Amon et al, 2019; Mehnert et al,

2019) and re-measured proteomic samples used in a previous multi-

omic study, in which heterogeneity of HeLa cells across different

research laboratories was analyzed (Liu et al, 2019). These HeLa cell

lines were shown to harbor a considerable heterogeneity on mRNA,

protein, and protein degradation stemming from copy number varia-

tions (CNV) accumulated due to genomic instability and clonal effects

(Liu et al, 2019). Herein, using the same MS sample sets of HeLa

strains, the identical spectral library that contains mass spectrometric

assays for 10,000 human proteins (Rosenberger et al, 2014), and the

same statistical threshold [1% peptide and 1% protein FDR (Rosen-

berger et al, 2017)], we were able to identify a total of 86,996 unique

peptides (105,811 peptide precursors) corresponding to 6,552 canoni-

cal Swiss-Prot proteins by our new DIA-MS platform with 2-h

measurement per sample (Mehnert et al, 2019). This result represents

156 and 51% increases of peptide and protein numbers, compared to

the previous SWATH-MS results acquired on an earlier instrument

(Liu et al, 2019). To benefit from the substantially improved sensitiv-

ity of this single-shot DIA-MS, we analyzed the samples originating

from six HeLa Kyoto strains and six HeLa CCL2 strains to profile both

total protein level abundances and the proxy protein degradation

rates (kloss, by pulsed SILAC labeling, see Materials and Methods)

across cell lines (Fig 1A and Appendix Fig S1).

Previously, to analyze pSILAC-DIA-MS data, we used a workflow

consisting of following steps (Rost et al, 2016; Liu et al, 2017a,

2019). First, a spectral library of the “light” isotopic peptides was

acquired by shotgun proteomics. Second, the “heavy” version of

peptide assays was then generated in silico. Both “heavy” and “light”

versions were queried independently by OpenSWATH (Rost et al,

2014; Navarro et al, 2016; Rosenberger et al, 2017) to detect and

quantify peptides and proteins. Then, the two channels per peptide

were linked by the feature alignment algorithm TRIC (Rost et al,

2016) in all the samples to acquire the turnover data. Although this

workflow substantially increases consistency of quantification (Rost

et al, 2016), it can be limited if the peak group of one of the channels

is below the limit of detection of the OpenSWATH peak picker and

may introduce wrongly aligned heavy-to-light pairs.
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To compensate for the limitations, we herein adopted the peptide

identification strategy used in the inverted spike-in workflow (ISW)

(Reiter et al, 2011) for analyzing pSILAC-DIA data (Fig 1B). ISW

was initially introduced in a particular type of SRM experiments

where the “light” synthetic peptides were spiked as standards. This

means, in ISW the peptide detection scoring process is only based

on the q-values of “light” precursors. Thus, in pSILAC-DIA dataset

ISW will maximize reliable detection of newly synthesized “heavy”

protein in the early time points during labeling, when the “heavy”

signals are much lower than those “light” ones of pre-existing

protein copies. Indeed, ISW increases the number of heavy-to-light

ratios by 30.6 and a 14.7% in the dataset with 1- and 4.5-h pSILAC

labeling (see Appendix; Reiter et al, 2011). The ISW is now avail-

able in a new version of Spectronaut software (Bruderer et al, 2015)

by which both “heavy” and “light” MS assays can be reversibly

generated based on either DIA or DDA datasets or both. Further-

more, the heavy-versus-light elution was assembled before DIA

identification, so that no post-feature alignment (Rost et al, 2016) is

required (see Appendix for a step-by-step protocol for pSILAC data

analysis and related data assessment).

We have compared pSILAC-DIA to two alternative workflows,

pSILAC-MS1 (Schwanhausser et al, 2011; Mathieson et al, 2018)

and pSILAC-TMT (e.g., when combined with synchronous precursor

selection (SPS)-based MS3 scanning for improving the TMT quan-

tification, see Appendix; McAlister et al, 2014; Welle et al, 2016;

Savitski et al, 2018; Zecha et al, 2018). We identified particular

advantages of pSILAC-DIA over the existing methods, such as lower

charge states of MS2 signals which reduced MS data processing diffi-

culty (Appendix Fig S2), significantly better accuracy in quantifying

SILAC heavy-to-light (H/L) ratios than pSILAC-MS1 (whose perfor-

mance was shown to be comparable to pSILAC-TMT (Zecha et al,

2018); Appendix Figs S3 and S4), much more quantitative data

points with the potential to use most high-resolution heavy and light

fragment ions (Appendix Fig S5) together with their elution traces

along the liquid chromatography (Appendix Fig S6), as well as other

flexibilities and potentials. Just as an example, by analyzing the

protein level pSILAC data at 1, 4.5, and 11 h (T1, T4, T11) for HeLa

7, we found the MS2-derived H/L ratios in DIA-MS have a much

narrower distribution than the MS1 data in the same runs (Fig 2A).

The top 6 most abundant fragment ions yielded 825,041 H/L pairs,

which could be used to further increase the quantitative accuracy by

interference filtering [to 450,407 pairs, using selection algorithms

provided by Spectronaut or other software such as mapDIA (Teo

et al, 2015)] and by summarization at the peptide precursor level

(Fig 2B). Figure 2C–F illustrated a protein example of endoplasmic

reticulum chaperone BiP (HSPA5). This example demonstrates that,

conceivably, more MS2 H/L pairs are obtained from pSILAC-DIA,

compared to the limited quantitative features obtained from

pSILAC-MS1 (based on the precursor pairs) or from pSILAC-TMT

(based on the reporter ion ratios in identified MS2 or SPS-MS3
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Figure 1. Experimental and data analysis workflow to study correlation between mRNA abundance and protein level degradation using DIA-MS.

A Isoform-resolved protein expression and degradation analysis using DIA-MS. RNA splicing isoforms were analyzed using RNA-Seq, and the total proteome and protein
degradation were analyzed using DIA-MS. A protein FASTA database was compiled using protein coding sequences expressing above a threshold of FPKM > 1. After
data integration, the splicing isoform-resolved matrix was used to study absolute and relative correlation between mRNA, protein, and protein degradation (kloss).

B pSILAC-DIA workflow for determining protein degradation. A hybrid pSILAC library was created by combining both label-free and labeled DIA- and DDA-MS runs and
enabling the In-Silico Generate Missing Channels function (in, e.g., Spectronaut). To perform targeted pSILAC data analysis, the Inverted Spike-In workflow (ISW) was
used.

C mRNA abundance directed detection and quantification of protein isoforms and isoform groups. The non-unique peptides were assigned a unique ID by using the
average abundance on mRNA level for all proteins included in a protein group. The major (i.e., the most abundant) splicing isoform on mRNA level was selected as the
best representative ID for the protein group (shared major).
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scans). Considering other potentials of pSILAC-DIA such as resolv-

ing post-translational modifications, low cost, and experimental

design flexibility (see Appendix), we conclude that pSILAC-DIA is a

competitive and promising approach for determining protein turn-

over in various systems.

In summary, we optimized a sensitive, accurate, and repro-

ducible pSILAC-DIA workflow by the development of both a techni-

cal platform and a data analysis strategy.

mRNA abundance directed detection and quantification of
protein AS isoforms and isoform groups

To further increase the coverage of AS isoforms by proteomics, we

devised a novel heuristic strategy for mapping the isoforms. Owning

to the dynamic range of a single-shot MS analysis in cell lines (Beck

et al, 2011; Ebhardt et al, 2012), we reason that our MS measurement

cannot detect a protein or a proteoform that has an extremely low

mRNA abundance. To corroborate, we plotted the mRNA–protein

absolute correlation based on FPKM values and DIA-MS intensities

(Fig EV1A). We found that only 0.74% of detectable unique peptides

(i.e., 83 out of 11,234 peptide full profiles; test of 14 DIA-MS samples)

seemed to be translated from transcripts of average FPKM < 1. There-

fore, we compiled a FASTA protein sequence database (DB) for MS

data analysis using translated sequences from AS isoforms expressing

at FPKM > 1 in at least three HeLa cell lines (Nagaraj et al, 2011; Hart

et al, 2013; Fig EV1C). Accordingly, only 11,409 genes, instead of the

whole genome, were considered to be possibly detected by MS. Using

this simple cutoff, we found that those peptides uniquely mapping to

only one splicing form, i.e., “unique hits” or “proteotypic” (Mallick

et al, 2006), successfully increased by 35.22% as compared to the

results with no FPKM cutoff (Fig EV1D). Furthermore, the cutoff of

FPKM > 1 yielded a FASTA DB with 3.23 isoforms per gene and the

detection of 1.87 isoforms per gene, as compared to 2.08 and 1.61

isoforms per gene when the non-canonical UniProtKB DB was used

(i.e., a scenario without a sample-specific RNA-Seq dataset; Fig EV1F

and G; Zecha et al, 2018). Finally, the FPKM > 1 cutoff enabled detec-

tion of 47,091 peptide precursors whereas FPKM > 0 (Fig EV1B)

detected 46,625 (Fig EV1E and H), indicating there is no compromise

of peptide detection for FPKM > 1 cutoff. Collectively, in all 12 HeLa

cell lines, we quantified the abundance of 51,291 peptide full profiles

and 24,275 peptide kloss values (see Materials and Methods). This

translates to 6,994 protein AS groups (3,518 gene symbols collapsed)

quantified with a degradation rate in every of the 12 HeLa samples

(Table EV1). Among these, 15,671 peptides and 6,890 peptide kloss
values were found to be unique hits. Thus, the mRNA abundance

information was used to assist the protein AS detection.

A B

−20

−10

0

10

20

Lo
g2

 (H
/L

 ra
tio

)

MS1 MS2

n = 450,407 n = 159,945n = 825,041 

Lo
g2

 (H
/L

 ra
tio

)

T1

T4

T11

T1

T4

T11

MS2 (Top 6) Summed
   MS2

      MS2 (Top 6 + 
interference filtered)

−20

−10

0

10

20

n = 417

0

0

2×106

1×106

5×106 1×107

Light peak area

H
ea

vy
 p

ea
k 

ar
ea

MS2
(Top 6 + interference filtering)

E Summed MS2
(Top 6 + interference filtering)

0

0

n = 139

1×107 2×107

2×106

4×106

6×106

Light peak area

H
ea

vy
 p

ea
k 

ar
ea

F

n = 139

0

4×107

0

2×107

5×107 1×108 1.5×108

Light peak area

MS1

H
ea

vy
 p

ea
k 

ar
ea

C D

0

0

n = 720
2×106

1×106

5×106 1×107

Light peak area

H
ea

vy
 p

ea
k 

ar
ea

MS2 (Top 6)

Figure 2. TheMS2-based pSILAC-DIA improved the quantification accuracy determining Heavy-to-Light (H/L) ratios and increased the number of quantitative
features, as compared to MS1-based approach.

A H/L ratio distributions of all protein AS groups are shown at the 1, 4.5, and 11 h (T1, T4, T11) for a randomly selected HeLa cell line (HeLa 7). The median for each
protein AS group was calculated using all peptide precursors with MS1- and MS2-derived ratios.

B Distributions of all MS2-derived H/L ratios. The fragment ion H/L ratios were calculated using the Top 6 fragment ions or Top 6 fragment ions (left boxes) from
which the potentially interfering ions can be removed (middle boxes), and the peptide precursor H/L ratios can be summarized using the filtered fragment ions
(right boxes). The numbers of quantitative data features in each time point are indicated; the width of the boxplot is scaled to the number of values. Box borders
represent the 25th and 75th percentiles, bar within the box represents the median, and whiskers represent the minimum and maximum value within 1.5 times of
interquartile range. The dashed red line indicates zero.

C–F Quantitative features for endoplasmic reticulum chaperone BiP (HSPA5) as an example. The correlations between SILAC light and heavy intensities of the Top 6 (D),
Top 6 filtered for interfering ions (E), summed MS2 (F), and MS1 (C). A linear regression line (dashed line) was added for each time point indicated by different
colors. N denotes the number of quantitative values for respective signals.
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Next, to assign quantitative information for more protein AS

groups, we conducted an inference strategy similar to a previous

approach (Liu et al, 2017b). Briefly, after quantifying “unique hits”

(UQ), we retrieved average mRNA abundance across cells for each

splicing isoform from the same gene included in a shared protein

group (Fig 1C). The major (i.e., the most abundant) splicing isoform

on mRNA level was then selected as the best representative proxy

for the whole protein AS group (“shared major”, or SM proteins).

This assignment is based on the observation that lower abundant

transcripts are less likely to manifest on protein level (Fig EV1A; Liu

et al, 2017b), and that most protein coding genes have one major

transcript expressed at significantly higher levels than the others

(Gonzalez-Porta et al, 2013; Abascal et al, 2015; Blencowe, 2017;

Tress et al, 2017a). Totally, by UQ mapping we successfully quanti-

fied the expression of 1,739 proteins and calculated kloss values for

892 unique proteins. By SM mapping, we quantified 5,647 protein

AS groups and turnover rates for 2,956. Thus, the mRNA abundance

was also used to assign the AS quantities at the proteomic level.

The kloss values, respectively, retrieved from UQ and SM harbor

comparable values, which classified the 12 HeLa cell lines into two

clusters, CCL2 and Kyoto (Fig 3A and B). Also, the protein Kyoto/

CCL2 fold changes derived from UQ and SM peptides strongly corre-

lated to each other for the same proteins (q = 0.88; Fig 3C). To esti-

mate the impact of UQ and SM assignments for correlation analysis,

we inspected the Spearman’s correlation between mRNA, protein, and

kloss values across-proteins (i.e., absolute correlation; Fig 3D and E)

and between conditions (i.e., relative correlation, using fold changes

between six Kyoto and six CCL2 cell lines; Fig 3F and G). We con-

firmed that all the correlations obtained from both UQ and SM cate-

gories were very similar and that all the correlation trends were

consistent to or even slightly better than our previous gene-centric

report (Liu et al, 2019; Fig 3D–G). Thus, both UQ and SM categories

are used in following up analysis.

In summary, we adopted an mRNA abundance directed heuristic

approach (Lau et al, 2019), ensuring the downstream functional

analysis can be performed at AS isoform resolution.

Absolute and relative kloss comparisons

The HeLa Kyoto and CCL2 cells were demonstrated to be fundamen-

tally distinctive in both genome and proteome (Liu et al, 2019),

presenting a strong case for relative comparison. Extending on these

observations, we then investigated whether relative kloss regulation

could provide particular biological insights, based on the new

isoform-specific dataset.

Our first goal was to assess the role of protein degradation in

protein abundance buffering (Mueller et al, 2015; Liu et al, 2016;

Wang et al, 2018a). The absolute mRNA–kloss correlation was deter-

mined to be q = �0.14 and �0.17 (Fig 3D and E; n = 885 and 2,895,

P < 0.001) in UQ and SM proteins, and the absolute protein-kloss
correlation is even more negative (q = �0.31 for UQ and �0.29 for

SM). Thus, protein degradation seems to be slower for higher gene

expression. However, when the Kyoto/CCL2 fold changes are

analyzed, slight but significant positive across-gene mRNA–kloss corre-

lations can be obtained (Fig 3F and G; n = 885, q = 0.08, P = 0.017

for UQ; n = 2,895, q = 0.10, P < 0.0001 for SM). Hence, the absolute

correlation analysis can be misleading in this case due to the

confounding factor of high abundant proteins having a tendency to

carry housekeeping functions, which are thus prone to slower degra-

dation (Claydon & Beynon, 2012; Liu et al, 2017a, 2019). Therefore,

by relative correlation of mRNA–kloss, we can confirm that protein

turnover might be more likely used by the cells as an attempt to buffer

against, rather than to reinforce, the mRNA variation between condi-

tions. This conclusion was verified by another modeling algorithm

that only analyzes the light-channel, unlabeled peptides during

pSILAC labeling for estimating protein degradation (see Appendix).

Secondly, we investigated the proportion of proteome signifi-

cantly regulated by protein degradation. We summarized the

isoform-resolved protein-specific Spearman’s q across 12 HeLa cell

lines (Fig EV2A and B) and further classified the proteins based on

whether there were any significant changes of Kyoto versus CCL2 at

mRNA, protein, or protein degradation levels (Fig 3H–J). The

mRNA–kloss correlation was increased for protein AS isoforms that

were not differentially expressed (median q = 0.18 and 0.16 UQ

and SM; Fig 3H) and was significantly lower for proteins differen-

tially expressed (median q = 0.04 and 0.08; Fig 3H), indicating that

kloss-based buffering associates with lower protein level variation

between states. Correspondingly, the mRNA–protein correlation is

high for differentially expressed proteins (median q = 0.70 and

0.66, UQ and SM; Fig 3H), indicating protein level variability glob-

ally follow mRNA changes. Interestingly, only 10.96% (i.e., 97 out

of 885) and 12.61% (i.e., 365 out of 2,895) of UQ and SM proteins

had a markedly regulated degradation rate (Fig 3J).

Thirdly, we asked if the relative kloss differences are associated with

different GO biological processes (GOBP) and cellular components

(GOCC) than absolute kloss comparison. Consistent to Zecha et al

(2018), we discovered that different GOBPs and GOCCs are degraded

with different speed at the absolute scale (Fig 4A and B, and Tables

EV2 and EV3). For example, “mitochondrial large ribosomal subunit”

(P = 0.004), “condensed chromosome kinetochore” (P = 0.01), and

“plasma membrane” (P = 0.002) were significantly enriched among the

groups with fast degradation rate. The corresponding GOBPs are “mito-

chondrial translational elongation” (P = 0.001), “cell division”

(P < 0.0001), and “cell migration” (P = 0.001). On the other hand,

cellular components “peroxisome” (P = 0.0003), “endoplasmic reticu-

lum lumen” (P = 0.0003), and “mitochondrial matrix” (P < 0.0001)

and relevant GOBPs were degraded at much slower rates. Notably,

however, the relative difference of kloss between HeLa CCL2 and Kyoto

enriched distinctive GOBPs and GOCCs (Fig 4C and D, and Tables EV4

and EV5; P < 0.01). To elaborate, we select different mitochondrial

compartments as an example (Fig EV3): “Mitochondrial matrix” was

significantly enriched in “slow degradation”, whereas “mitochondrial

respiratory chain complex I” was enriched in “fast degradation”

(P < 0.0001; Fig EV3A). Faster degradation of the complex I compo-

nents was proposed to be caused by the high local oxidative stress

(Zecha et al, 2018). However, the “complex I” proteins are much less

abundant than “matrix” proteins. Thus, the dramatic degradation rate

difference between the two might be also ascribed to the absolute

protein abundance difference (Fig EV3B) because of the general trend

that highly expressed genes have a lower kloss. In another example,

both “mitochondrial large ribosomal subunit” and “complex I” are both

low-abundant protein groups (Fig EV3B), but showed distinctive, up-

and down-regulated protein degradation between HeLa Kyoto and

CCL2 cells (P < 0.001; Fig EV3C).

Fourthly, we found that relative kloss highlights different individ-

ual proteoform degradation and expressions than the absolute
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kloss. Using statistics (Student’s t-test P < 0.05 and mean log2 fold

difference > 0.32) and stringent criteria (two unique peptides per

protein AS group), we discovered 47 genes for which we revealed

significant kloss difference between peptides originating from dif-

ferent AS isoform groups in both HeLa CCL2 and Kyoto cells (ex-

amples in Fig 4E). Moreover, the peptide intensities indicating

proteoform-level expression followed opposite trends (Fig 4F). We

then asked whether the splicing isoforms could be differentially

degraded relatively between Kyoto and CCL2 cells. Several genes

were found to exhibit such a behavior (examples in Fig 4G; t-test

or ANOVA P < 0.05 and mean log2 difference > 0.32). However,

many of the corresponding peptide intensities fold changes do not

show any reciprocal trend to kloss in the relative comparison

(Fig 4H), consistent to Fig 3F and G. The across-sample variation

of these peptides within AS isoforms is smaller than that between

AS isoforms, demonstrating the biological significance

(Appendix Fig S7C). Thus, the degradation variability can be

observed at the individual AS isoform level in both absolute and

relative scale, but the relative result seems to be independent of

peptide intensities.
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Figure 3. Absolute and relative correlation analysis in a splicing isoform-resolved data set.

A Hierarchical clustering of the kloss values quantified for twelve HeLa cell lines. The positions of unique (UQ) and shared major (SM) proteins were highlighted in the
separated bar.

B Rank distribution of the averaged kloss values of UQ and SM proteins across HeLa cells. The dashed red line indicates median.
C Correlation of Kyoto/CCL2 protein fold change for IDs quantified in both UQ and SM.
D, E Across-gene Spearman’s absolute correlation between indicated values (average from all cell lines).
F, G Spearman’s correlation between indicated values using relative quantification data (i.e., Kyoto/CCL2 fold change).
H–J Protein AS group-specific Spearman’s rho distribution of isoforms that were differentially expressed on mRNA level (I, EdgeR, adjusted P < 0.01), protein level (H,

t-test, adjusted P < 0.01), or degraded (J, t-test, adjusted P < 0.01) between Kyoto and CCL2 (yellow) and which are not (gray). The numbers indicate Wilcoxon
P-values (top), median rho of significant comparisons (above or below the median bar), and number of values (bottom). Spearman’s rho was calculated for every
protein AS group in the data set using twelve data points and summarized across genes/proteins. Box borders represent the 25th and 75th percentiles, bar within
the box represents the median, and whiskers represent the minimum and maximum value within 1.5 times of interquartile range. The dashed red line indicates
zero.
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Biological annotation of relative mRNA–kloss correlation

From the distribution of kloss ratios between HeLa Kyoto and CCL2

strains shown above (Figs 3 and 4), protein degradation can be

employed by cells trying to adjust gene expression. Intriguingly,

irrespective of translational regulation and protein abundance

(Appendix Fig S8), higher post-translational regulation effort (i.e.,

higher mRNA–kloss correlation), generally succeeded in reducing the

protein concentration variability between cells: the top 20% proteins

(Q5) with highest mRNA–kloss correlation show lower coefficients of

−2

−1

0

1

LR
B

A

TF
G

M
E

T A
P

2
TT

S
TU

B
1

TP
M

1

N
S

FL
1C

AC
IN

1

N
A

S
P

TF
R

C

16

18

20

22

S
E

C
23

A

TP
M

1

R
FC

2

C
D

C
37

S
E

C
16

A

AT
P

1A
1

AA

S
N

W
1

TP
M

4

A
R

F5

−5.5

−5.0

−4.5

−4.0

−3.5

S
E

C
23

A

TP
M

1

R
FC

2

C
D

C
37

S
E

C
16

A

AT
P

1A
1

AA S
N

W
1

TP
M

4

A
R

F5

−1.5

−1.0

−0.5

0.0

0.5

1.0

LR
B

A

TF
G

M
E

TA
P

2
TT

S
TU

B
1

TP
M

1

N
S

FL
1C

A C
IN

1

N
A

S
P

TF
R

C

GOCC GOCC

GOBPGOBP

A

B

C

D

E F G H

Endoplasmic reticulum lumen

Mitochondrial matrix

Peroxisome

Mitochondrion

Cytosolic small ribosomal subunit

Extracellular matrix

Cytosolic large ribosomal subunit

Extracellular exosome

Endoplasmic reticulum membrane

Cytosol

Nucleoplasm

Plasma membrane

Condensed chromosome kinetochore

Mitochondrial large ribosomal subunit

−3 −2

median

−5 −4

Protein lability

Response to reactive oxigen species

Metabolic process

Tricarboxylic acid cycle

Response to ER stress

tRNA aminoacylation for protein translation

Protein homotetramerization

Protein folding

Translational initiation

Protein phosphorylation

Regulation of transcription

Cell division

Cell migration

Mitochondrial translational elongation

Cell adhesion

−3 −2

median

−5 −4

Protein lability

−1.0 −0.5 0.0 0.5 1.0

Mitochondrial respiratory chain complex I
Nucleus

Membrane
Focal adhesion

Nucleoplasm
Extracellular matrix

Catalytic step 2 spliceosome
Intracellular ribonucleoprotein complex

Spliceosomal complex
Cytosolic large ribosomal subunit

Ribosome
Cytosolic small ribosomal subunit

Proteasome regulatory particle
Proteasome accessory complex

Cytosolic proteasome complex
Mitochondrial large ribosomal subunit

Small nuclear ribonucleoprotein complex
Large ribosomal subunit

MCM complex

−3 −2−5 −4

Absolute log2 kloss

Absolute log2 kloss

Absolute log2 klossRelative log2 kloss

Relative log2 kloss Absolute log2 kloss

−1.0 −0.5 0.0 0.5 1.0 −3 −2−5 −4

Mitochondrial electron transport, NADH to ubiquinone
Mitochondrial respiratory chain complex I assembly

RNA splicing, via spliceosome
RNA splicing

Translational initiation
rRNA processing

Translation
Protein stabilization

Nuclear−transcribed mRNA catabolic process, NMD

Regulation of mRNA stability
SRP−dep. cotranslational protein targeting to membrane

Wnt signaling pathway, planar cell polarity pathway
Proteasome−mediated protein catabolic process

Protein polyubiquitination
Fc−epsilon receptor signaling pathway

NIK/NF−kappaB signaling
Regulation of cellular amino acid metabolic process
Tumor necrosis factor−mediated signaling pathway

Cell adhesion

Protein labilityKyotoCCL2
median

Protein labilityKyotoCCL2
median

klo
ss

 lo
g2

 F
C

Lo
g2

 k
lo

ss

Lo
g2

 p
ep

tid
e 

in
te

ns
ity

Lo
g2

 F
C

 p
ep

tid
e 

Figure 4. Differential functional categories and isoforms revealed by enrichment analysis of absolute and relative kloss measurements.

A, B Distribution of absolute kloss values (HeLa average) as a function of cellular localization (A, GOCC, n = 29, 23, 325, 770, 889, 146, 798, 49, 82, 35, 393, 25, 127, and 44,
from top to bottom) or biological functions (B, GOBP, n = 34, 49, 23, 82, 128, 36, 114, 93, 25, 29, 22, 21, 35, and 17, from top to bottom); the color intensity gradient
highlights the increase in protein degradation rate.

C, D Differential degradation (kloss log2 FC) of GOCC (C, n = 7, 10, 9, 7, 29, 16, 11, 35, 113, 49, 52, 84, 60, 82, 770, 179, 643, 936, and 14, from top to bottom) and GOBP (D,
n = 34, 40, 37, 41, 47, 52, 43, 60, 64, 79, 86, 37, 135, 148, 114, 75, and 132, from top to bottom) between HeLa Kyoto and CCL2 (1D enrichment test, P < 0.05). The
second panel shows absolute log2 kloss values matched to the selected examples.

E Absolute peptide kloss (CCL2 average) distribution of differentially degraded AS isoforms of the same gene (t-test P < 0.05, mean log2 FC > 0.32).
F Absolute peptide intensities of AS isoforms matching to (E).
G Relative peptide kloss (Kyoto/CCL2 FC) distribution of differentially degraded AS isoforms of the same gene (t-test or ANOVA P < 0.05, mean log2 fold

difference > 0.32, Tukey test for pairwise comparisons).
H Distribution of HeLa Kyoto/CCL2 peptide intensity log2 FC matching to examples in (G). The number of values is represented by the number of dots.

Data information: In (A–H), the box borders represent the 25th and 75th percentiles, bar within the box represents the median, and whiskers represent the minimum and
maximum value within 1.5 times of interquartile range. The dashed red line indicates zero or median as indicated.
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variation (CV) than the bottom 20% proteins (Q1), and both groups

were significantly different from the rest of the data (Q2–Q4), con-

firming the modulation of protein levels by protein degradation-

mediated buffering mechanisms (Kruskal–Wallis P < 1e-10; Fig 5D).

This is consistent to previous reports, suggesting that the adaption of

translation rates does not or, only partially explain buffering of

proteins (Albert et al, 2014; Bader et al, 2015).

To illustrate the diversity of protein degradation between cell

lines, we assessed the distribution of the mRNA–kloss correlation

summarized for each protein. As shown in Fig 5A, the protein AS

group-specific mRNA–kloss Spearman’s q was widely distributed

between �1 (indicating a strong negative correlation) and 1 (indicat-

ing a strong positive correlation). The distribution is skewed toward

positive values [median q = 0.13: There are 688 protein AS groups

showing a strong positive correlation (q > 0.576, P < 0.05, purple)

and only 242 protein AS groups showing a strong negative regulation

(q < �0.576, P < 0.05, green)]. This skewed distribution again indi-

cates mRNA regulation attempts are more often prone to be buffered

rather than to be amplified by protein degradation.

Selected examples of GOBPs and GOCCs were shown to be strongly

enriched in positive, insignificant, or negative mRNA–kloss correlation

ranges (Tables EV6 and EV7). While biological processes such as

“mRNA splicing” and “translation” showed a significant trend toward

positive correlation (median q = 0.283 and 0.336, P < 0.0001),

“protein catabolic process” and “establishment of protein localization”

represent GOBPs in which mRNA and kloss tend to anti-correlate (me-

dian q = �0.325 and �0.168, P < 0.02). On the other hand, “carbohy-

drate metabolic process” and “cell adhesion” represent GOBPs with no

clear trend of correlation (median q = �0.04 and 0.002; Fig 5B). Like-

wise, proteins in GOCCs such as “spliceosomal complex”, “ribosome”,

and “nuclear chromosome” tend to have positive mRNA–kloss relative

correlation (median q of 0.379, 0.357, and 0.341, P < 0.002), whereas

“cell–cell junction” and “membrane raft” showed a negative correla-

tion (median q of �0.171 and �0.157, P < 0.05; Fig 5C).

We further visualized the relationship between mRNA and kloss
by performing a two-dimensional enrichment analysis defined by

relative scores of mRNA (x-axis) and kloss fold changes (y-axis)

between HeLa Kyoto and CCL2 (Cox & Mann, 2012; Tyanova et al,

2016). In this 2D space, the position of a functional category (Tables

EV8 and EV9) essentially indicates the trends of protein degradation

under mRNA up- or down-regulations (Fig 5E and F). For instance,

GOBPs (Fig 5E) and GOCCs (Fig 5F) related to mRNA splicing

(e.g., “spliceosomal snRNP assembly”, “mRNA splicing”, and

“spliceosomal complex”), protein synthesis (“translation” and

“ribosome”), or mitochondria subunits (“mitochondrial large ribo-

somal subunit” and “mitochondrial nucleoid”) were mostly local-

ized in upper right quadrant, indicating the buffering attempt

against their mRNA changes through protein degradation. On the

other hand, a few terms such as “cell adhesion” or “protein cata-

bolic process” are located in the upper left quadrant, indicating

many members of them are under concordant regulation through

both transcription and protein degradation. Although many of these

GOBPs and GOCCs were identified as differentially degraded

between cells (Fig 4), it is important to place the values in the

context with mRNA abundance differences to identify the buffering

or concerting attempts of protein degradation.

Somewhat surprisingly, we discovered distinctive degradation

behavior for different sub-organelles of the same GOCC. The first

example is the proteasome (Fig 5G). The mRNA–kloss correlation coef-

ficients of members in KEGG item “Proteasome” uncovered a

dramatic difference between the 19S Regulatory (corresponds to

GOCC “proteasome accessory complex”) and 20S Core particles (cor-

responds to GOCC “proteasome core complex”) (Fig 5I; P = 0.0149,

Wilcoxon test). In particular, the 20S proteins are preferably degraded

to impair the transcript variation (median q = 0.416 for mRNA–kloss
correlation, as compared to median q = 0.028 for 19S proteins). On

the other hand, the difference of relative mRNA–protein correlations

was found to be insignificant for the protein members of the two subu-

nits (P = 0.9444, Wilcoxon test). The relative mRNA–protein correla-

tion is low for both subunits (median q of �0.007 and 0.053 for 20S

and 19S, respectively). These results indicate strong translational

regulation for proteasome 19S, as well as substantial control for 20S

proteins at both translational and post-translational levels. Further

dissection of 19S particles yielded similar insights (Fig EV4A–D).

Another case is mitochondrial ribosome (or mitoribosome;

Fig 5H). Both small and large subunits of the mitoribosome showed a

positive mRNA enrichment score indicating relative transcriptional

upregulation in Kyoto (Fig 5F), but the directions of kloss fold change

were converse for the two subunits. The protein degradation carries a

clear trend to buffer transcript variation for large mitoribosome

subunit (median q = 0.532, mRNA–kloss correlation), but not for the

small one (median q = �0.014, Wilcoxon test, P = 0.0022, Fig 5J).

Additionally, statistics revealed that small ribosomal subunit of mitori-

bosome had a significantly greater mRNA–protein correlation than

▸Figure 5. Biological annotation of the isoform-resolved protein-specific mRNA–kloss correlation at the organellar and sub-organellar levels.

A Distribution of isoform-resolved protein-specific mRNA–kloss Spearman’s rho (median q = 0.13) across the proteome. The colors highlight significant correlation
values (P < 0.05). Spearman’s rho was calculated for every protein AS group in the data set using twelve data points. All rho values were then summarized as
histograms.

B, C Selected biological processes (B, GOBP) and cellular compartments (C, GOCC) showing different distribution of mRNA–kloss correlation.
D The quantitative CVs of all protein AS groups across HeLa cell lines are distributed in five mRNA–kloss correlation segments (Q1–Q5, each represents 20% of the

data, include protein AS groups with the lowest and the greatest correlation, respectively; Kruskal–Wallis test P-value is shown, pairwise comparisons were
performed using pairwise Wilcoxon test with Benjamini–Hochberg correction). Box borders represent the 25th and 75th percentiles, bar within the box represents
the median, and whiskers represent the minimum and maximum value within 1.5 times of interquartile range.

E, F Two-dimensional (2D) enrichment plot of selected GOBPs or GOCCs. The axes denote enrichment score for mRNA expression (x) and protein degradation (y) log2 FC
HeLa Kyoto/CCL2.

G, H Schematic representation of human proteasome (G, “KEGG: Proteasome”) and mitochondrial ribosome (H, GOCC DIRECT); colors correspond to mRNA–kloss
correlation (rho).

I, J Statistical analysis of the differences between the proteasome (I) and mitoribosome (J) subunits (indicated by Wilcoxon test P-values). The red lines denote median
with interquartile range. The number of protein AS isoform groups is indicated by the number of dots.
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large subunit (median q of 0.566 versus 0.073, P < 0.0001) and a

significantly greater protein CV (P = 0.0483). Thus, the protein

components of the large subunit of the mitoribosome were buffered

by degradation to maintain the protein abundance, and this regulation

significantly reduced the mRNA–protein correlation, while the small

subunit protein variation is principally determined by mRNA changes.

In summary, the annotation of relative mRNA–kloss correlation

revealed diverse buffering or concerting functions exerted by protein
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turnover in different biological processes, organelles, and even in

sub-organelle components.

Intron retention and transcript-level isoform switch events
impact protein expression but not degradation

In the HeLa cell line panel, there are two HeLa cell variants that were

derived from the same ATCC HeLa CCL2, but harvested at the 7th

(P7) and 50th passages (P50), corresponding roughly to 3 months of

passaging. We previously found that 6–7% of genes changed their

expression, which also manifested at the protein level. These changes

could be attributed to genomic instability due to clonal selection or

adaptation in the cell culture conditions (Liu et al, 2019).

The present data uniquely enabled us to address whether AS

isoforms generated during P7-to-P50 passaging can contribute to the

proteome and protein degradation levels. To do so, we first examined

the expression differences of the spliceosome components. We found

that the entire spliceosome expression was significantly upregulated at

both mRNA and protein levels in P50 (Wilcoxon test P < 0.0001;

Fig 6A and B). It was previously reported that a depletion of the splic-

ing core component PRPF8 induced intron retention; i.e., the transcript

with retained introns (RI) may not be translated but is retained in the

nucleus (Wickramasinghe et al, 2015). The RI-dependent mRNA

degradation by the non-sense-mediated decay (NMD) (Braunschweig

et al, 2014) thus reduced protein levels, which can be detected by DIA-

MS (Liu et al, 2017b). The spliceosome upregulation in P50 (as

opposed to PRPF8 depletion) might in fact switch a number of RIs to

coding events during the cell culturing over the 3 months. We then

sought to identify AS switch events (i.e., the most abundant splicing

isoform changed between conditions) for P7-to-P50 on the

transcriptome level and to map these events to the protein level. Using

a tool called SwitchSeq (preprint: Gonzàlez-Porta & Brazma, 2014; Liu

et al, 2017b), we identified 900 switch events between HeLa P7 and

P50. As depicted in Fig 6C, transcripts that underwent switching from

a RI in P7 to protein coding in P50 (i.e., RI to coding) showed a signifi-

cant increase on protein level in P50 (n = 77, Wilcoxon test,

P = 0.0071; Figs 6C and EV5D). Switch events from a protein coding

isoform in P7 to a different protein coding isoform in P50 (i.e., coding

to coding) were used as a control for this comparison. Thus, the loss of

RI tends to increase protein expression. In contrast, the protein degra-

dation seems to be independent of, or insignificantly affected by RI

events in the presented data (Fig 6D). A representative example is the

RI-to-coding switch for PROSC (pyridoxal phosphate binding protein)

for which the increase of the protein coding AS during P7-to-P50 transi-

tion was quantified (Fig EV5A). Finally, we also detected the case of

routine AS switch at the protein level. Two examples are shown in

Fig EV5B and C: In the case of GLTSCR2 (ribosome biogenesis protein

NOP53), the major protein coding isoform in P50 was upregulated,

while for SNAP29 (synaptosomal-associated protein 29), the major

isoform in P7 was downregulated during the P7-to-P50 transition. Alto-

gether, the AS switching, especially loss of intron retention, seems to

have marginal or minimal effects on the protein level degradation.

Discussion

The importance of protein turnover has been recognized 80 years ago

(Hinkson & Elias, 2011). The data generated by pSILAC experiments

(Pratt et al, 2002; Schwanhausser et al, 2009, 2011) helped in discov-

ering how cells adjust proteostasis process (Eichelbaum & Krijgsveld,
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Figure 6. The impact of alternative splicing and intron retention on protein expression and degradation.

A, B Distribution of HeLa CCL2 P50/P7 mRNA (A) and protein (B) log2 FC for all IDs (green; n = 7,386) and components of spliceosome (“KEGG: Spliceosome”; purple;
n = 224). The Wilcoxon test P-values are shown.

C, D Distribution of protein log2 FC (C) and kloss log2 FC (D) between HeLa CCL2 P50 and P7 for proteins translated from AS isoforms undergoing a switch event. The
number indicates Wilcoxon test P-values (top) and the numbers of values (bottom). RI, retained intron.

Data information: In (A–D), the box borders represent the 25th and 75th percentiles, bar within the box represents the median, and whiskers represent the minimum and
maximum value within 1.5 times of interquartile range. The dashed red line indicates zero.
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2014; Jovanovic et al, 2015; Liu et al, 2017a). In a steady state within

a cell system, the stable protein concentration is the result of the

balance between protein synthesis and degradation (Dephoure et al,

2014; Battle et al, 2015; Liu et al, 2016). In a relative comparison

between steady states, it is conceivable that the mRNA fold change

represents the transcriptional regulation attempt, whereas the protein

degradation is suggestive of post-translational adjustment attempt

(Liu et al, 2017a, 2019; Martin-Perez & Villen, 2017). We therefore

focused on unraveling the complexity of the correlation between

protein degradation and mRNA abundances in the present study.

A single gene template can give rise to dozens of protein isoforms,

through, e.g., the translation of mRNA AS isoforms. It was specu-

lated that protein isoforms might exhibit drastically different stabili-

ties that might influence their function and regulation models

(Hinkson & Elias, 2011; Zecha et al, 2018). In the light of this, we

provided correlation analysis with an AS isoform resolution. The

usage of HeLa cells partially eliminates confounding factors like

SNPs and individual genomic mutations, which are known to affect

protein stability (Wang & Moult, 2001; Reumers et al, 2005; Greig

et al, 2015; Milenkovic et al, 2018). Because proteins carry out virtu-

ally most cellular functions, future analysis will be extremely useful

to underpin the cellular role of AS isoforms, by answering how many

and what kind of alternative transcripts are translated and stabilized

in the cell (Floor & Doudna, 2016; Weatheritt et al, 2016).

The current level of sensitivity, reproducibility, and working princi-

ple of the widely used bottom-up MS techniques (Aebersold & Mann,

2016) seems to be less efficient in analyzing the protein AS products

(Smith & Kelleher, 2013; Abascal et al, 2015; Tress et al, 2017b; Wang

et al, 2018b; Chaudhary et al, 2019). Previous large-scale proteomic

experiments seemed to identify only a short list of AS forms, which

are often low-abundant, temporal, conserved, and subtle in functional

annotation (Zhu et al, 2014; Tress et al, 2017a). In this study, firstly,

we applied a peptide-centric analysis of DIA-MS, which provides a

similar quantitative consistency as SRM, but in an analytical scale far

beyond the detection of hundreds of peptides (Gillet et al, 2012; Rost

et al, 2015; Blencowe, 2017; Bruderer et al, 2017; Tress et al, 2017b;

Amon et al, 2019; Mehnert et al, 2019) and provides a decent sensitiv-

ity (i.e., 2.5 times more peptides detected when compared to the previ-

ous report). Secondly, we used an mRNA abundance directed

approach to identify and quantify signals of isoform groups. However,

even with the most reproducible MS techniques such as DIA-MS, the

biggest obstacle of analyzing AS isoform diversity by proteomics is

still the sensitivity limit. For example, if we use the ultimate strin-

gency and only accept unique proteotypic peptides which can always

distinguish single distinctive isoform (i.e., no isoform group is

allowed), we can only map a total of 30 genes with multiple AS events

by DIA data. The transcript abundance-oriented detection of AS

peptides enables the detection of exons only with appreciable read

counts (Lau et al, 2019). In addition, the transcript abundance-

oriented quantification of AS enables a wider functional annotation.

Importantly, in this study, we have implemented the full advance

of DIA-MS in labeling proteomics such as pSILAC analysis. We have

shown previously that the high reproducibility of DIA-MS (exempli-

fied by SWATH-MS) boosted the efficiency of pSILAC experiment,

because the pulse-chase time course routinely involves multiple

samples (Rost et al, 2016; Liu et al, 2017a, 2019). Herein, to further

establish pSILAC-DIA approach, we have developed the workflow,

which features in (i) improved detectability of heavy isotopic signals

in the early pulse-chase time points by ISW; (ii) automatic genera-

tion of missing labeling channels from both DIA and DDA data;

(iii) aligned H/L elution without the need of post-identification

feature alignment. We showed the direct pSILAC-DIA approach

offers especially better quantitative accuracy and richer quantitative

features than the alternative methods such as pSILAC-MS1 (Schwan-

hausser et al, 2011; Mathieson et al, 2018) or pSILAC-TMT analysis

(McAlister et al, 2014; Welle et al, 2016; Savitski et al, 2018; Zecha

et al, 2018) as well as remarkable flexibility and potential. We

expect our approach will be widely used in future pSILAC studies.

More broadly, we suggest that there will be a pressing need to

increase the multiplexity of DIA measurement in the near future

(Wu et al, 2014; Di et al, 2017; Liu et al, 2017a, 2019). The exempli-

fied ISW and the labeled workflows will be useful to meet this need.

We dissected the biological correlation between mRNA and kloss
from two angles: the absolute and the relative (Liu et al, 2016). We

found that the absolute correlation is heavily dependent on the concen-

trations of mRNA and protein. For example, the heterogeneity of basic

degradation rates in mitochondrial ribosome and matrix can be largely

explained by the rank of their gene expression levels. By profiling the

relative mRNA–kloss correlation, we have discovered GOBP and GOCCs

with substantial protein degradation difference between HeLa CCL2

and Kyoto cells. Importantly, we expect that many genes involved in

these processes can serve as a list to predict the “preferably regulated”

turnover events, especially when the up- or down-regulations of

mRNA are determined between different steady states. This is because

of the conservation of molecular basis of protein degradation, such as

the involvement in stable protein complexity, chaperon networks, and

ubiquitin-dependent pathways (Cambridge et al, 2011; Bhattacharyya

et al, 2014; Liu et al, 2017a; Martin-Perez & Villen, 2017).

Our analysis uncovered two examples showing the protein degra-

dation diversity at the sub-organelle scale: the buffering degradation

of 20S proteasome subunits (but not 19S) and the buffering effect on

mitoribosome large subunits (but not the small subunit). Notably,

these significant proteostasis differences are derived from relative

correlation analysis and are unlikely to be tightly dependent on gene

expression levels. Several reports have indicated differential stability

of the two proteasome subunits (Mathieson et al, 2018). Becher et al

(2018) used a thermal proteome profiling strategy by MS and

reported that during the cell cycle the proteasome showed a different

stability and abundance variation in a protein subset of the 19S regu-

latory sub-complex. Using a similar approach, Volkening et al

(2019) reported that the regulatory 19S complex has much lower

protein melting temperature and a higher degree of conformation

flexibility. The stability of 19S and 20S subunits can be tightly linked

to their functions: The protein 20S core subunit is highly structured,

whereas the 19 regulatory base and lid are composed of proteins

with diverse functions in, e.g., ubiquitin recognition and protein

transporting (Volkening et al, 2019). Consistently, our result indi-

cates the 20S variation across cancer cells is significantly buffered by

protein degradation, reinforcing the results from thermal stability

profiling. The mitoribosome performs protein synthesis inside mito-

chondria (Greber & Ban, 2016). Our data suggested a lack of protein

degradation control for the mitoribosome small subunit, which has

lower mRNA–kloss correlation, much higher mRNA–protein correla-

tion, and ultimately higher protein abundance variation when

compared the large subunit. Similar to proteasome, this might

suggest that the large subunit mitoribosome proteins have to be

tightly controlled at the protein level for a potentially rate-limiting
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function. To mechanistically define the relationship between protein

degradation difference and sub-organelle’s biological function,

following environmental variance will be ultimately interesting

(Romanov et al, 2019), but goes beyond the scope of current study.

Differential expression levels and degradation rates were

observed for individual proteoforms of the same gene, according to

both absolute and relative comparisons. Consistent to previous

reports (Abascal et al, 2015), many of them are highly expressed or

conserved splice variants, such as ATPase Na+/K+-transporting

subunit alpha 1 (ATP1A1), SNW domain containing 1 (SNW1),

tropomyosin alpha-1 chain (TPM1), and alpha-4 chain (TPM4). The

TPM1 AS events were discovered to be informative in prognostic

predictors for head and neck cancer (Liang et al, 2019), dilated

cardiomyopathy (Pugh et al, 2014; Abascal et al, 2015), and migra-

tion of esophageal cancer cells (Huang et al, 2017), demonstrating

the functional diversity of TPM1 AS isoforms. Unlike previous stud-

ies, we further quantified significant kloss difference in both basic

levels and relative CCL2-versus-Kyoto ratios between TPM1 AS

isoform groups. Thus, the TPM1 isoform expression stability might

be associated to the phenotypic variability of texture contrast of

actin structures between HeLa cell lines (Liu et al, 2019).

As for the significant AS switch events, we found that the loss of

intron retention effectively increased the corresponding protein

expression along the long-term cell passaging. Because RI may trigger

NMD of mRNA or induce translational inhibition, it has been consid-

ered as an abnormal AS event associated with various diseases or

stress response (Wong et al, 2016; Morgan et al, 2019; Parenteau

et al, 2019). Our results did not find significant protein degradation

regulations for RI-to-coding isoforms, which might suggest that the

major effect of gene RI happens during transcription or translational

levels. The clear role of proteostasis in RI may depend on the disease

types (Adusumalli et al, 2019) and remains to be explored.

In conclusion, we applied an integrative proteomic approach and

quantified the isoform-specific post-transcriptional and post-transla-

tional control across human cancer cell lines. The mRNA level, protein

abundances, and protein degradation rates are all resolved to isoform

levels, providing a better resolution than the gene-centric analysis.

Especially, we uncovered diversity of protein turnover between dif-

ferent biological processes, organelles, subunits of organelles, and indi-

vidual isoforms. The data argue for the necessity of more systems

biological studies in the future to study the mRNA–kloss relationships

across variable conditions such as healthy and disease states.

Reagent/resource Reference or source Identifier or catalog number

Experimental models

HeLa cell lines panel Liu et al (2019), NBT

Cell culture and pulse SILAC labelling

Dulbecco’s modified Eagle medium Gibco 41965-039

SILAC Dulbecco’s modified Eagle medium High Glucose medium GE Healthcare

Dialyzed FBS PAN Biotech P30-2101

Penicillin/streptomycin Gibco 15140122

L-lysine (13C6 15N2) Chemie Brunschwig AG

L-arginine (13C6 15N4) Chemie Brunschwig AG

L-lysine Sigma Aldrich L5501

L-arginine Sigma Aldrich A5006

L-proline Sigma Aldrich 81709

Chemicals, enzymes and other reagents

Tris-(2-carboxyethyl)-phosphine Sigma Aldrich C4706

Iodoacetamide Sigma Aldrich I1149

Ammonium bicarbonate Sigma Aldrich 9830

Sequencing-grade porcine trypsin Promega V5113

Software

SpectronautTM Professional+ Biognosys AG v13

Perseus Tyanova et al (2016) v1.6.2.2

R R Core Team (2018) v3.2.5

GraphPad Prism GraphPad Software, Inc. v5.04

Other

Orbitrap Fusion Lumos Tribrid mass spectrometer Thermo Scientific

EASY-nLC 1200 systems Thermo Scientific

Materials and Methods

Reagents and Tools table
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Methods and Protocols

RNA-Seq data set processing
The RNA-Seq data set used in this study was published previously

(Liu et al, 2019). RNA-Seq data are available on GEO (GSE111485).

A matrix of all uniquely mapped transcripts with their abundance in

FPKM (Fragments Per Kilobase Million) in different HeLa cell vari-

ants was used as an input data set for this study. To create a

sample-specific sequence library, we used the RNA-Seq data

measured for all HeLa cell lines. Only those transcript sequences

corresponding to protein-coding transcripts (defined by Ensembl

biotype) and expressed above a conservative FPKM > 1 threshold in

at least three HeLa cells variants were translated into corresponding

protein sequences. For testing purpose, the different cutoffs with

FPKM > 0.1 and FPKM > 0 were also used for a smaller data sets

(five raw files of HeLa 1 were used for library generation; three

pSILAC-DIA raw files were used for targeted data extraction).

HeLa cell lines and sample processing
The MS samples used in the present study are from the samples

prepared for the previous study where a detailed description of all

experimental procedures was already provided, including HeLa cells

collection from different laboratories, central cultivation, pSILAC

experiment design and procedure, protein extraction, and sample

preparation for LC-MS analysis (Liu et al, 2019). Briefly, a uniform

protocol following a routine cell culture guideline was used at each

site to prepare the cells for shipment to the central laboratory,

cultured in 5%CO2, 37°C, Dulbecco’s modified Eagle’s medium

(Gibco). Both total proteomic and pulse-chase SILAC proteomic

samples were prepared to measure protein abundance and degrada-

tion rate (Liu et al, 2019). From the originally analyzed fourteen

HeLa cell lines, two cell lines were excluded from the re-analysis

presented in this report. First, the HeLa 11 was excluded because of

its deviating genome dosage type (Liu et al, 2019). Second, the HeLa

5 was excluded as it represents a HeLa S3 (CCL2.2) cell line. The

remaining twelve cell lines represented six HeLa cells variants

subtype CCL2 (2, 6, 7, 12, 13, and 14) and six HeLa cells variants

subtype Kyoto (1, 3, 4, 8, 9, and 10), presenting a balanced compar-

ison between HeLa Kyoto and CCL2 strains. The pSILAC experiment

(Liu et al, 2019) was performed as follows:

1 SILAC DMEM High Glucose medium (GE Healthcare) lacking

L-arginine and L-lysine was first supplemented with light or

heavy isotopically labeled lysine and arginine, 10% dialyzed

FBS (PAN Biotech), and 1% penicillin/streptomycin mix

(Gibco). Specifically, 146 mg/l of heavy L-lysine (13C6

15N2) and 84 mg/l of L-arginine (13C6 15N4) (Chemie Brun-

schwig AG) and the same amount of corresponding unla-

beled amino acids (Sigma-Aldrich) were supplemented,

respectively, to configure heavy and light SILAC medium.

Additionally, 400 mg/l L-proline (Sigma-Aldrich) was also

added to SILAC medium to prevent potential arginine-to-

proline conversion.

2 HeLa variants were first cultured on 15-cm cell culture dishes

in pre-prepared light SILAC medium and stabilized in culture

for 3–4 days.

3 Upon release of cells by 0.25% trypsin/EDTA, cells were

counted using a Neubauer hemocytometer.

4 Subsequently, six 10-cm dishes were prepared for each cell

variant with a seeding density of 1.5 × 106 cells per plate,

corresponding to three time points with two replicates each.

5 The cell culture plates were incubated for 14 h, at 5% CO2 and

37°C, overnight.

6 Cells were washed three times with PBS at 37°C.

7 The medium was replaced by heavy SILAC (K8R10) medium.

8 Cells were harvested and counted in two biological replicates

at four different time points (0, 1, 4.5, and 11 h). Two dishes

of whole-process replicate were prepared at each time.

9 The cell pellets were snap frozen in liquid nitrogen after

removal of the PBS and stored at �80°C.

Data acquisition on Orbitrap Lumos mass spectrometer
For this study, the Orbitrap Fusion Lumos Tribrid mass spectrome-

ter (Thermo Scientific) coupled to a nano-electrospray ion source

(NanoFlex, Thermo Scientific) was used as the liquid chromatogra-

phy-mass spectrometry (LC-MS) system for performing both

data-dependent acquisition (DDA) and data-independent acquisition

(DIA), as previously described (Li et al, 2019; Mehnert et al, 2019).

Peptide separation was carried out on EASY-nLC 1200 systems

(Thermo Scientific, San Jose, CA) using a self-packed analytical

PicoFrit column (New Objective, Woburn, MA, USA;

75 lm × 25 cm length) using C18 material of ReproSil-Pur 120A

C18-Q 1.9 lm (Dr. Maisch GmbH, Ammerbuch, Germany). Buffer A

was composed of 0.1% formic acid in water, and buffer B was

composed of 80% acetonitrile containing 0.1% formic acid. To sepa-

rate the HeLa peptide mixtures for both DDA and DIA measure-

ments, a 2-h gradient with buffer B from 5 to 37% at a flow rate of

300 nl/min was conducted.

For DDA-based proteomics, the MS1 scan range setting was from

350 to 1,650 m/z with the RF lens 40% (Li et al, 2019). The MS1 reso-

lution was kept at 120,000 at m/z 200. The AGC value was 5.5E5, and

the maximum injection time was 40 ms for MS1. For MS2, the top

speed (cycle time 3 s) was used, meaning that the numbers of data-

dependent scans were maximized in each cycle time if the desired reso-

lution and AGC were achieved. HCD collision energy was 28%. The

dynamic exclusion parameters were set to ensure that the already

sequenced precursors were excluded once from reselection for 30 s.

The isolation window was 1.2 m/z, and the MS2 resolution was

15,000. The AGC value and the maximum MS2 injection time were set

to 5eE4 and 35 ms, respectively. All the data were collected with the 2-

h gradient LC method as described above.

For DIA-based proteomics, our DIA-MS method was configured

to consist one MS1 survey scan and 40 MS2 scans of variable

windows (Li et al, 2019; Mehnert et al, 2019). The MS1 scan range

is 350–1,650 m/z, and the MS1 resolution is 120,000 at m/z 200.

The MS1 full-scan AGC target value was set to be 2.0E5, and the

maximum injection time was 100 ms. The MS2 resolution was set

to 30,000 at m/z 200, and normalized HCD collision energy was

28%. The MS2 AGC was set to be 5.0E5, and the maximum injection

time was 50 ms. The default peptide charge state was set to 2. Both

of MS1 and MS2 spectra were recorded in profile mode.

Targeted data extraction of protein expression data
All DIA-MS data analyses were performed using a specific version of

SpectronautTM Professional+ (all the features are now available in

Spectronaut v13).
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1 Library generation: A hybrid assay library was generated

including all protein expression samples measured in techni-

cal triplicates using both DDA and DIA-MS method (84 raw

files). Furthermore, we included raw files that were

generated from fractionated HeLa samples to make an ultra-

comprehensive spectral library (provided with the raw mass

spectrometry datasets) for our single-shot DIA measurements

(122 raw files in total, 163,333 precursors corresponding to

11,847 proteins in total). For the library generation,

we applied the default BGS Factory Settings for both

Pulsar Search and Library Generation and used the

FASTA protein sequence database we generated as described

above.

2 Targeted data extraction: The targeted data extraction was

performed using the default BGS Factory Settings. Briefly,

full tryptic digestion allowing two missed cleavages,

carbamidomethylation as a fixed modification on all cysteines,

oxidation of methionines, and protein N-terminal acetylation

as dynamic modifications were set. Both precursor and protein

FDR were controlled at 1%. For quantification, “Qvalue” work-

flow was used for filtering; mean precursor quantity was used

for peptide quantification (TOP 3); peptides were grouped

based on stripped sequences. Cross Run Normalization was

performed using “Global Normalization” on “Median” normal-

ization strategy. Interference correction was enabled with min

3 MS2 precursors to keep. Other parameters were kept as

default unless specified.

Targeted data extraction of pulsed SILAC data
For pSILAC data analysis, we generated an additional SILAC hybrid

library.

1 Library generation: We used the FASTA protein sequence data-

base and search archives from the label-free (i.e., “light”)

library generation as described above and further combined

these with pSILAC-DIA-MS raw files (see also Appendix). For

the pSILAC-DIA data extraction, the default BGS Factory

Settings for Pulsar search was used with modification in the

Labeling setting. “Labelling Applied” option was enabled, and

SILAC labels (“Arg10” and “Lys8”) were specified in the

second channel. For the library generation step, the default

BGS Factory settings for library generation was used with two

important modifications. First, a complete labeling of the

whole library was ensured by selecting the “In-Silico Generate

Missing Channels” option in the Workflow settings. Secondly,

we completely excluded b-ions from the library in the Spectral

Library Filters for the analysis of the data presented in the

study to avoid potential interference and ratio distortion

caused by b-ions not carrying the heavy labels. In total, 164

raw files were used for the pSILAC library generation, and the

final library contained 159,963 peptide precursors correspond-

ing to 11,623 proteins. All precursors in the library were

present in both light and heavy versions with TOP 6 corre-

sponding light and heavy fragments enabled for targeted data

analysis. The retention time drift is handled by using iRT space

and a method for high-precision prediction of RT in targeted

DIA analysis in Spectronaut, as previously described (Bruderer

et al, 2015, 2016).

2 Targeted data extraction: To perform pSILAC data identifi-

cation and quantification, the Inverted Spike-In workflow

was used. In the Workflow settings, the “Spike-In” workflow

was selected in Multi-Channel Workflow Definition. Impor-

tantly, both “Inverted” and “Reference-based Identification”

options were enabled. The hybrid library generation and

analysis of pSILAC data together with the main advantages

of the Inverted Spike-In workflow are in detail described in

the Appendix.

We also note here that the pSILAC workflow was further opti-

mized, and now, the use of b-ions is possible in Spectronaut v13

which further increases the number of identified and quantified

peptides by 14% (and protein identifications by 11.2%). These

important optimizations are also described in the Appendix.

Protein degradation rate estimation by pSILAC—“RIA” method
pSILAC enables protein degradation rate calculation by monitoring

the intensities of light and heavy peptides across several time

points and using this information to fit a model for protein degra-

dation rate estimation (Pratt et al, 2002; Doherty et al, 2009; Clay-

don & Beynon, 2012; Rost et al, 2016).

In the experiments using pSILAC, the working assumption is that

the cells are, respectively, maintained growing in a steady state

(i.e., without perturbation), so that for a given protein with known

concentration, the degraded and synthesized protein copies are

balanced. Under this assumption (Claydon & Beynon, 2012), the

respective determination of the protein-specific kloss within each

HeLa cell line directly estimates protein turnover behavior in that

cell line. To perform the estimation, we used a similar approach as

was employed in our previous studies (Rost et al, 2016; Liu et al,

2017a, 2019).

1 At each time point, the amount of heavy (H) and light (L)

precursor was extracted and used to calculate the relative

isotopic abundance RIAt.

RIAt ¼ L

Lþ H

2 This is analogous to Pratt et al (2002) and others. The value of

RIAt is time dependent, as unlabeled proteins are replaced with

heavy-labeled proteins during the course of the experiment.

This is due to dilution of the cells as well as intracellular

protein turnover, where the rate of loss can be modeled as an

exponential decay process.

RIAt ¼ RIA0 � eð�kloss �tÞ

where RIA0 denotes the initial isotopic ratio and kloss the rate

of (hourly) loss of unlabeled protein. We assumed RIA0 = 1,

as no heavy isotope was present at t = 0, thus the value of

RIAt will decay exponentially from 1 to 0 after infinite time

and used nonlinear least-squares estimation to perform the fit.

As discussed in Pratt et al (2002), these assumptions may

reduce measurement error especially at the beginning of the

experiment, where isotopic ratios are less accurate owing to

the low absolute number of heavy precursor ions where our

new pSILAC-DIA strategy is helpful.
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3 A weighted average of the peptide precursor kloss values was

performed to calculate the kloss values for all unique peptide

sequences. We excluded precursors quantified in a single time

point only and only included peptides with increasing isotope

ratio over time.

4 Only those peptide kloss values assayed in every cell sample

were accepted for cross-comparison.

5 The kloss for each protein isoform groups was computed as the

median of all peptide-level rates.

6 In proliferating cells, this parameter has two components, the

degradation rate (kdeg) and dilution of the protein pool by

exponential growth of the cell culture, which is described

using the cell division rate (kcd):

kloss ¼ kdeg þ kcd

Thus, to estimate protein “degradation rates”, the cell division

rates are subtracted from the kloss rates:

kdeg ¼ kloss � kcd

7 However, as previously documented (Liu et al, 2019), to avoid

the possible calculation issues due to light amino acid recycling

(Boisvert et al, 2012), inaccurate cell doubling time measure-

ment in different HeLa cells, and the fact the used cells are all

HeLa strains, we use log2 kloss [kloss as a short name in the text;

(Claydon & Beynon, 2012)] as a proxy estimate to protein degra-

dation rate (Liu et al, 2019), whenever applicable, to perform

the cross-cell and multi-omics comparisons and visualizations.

Protein degradation rate estimation by pSILAC—“NLI” method
High accuracy of our pSILAC-DIA measurement enables a direct analy-

sis of L and H peptide intensities separately. In addition to the RIA

method, it is possible to determine a de facto protein degradation rate

directly from the rates of loss from the L (unlabeled) intensities. To

perform this calculation termed normalized light intensity (NLI)-based

method, firstly, we normalized the DIA measurements based on the

sum of total heavy and light signals across time. Then, we extracted

the light-channel quantities and estimated the degradation rate by fit-

ting the desired decay curve on each peptide precursor using the same

algorithm as described above in the RIA method description. To

compare this approach to RIA, the data were further processed in the

same way to enable a direct comparison.

Sample-specific peptide assignment to protein AS groups

1 Peptide intensities (defined as unique peptide stripped sequences)

were exported from Spectronaut. As for protein identities (IDs),

all IDs mapping to a peptide were preserved to keep full informa-

tion about the splicing isoforms that map to a peptide.

2 The data were log2 transformed, triplicate measurements were

averaged for all HeLa cell lines (median value; the peptide had

to be quantified in at least two injections), and only peptide

full profiles (i.e., peptides quantified in all twelve HeLa cell

lines) were kept for the downstream analysis.

3 Peptides mapped to several genes were excluded and were

further classified based on the criteria whether they map

uniquely to one splicing isoform of a gene (unique peptides) or

to multiple splicing isoforms of the same gene (shared

peptides).

4 Both unique and shared peptides were then collapsed to create

a matrix of quantified proteins and protein groups, respectively

(by summing; at least two peptides were required for a

protein/protein group).

5 Similar approach was applied for the pSILAC data. After kloss
calculation, only peptide kloss full profiles were used with

peptides mapping to multiple genes removed.

6 The kloss values were log2 transformed and collapsed to create

a protein and protein group matrix (average; at least two

peptides were required for a protein/protein group).

7 The two data sets were then merged in a protein-centric way;

i.e., the protein kloss values were mapped to the protein expres-

sion matrix using the protein/protein group IDs.

8 To map the mRNA abundance data to the assembled protein

matrix, we exploited the fact that in our protein FASTA DB,

each entry was annotated by a unique Ensemble transcript

ID (ENST) and thus could be easily mapped to its corre-

sponding transcript abundance in the RNA-Seq data (i.e.,

FPKM).

9 We first mapped the unique proteins (UQ) with the abundance

of the corresponding transcripts.

10 For the protein groups quantified based on shared peptides

quantities, we applied a sample-specific protein inference simi-

lar to a strategy described previously (Liu et al, 2017b). For

each splicing isoform included in a shared protein group, we

retrieved its average abundance on mRNA level (the average

was calculated from all HeLa variants).

11 The major (i.e., the most abundant) splicing isoform on mRNA

level was then selected as the best representative transcript ID

for the whole protein group (shared major, SM) and was used

for transcript abundance mapping.

Identification of alternative splicing switch events
Alternative splicing switch events were identified using SwitchSeq

(preprint: Gonzàlez-Porta & Brazma, 2014).

1 The RNA-Seq data for HeLa 12 (variant CCL2, passage 50;

P50) were compared to the data from HeLa 14 (variant CCL2,

passage 7; P7). Both cell lines were analyzed in three biologi-

cal replicates.

2 The input matrix for SwitchSeq was pre-filtered to only contain

matrix with non-zero values in all six samples and FPKM > 1

in at least three samples.

3 Ensembl v87 was used to retrieve transcript biotypes; gene

expression threshold of 1, expression breadth of 50, and domi-

nance of 1 were used as parameters for SwitchSeq analysis

(preprint: Gonzàlez-Porta & Brazma, 2014).

Calculation of the genome-wide, protein AS group-specific
correlation across HeLa cell lines
For each protein AS group, 12 data points (x, y), each one of

them representing the mRNA abundance (x) and protein kloss
(y) in one of the twelve cell lines, were used to calculate a

protein AS group-specific Spearman’s rho value to describe the

mRNA–kloss correlation. This value was calculated for each one

of the protein AS isoform group in the data set. To calculate
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the protein AS group-specific correlation between other layers

(i.e., mRNA–protein and protein-kloss), the same principle was

applied.

Other bioinformatic analyses
All downstream analyses and data visualizations were performed in

Perseus v1.6.2.2 (Tyanova et al, 2016) and in R software (v3.2.5)

(R Core Team, 2018). Differential expression analysis of the RNA-

Seq expression profiles between HeLa CCL2 and HeLa Kyoto was

performed using R package “edgeR” (Robinson et al, 2010). Dif-

ferential protein expression and degradation was determined using

a two-sided t-test in Perseus (Tyanova et al, 2016) followed by

Benjamini–Hochberg correction on the P-values to control the false

discovery rate (FDR). In all tests, the Benjamini–Hochberg FDR was

lower than 0.01 for values reported as significant. The DAVID bioin-

formatics resource v6.8 (https://david.ncifcrf.gov) was used to

extract the protein annotations (DAVID GOCC DIRECT and DAVID

GOBP DIRECT) (Huang et al, 2008). All boxplots, violin plots, and

bubble plots were generated using R package “ggplot2”. In the

boxplots, the bold line indicates median value; box borders repre-

sent the 25th and 75th percentiles, and whiskers and gray panel

represent the minimum and maximum value within 1.5 times of

interquartile range. Outliers out of this range are depicted using

solid dots. In the violin plots, the boxplots are combined with

kernel density as the violin curve to show the distribution of the

data. The white dot marks the median. In the bubble plots (Fig 5E

and F), the size of the bubble corresponds to the number of

proteins comprised in the category; the color code corresponds to P-

value calculated by 2D enrichment analysis in Perseus. The colored

scatterplots from blue-to-yellow in Fig 3 were visualized using R

“LSD” package; the heatmap was created using R package

“heatmap.2”. The grouped scatter plots in Fig 5 were created in

GraphPad Prism� v5. Prism or R were used to calculate all Mann–

Whitney–Wilcoxon test P-values, Kruskal–Wallis test P-values, and

pairwise Wilcoxon test P-values with Bonferroni correction reported

in the figures. Spearman’s correlation coefficients were calculated

using R (functions cor() or cor.test()). 1D and 2D enrichment analy-

ses were performed in Perseus using relative enrichment for

UniProtKB protein IDs and P-value or Benjamini–Hochberg adjusted

P-value thresholds as indicated (Cox & Mann, 2012). Differential

splicing isoform expression and degradation analysis shown in

Fig 4 was performed in R. For genes with two splicing isoforms

detected, t-test was used to calculate if the difference between the

isoforms is significant based on all peptide-level data for these

isoforms. For genes with multiple splicing isoforms detected,

ANOVA was used to calculate the P-values followed by pairwise

comparison by Tukey honest significant differences test. An addi-

tional fold change cutoff was performed requiring log2 fold change

of at least 0.32 (for at least one pairwise comparison in the case of

the ANOVA results).

Data availability

The new mass spectrometry data from this publication (126 raw

files generated by Orbitrap Fusion Lumos platform), spectral

libraries, FASTA DB, and Spectronaut search results have been

deposited to the following database: ProteomeXchange Consortium

via the PRIDE (Perez-Riverol et al, 2019) PXD014847 (http://prote

omecentral.proteomexchange.org).

Expanded View for this article is available online.
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