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ABSTRACT

Most current microarray oligonucleotide probe
design strategies are based on probe design
factors (PDFs), which include probe hybridization
free energy (PHFE), probe minimum folding energy
(PMFE), dimer score, hairpin score, homology score
and complexity score. The impact of these PDFs on
probe performance was evaluated using four sets of
microarray comparative genome hybridization
(aCGH) data, which included two array manufac-
turing methods and the genomes of two species.
Since most of the hybridizing DNA is equimolar in
CGH data, such data are ideal for testing the general
hybridization properties of almost all candidate
oligonucleotides. In all our data sets, PDFs related
to probe secondary structure (PMFE, hairpin score
and dimer score) are the most significant factors
linearly correlated with probe hybridization inten-
sities. PHFE, homology and complexity score are
correlating significantly with probe specificities,
but in a non-linear fashion. We developed a new
PDF, pseudo probe binding energy (PPBE), by
iteratively fitting dinucleotide positional weights
and dinucleotide stacking energies until the
average residue sum of squares for the model was
minimized. PPBE showed a better correlation with
probe sensitivity and a better specificity than all
other PDFs, although training data are required to

construct a PPBE model prior to designing new
oligonucleotide probes. The physical properties
that are measured by PPBE are as yet unknown
but include a platform-dependent component. A
practical way to use these PDFs for probe design
is to set cutoff thresholds to filter out bad quality
probes. Programs and correlation parameters from
this study are freely available to facilitate the design
of DNA microarray oligonucleotide probes.

INTRODUCTION

Microarray technology surveys many thousands of genes
to investigate gene expression (1), transcription factor
binding profiles (2–5), DNA methylation profiles (4–6),
DNA copy numbers (5) and genomic sequences (7).
Oligonucleotide probes provide higher hybridization

specificity than longer PCR products (8–10). Falling
costs of oligonucleotide synthesis, along with the develop-
ment of new microarray manufacturing technologies,
such as the NimbleGen maskless array synthesizer (11)
and Agilent’s ink-jet oligonucleotide synthesizer, make
custom long (>50 bases) oligonucleotide arrays possible
for many experimental applications. Optimal probe
design algorithms are consequently desirable.
Hybridization on an array is characterized by several

interconnected processes, including the affinity of a
target for a probe, formation of stem–loop structures of
a probe, formation of secondary structures (loops and
helices) of a target, and probe-to-probe dimerization
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(12–16). There are a variety of factors governing these
processes, including probe hybridization free energy
(PHFE) (17), probe minimum folding energy (PMFE)
(18), probe dimer and hairpin scores (19), as well as
homology and complexity scores (20). Most of the
current oligonucleotide probe design software packages
estimate these properties (20–28).
To systematically and quantitatively study how these

factors influence probe performance in microarrays, we
collected a large amount of array CGH data and used
these data to evaluate the utility of each PDF for probe
selection. Using aCGH data, a novel PDF, pseudo probe
binding energy (PPBE), was developed. PPBE is more
accurate in predicting probe performance than all other
factors and can thus be used for iterative improvement of
the choice of oligonucleotides on the array. While the
specific physical properties measured by PPBE remain
unknown, they encompass platform-specific parameters.

METHODS

Microarray CGH data sets

Four comparative genome hybridization microarray data
sets were used in the study (Table 1). Human genomic
DNA (Data sets 1, 2 and 4) and Salmonella genomic
DNA (Data set 3) samples were hybridized to their corre-
sponding arrays. The array platforms include NimbleGen
arrays (30 end of the oligo is linked to the solid phase) and
in-house spotted oligonucleotide arrays (50 end of oligos is
linked to the solid phase). The majority of probes on the
arrays we used are 50 bases in length. However, there are
also probes of different lengths, e.g. there are 9989 46-mer
probes and 4721 55-mer probes on the array for data set 4.
We found that the correlations of PDFs to probe
sensitivities for these probes were very similar to those
for the 50-mer probes (data not shown). In order to
make data comparable across platforms, only data from
50-mer oligonucleotide probes were used. Hybridization
intensity values were natural log transformed before
fitting the linear models.
Data set 3 used pooled Salmonella genomic DNA XbaI

restriction fragments, representing half of the genome in

3-fold excess, in one channel, and whole genomic DNA
in the other. Data set 4 contain 205 replicates of human
lung tissue genomic DNA hybridizations which were
used as control channel in two-color hybridizations
experiments.

PDF. The following DNA microarray PDFs were
included in this study.

PHFE. PHFE was calculated based on the dinucleotide
stacking energies.

PHFE ¼ "head þ
Xn�1
k¼1

" bk, bkþ1ð Þ þ "tail

where n is the oligonucleotide length, " bk,bkþ1ð Þ is the k-th
position dinucleotide stacking energy, and ehead and etail
are the terminal nucleotide stacking energies. The salt
concentrations for the calculations were set to 1M Na+,
0M Mg++, and the temperature was set to 40, 50 or 60�C
for the computation of PHFE. The dinucleotide stacking
energies are computed according to SantaLucia (17) and
shown in Supplementary Table 1.

PPBE. For a probe sequence b1,b2, . . . , bnð Þ with n
bases, the PPBE model is parameterized by dinucleotide
stacking energies e and position-dependent weights o,
PPBE ¼ "head þ

Pn
k¼1 !k" bk,bkþ1ð Þ þ "tail. The position-

dependent weight o is first estimated by fitting the linear
model, employing dinucleotide stacking energies (as used
in the PHFE model) as initial values. Then, with the same
linear model fitting scheme, the pseudo dinucleotide
stacking energies e are approximated by treating
previously estimated weights as known quantities. Such
a process of ‘reciprocal’ estimation was iteratively
carried out three times, at which point the average
residue sum of squares (ARSS) for the PPBE model
reached its minimum or near-minimum (see also the
‘Linear modeling’ section below, and Figure 1A).

PMFE. PMFE is the minimum folding energy of a single
strand DNA sequence and represents the stability of
the secondary structure of a given sequence. PMFE

Table 1. Array CGH data set used in this study

Data
Set

Microarray platform Sample Manufacturer Designer Oligos Bases Role of data
set in the analysis

Number of
samples

1 NimbleGen HG18 whole
genome CGH Array

Normal human
male genomic
DNA

NimbleGen Inc. NimbleGen Inc. 137 280 50 Sensitivity 6

2 NimbleGen Human
Promoter Array (custom
design)

Human prostate cell
line (PC3M,
267B1) genomic
DNA

NimbleGen Inc. authors 220 475 50 Sensitivity 4

3 NimbleGen Salmonella
Whole Genome Array
(custom design)

Salmonella LT2
genomic DNA

NimbleGen Inc. authors 288 238 50 Sensitivity,
specificity

4

4 In-house Spotted Human
Promoter Array (custom
design)

Normal human
lung tissue
genomic DNA

authors authors 11 653 50 Sensitivity,
reproducibility

205
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were computed by using the MFOLD program (18).
The program hybrid-ss-min was downloaded from
http://www.bioinfo.rpi.edu/applications/hybrid/download
.php and executed on GNU/Linux. The parameters were
set as DNA–DNA hybridization, 1M Na+, 0M Mg++,
and the temperature was set to 40, 50 or 60 for the
calculation of PMFE.

Probe dimer score, hairpin score. The calculation of the
probe dimer score and the hairpin score was described
as part of the AutoDimer program based on a sliding
algorithm (19). For screening probe dimers, two probe
sequences are incrementally overlapped, and the
presence or absence of base pairing is evaluated and
tabulated. A dimer score value was then determined by
combining the number of Watson–Crick base pairs (+1)
with mismatches (�1).

Hairpin secondary structures were screened by using the
probe sequence to check for the presence of 4 and 5 base
loops. A minimum of a 2-base stem was deemed to be
necessary in a hairpin structure. Hairpin scores were
sums of matched base pairs (+1) in hairpin stems where
mismatches are not permitted.

Homology score. The homology score for each oligo-
nucleotide estimates the degree of cross-hybridization,
and is based on a BLAST search of the input sequence
against a species-specific database. The calculation of the
homology score was similar to the one used in the
OligoWiz program (20).

Homology Score ¼
100� L�

PL
i¼1 max B1i, . . . ,Bmið Þ

100� L

where L is the length of the oligonucleotide, m is the
number of Blast hits considered in position i of the
oligonucleotide and B ¼ B1i, � � � ,Bmif g is the bit score in
position i.

Oligonucleotides with 100% identity to any
considered BLAST hit along the full length received a
score of 0. Percentages of identity <70% or shorter than
15 bp were removed, resulting in perfect homology scores
of 1 for those oligos.

Complexity score. Complexity scores were calculated for
estimating the degree of common sequence fragments in
a given oligonucleotide, as described in the OligoWiz
program (20). The information content can be calculated
by the following equation:

I wð Þ ¼
n wð Þ

nt
log2

n wð Þ � 4l wð Þ

nt

� �

where n wð Þ is the number of occurrences of a pattern in the
genome, l wð Þ represents the pattern length, and nt is the
total number of patterns found in DNA sequences present
in the target pool, for example, the whole genome in an
array comparative genomic hybridization. The following
equation was used to calculate the complexity score for
each oligonucleotide probe:

Complexity Score ¼ 1� norm
Xi¼1

L�l wð Þþ1

I wið Þ

 !

where L is the length of the oligonucleotide, wi is the
pattern in position i and norm is a function that normal-
izes the summed information to a value between 1 and 0
by dividing them by the maximum value. A complexity
score of 0 indicates an oligonucleotide with very low com-
plexity. Pattern lengths of 2, 5, 8 and 11 bases were tested
in this study.

Oligonucleotide specificity and reproducibility

Data set 3, with known expected oligonucleotide signal
ratios (3-fold changes) between the two channels, was
used for estimating oligonucleotide probe specificity.
The observed ratios were log2 base transformed for
further analysis. Coefficient of variation (CV) was used
for estimating probe reproducibility.

Linear modeling and model validation

R language (http://www.r-project.org) was used for linear
modeling (29–31). In the four microarray data sets, simple
linear models were used to evaluate each individual PDF,
and multivariate models were used to estimate all PDFs
together.

Figure 1. ARSS, positional weights and pseudo stacking energies of the PPBE model for data set 1. (A) Convergence of the PPBE model after three
cycles of iterative fitting of both of positional weights and pseudo dinucleotide stacking energies (six cycles total); (B) Plot of positional weights;
(C) Comparison of traditional dinucleotide stacking energies and pseudo dinucleotide stacking energies.
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The ARSS, which reflects the model fitness, was defined
as r ¼ ð

Pn
i¼1 gi � g�i
� �2

Þ=ðnÞ, where gi was the observed
ln-transformed intensity for probe i, g�i was the predicted
ln-transformed intensity for probe i, and n was the number
of probes. For model selection, the stepAIC function in
the MASS package (http://www.r-project.org) was used to
reduce the full model to the optimal one. This Akaike
information criterion (AIC) is a measure of the quality
of the fit of an estimated statistical model and balances
the complexity of an estimated model with the accuracy
with which the model fits the data (32).
The models were validated in two ways: within one

data set and across different data sets. In both cases,
the leave-many-out cross-validation (33) was used.
Within-dataset validation uses half of the data from one
data set to train the models and the other half for testing
of the models. Cross-dataset validation uses different data
sets, which may vary in array platforms and sample
species, for training and testing.

RESULTS

Microarray CGH data sets

Array CGH data is a valuable source for studying
microarray oligonucleotide probe performance because it
can be assumed that most of the probes in these experi-
ments hybridize to approximately equimolar target
amounts, resulting in relatively uniform hybridization
signals. Four large aCGH data sets on different array plat-
forms, with a total of 657,646 oligos of 50 bases in length
and 219 samples, were used in this study to evaluate PDFs
and to develop new algorithms (Table 1).

Correlation of individual PDFs with probe hybridization
intensities

The models examined are all presented in the ‘Methods’
section and will not be repeated here. All 10 PDFs,
i.e. PHFE, PMFE, hairpin score, probe dimer score,
homology score, complexity score (2 bases), complexity
score (5 bases), complexity score (8 bases), complexity
score (11 bases) and PPBE, showed highly significant cor-
relation with probe hybridization intensities, as shown
in Figure 2 (data set 1) and Supplementary Figure 1
(data sets 2, 3 and 4). The correlation coefficients (r),
ARSS, intercepts and slopes for these linear regression
models are listed in Table 2 and Supplementary Table 2.
The ARSS values of linear models based on individual

PDFs were compared, as shown in Figure 3. Among
these factors, PPBE generated the lowest ARSS, suggest-
ing that this factor is superior to the traditional factors
in correlating with probe hybridization intensity. PPBE
was modeled by iteratively fitting dinucleotide stacking
energies and positional weights, with the conventional
dinucleotide stacking energies as initial values. The
ARSS values from the PPBE model tend to stabilize
after three cycles of iterative fitting of both positional
weights and pseudo dinucleotide stacking energies
(Figure 1 and Supplementary Figure 2). The positional
weights and pseudo dinucleotide stacking energies
generated from the different data sets are entirely different,

reflecting the empirical nature of the model. The positio-
nal weights and pseudo stacking energies for PPBE models
from different data sets are listed in Supplementary Tables
3 and 4, and the positional weights illustrate the effect
of the distance of the dinucleotide to the solid phase.
The positional weights of data sets 2 and 4, for example,
showed inverse correlation to the distance to the probe’s 50

end, which may be due to the fact that these platforms
differed in the ends of oligos that were linked to the solid
phase (50 versus 30).

In most data sets, the best individual traditional factors
were PMFE, dimer score and hairpin score. All these three
PDFs showed that less stable probe secondary structure
positively correlates with probe hybridization intensity,
suggesting that the formation of secondary structure can
severely hinder the probe hybridization capabilities.

PHFE’s linear correlation with probe hybridization
intensity was less significant, suggesting that hybridization
behavior on microarrays might be different from that in
solution. Moreover, quadratic rather than linear relation-
ships were observed for data sets 1 and 3, and the mode
(the peak points shown in Figure 2A and Supplementary
Figure 1 and 2A) varies among these two data sets, sug-
gesting that hybridization conditions were not the same
for the two data sets. We tried to use quadratic equations
to fit the data sets 1 and 3, but the ARSS values generated
from these models were bigger than those obtained using
simple linear models (data not shown). This is probably
due to the fact that the majority of PHFE data points
is clustered within a very narrow range, where the rela-
tionship between PHFE and intensities may be better
described by a linear equation. In future studies, once
there are sufficiently large data sets with a higher PHFE
data spread across a wider range of values, more advanced
models can be applied to scrutinize the relationship
between PHFE and hybridization intensities in a
non-linear fashion.

Blast score and complexity scores (2, 5, 8 and 11 bases)
correlated least significantly with the probe hybridization
intensity among the PDFs tested. No obvious differences
were observed among the scores obtained for 2, 5, 8 and
11 bases when correlating them with probe hybridization
intensity (Table 2).

Among all four data sets, PPBE, PMFE, dimer score
and hairpin score showed positive correlations with probe
hybridization intensity, and are therefore the more reliable
indicators of probe sensitivity. The other PDFs displayed
inconsistencies in correlation for different data sets.
For example, PHFE is positively correlated with probe
intensity in data sets 2 and 3, but is negatively correlated
with probe intensity in data sets 1 and 4. More complex
models might be developed for blast score and complexity
scores (2, 5, 8 and 11 bases), but that is beyond the scope
of this article.

As shown in Supplementary Table 2, enormous varia-
tions were observed among individual data sets for the
trend coefficients (e.g. intercept and slope), possibly due
to differences in array manufacture, sample and array
processing and other factors.

The values of PHFE and PMFE are dependent on
parameters such as hybridization temperature and
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concentrations of sodium, most of which were unavailable
to us. However, we computed PHFE and PMFE using
various potential parameters, and changes in parameters
did not cause significant differences in correlation assess-
ments; the average difference of ARSS value are 0.0058
(0.010 for PHFE and 0.001 for PMFE) among different
temperature settings. 60�C was used for the computation
of PHFE, and 40�C was used for computation of PMFE
for all data sets, because they slightly outperformed other
temperatures.

Multivariate linear modeling

For each data set, a multivariate linear model with PPBE
(W. PPBE model) was built based on all PDFs for pre-
dicting probe hybridization intensity and comparing the
significance of the individual PDFs. This multivariate

model showed significant improvement over all individual
models based on each individual PDF (Figure 3,
Supplementary Figure 3). The W. PPBE model parame-
ters are shown in Supplementary Table 5.
Increasing the number of free parameters obviously

improves the fit. On the other hand, overfitting is very
likely to happen and reduces or destroys the ability of
the model to generalize beyond the data it is built upon.
The AIC is an operational way of trading off the complex-
ity of an estimated model against how well the model fits
the data (32). It not only rewards improvement of fit, but
also includes a penalty that is an increasing function of the
number of estimated parameters and thereby discourages
overfitting. In this study, stepwise selection with AIC was
used to search for the optimal model which only contains
covariates (individual PDFs) related to the outcome
(probe hybridization intensity). Stepwise model selection

Figure 2. Box plots (black line) show the correlation of individual PDFs with observed oligonucleotide probe hybridization intensities for data set 1.
The density curve (red line) is computed using kernel density estimates and shows the distribution of individual PDFs. The secondary Y-axis
represent the density of different PDFs.

Table 2. Simple linear model average residue square sum (ARSS) and correlation coefficients (r) for the correlation of individual PDFs with

probe hybridization intensities

Data Set 1 Data Set 2 Data Set 3 Data Set 4

r ARSS r ARSS r ARSS r ARSS

PHFE 0.11 0.168 0.03 0.504 0.03 0.460 0.13 1.668
PMFE 0.29 0.156 0.27 0.468 0.32 0.414 0.28 1.568
HairpinScore 0.21 0.162 0.22 0.479 0.20 0.442 0.21 1.621
DimerScore 0.19 0.164 0.23 0.478 0.17 0.448 0.15 1.660
ComplexityScore-2B 0.08 0.169 0.05 0.503 0.02 0.461 0.09 1.684
ComplexityScore-5B 0.04 0.170 0.11 0.498 0.01 0.461 0.02 1.698
ComplexityScore-8B 0.01 0.170 0.15 0.493 0.01 0.461 0.12 1.675
ComplexityScore-11B 0.01 0.170 0.10 0.498 0.02 0.461 0.10 1.683
BlastScore 0.02 0.170 0.11 0.498 0.01 0.461 0.18 1.641
PPBE 0.36 0.148 0.30 0.460 0.65 0.269 0.48 1.301

PAGE 5 OF 10 Nucleic Acids Research, 2010, Vol. 38, No. 11 e121



analysis showed that all PDFs contributed to the predic-
tion of probe hybridization intensity in all data sets with
only one exception in which the complexity score (2 bases)
was not significant in data set 1 (Supplementary Figure 4).
The most significant factor is PPBE, followed by PMFE in
all data sets. The order of significance of other PDFs
varied among different data sets.

Generality of linear models

Two multivariate models, the W. PPBE model (includes
all factors) and the W/O PPBE model (including all
factors except PPBE), were developed using a training
data set, and tested on independent data sets to determine
if the models can be reliably used as a probe design tool.
Applying within-dataset validation, Figure 4 illustrates

that the models developed from the training set can

predict the performance of oligos in the test set almost
as accurately as it can predict performance in the
training set. The W. PPBE model outperformed the
W/O PPBE in all cases, suggesting that PPBE is a
reliable factor although it is generated by an empirical
approach.

Cross-dataset validations (Supplementary Table 6)
resulted in extremely high ARSS values in the test data
sets when the W/O PPBE and W. PPBE models were
applied, even when the array manufacture technique and
sample species were identical between test and training set.
The complex multivariate models developed from one
data set can therefore not be directly and simply applied
on other data sets. The adverse performance was not
caused by PPBE, as there were no obvious differences
between W/O PPBE and W. PPBE models. The substan-
tial variations in correlation intercepts and slopes for each

Figure 3. Relative ARSS of different models for different data sets.

Figure 4. Comparisons of ARSS for within-dataset validations using the multivariate models W/O PPBE or W. PPBE.
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individual PDF, as observed in Supplementary Table 2,
severely hinder the cross-dataset probe intensity predic-
tions using multivariate linear models.

Probe specificity

Probe specificity is a measurement of the capability
of a probe to discriminate between its specific target
sequences in a complex set of non-specific sequences. In
a two-channel hybridization experiment, if one channel
includes the target sequence and the other does not, then
the probe with specificity for the target can be expected to
yield a high ratio of hybridization signal intensity between
the two channels, which is a measure of probe specificity in
the mixture.

We estimated the oligonucleotide specificity using
data set 3, where the targets in one channel included a
3-fold overrepresentation of approximately half of the
Salmonella genome and 3-fold underrepresentation for
the other half of the genome. Therefore, there are 3-fold
differences in the target concentration between the two
channels for all probes, and the expected hybridization
ratio is 3 for specific hybridization. This was achieved by
XbaI digestion of stationary phase Salmonella enterica sv
Typhimurium LT2 genomic DNA, separation of the seven
resulting fragments using pulsed field gel electrophoresis,
capturing those fragments and pooling the six smaller
fragments, while keeping the big fragment separate.
Genomic DNA preparations from stationary phase LT2
were then supplemented either with the big fragment or
with the pooled six smaller fragments, creating overrepre-
sentations of the different halves of the genome.

Probes with stronger hybridization intensities displayed
better specificity (Figure 5A). When each individual PDF
and the predicted probe hybridization intensities were
compared with the observed ratios, significant correlation
was detected between the ratios and all the factors

(Supplementary Figure 6), most significantly for PHFE,
PMFE, PPBE and Complexity Score (8 bases). The
Pearson correlation coefficients are listed in Supple-
mentary Table 7. Note that PHFE is significantly and
positively correlated with probe specificity. Probes with
low PHFE values displayed both low specificity and rela-
tively low sensitivity (as shown in Supplementary
Figure 1–2).
As shown in Supplementary Figure 5, the relationships

between log2 based ratios and some PDFs seem to be
non-linear. For the sake of simplicity, only linear equa-
tions were considered in the current study.

Probe reproducibility

Data set 4, which includes 205 replicated hybridizations,
was used to estimate probe reproducibility using CV. High
probe reproducibility (corresponding to low CV values) is
positively correlated with the observed probe hybridiza-
tion intensities (Figure 5B). When examined individually,
each PDF shows a significant but distinct level of associ-
ation with CV (Supplementary Figure 6). PPBE and
PHFE are the most significant factors. Correlation coeffi-
cients are listed in Supplementary Table 7.

Software

Programs for computing of PHFE, PMFE, probe dimer
score and hairpin score, blast score and complexity score
were written in Python. All programs, including parame-
ters for computation, are freely available upon request.

DISCUSSION

Microarray probe hybridization signals are determined by
the equilibrium of probe–target complex formation and
probe–probe hybridization capability, and are also
influenced by non-specific binding from the complex

Figure 5. Correlation of probe hybridization intensity with probe specificity and reproducibility. (A) Correlation of probe hybridization intensity
with probe specificity (observed log2 base transformed ratio) for data set 3. Gray line indicates no change; (B). Correlation of oligonucleotide probe
hybridization intensity with probe reproducibility for data set 4, represented as coefficient of variation (CV).
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target. The PDFs we studied here covered these three
aspects.
While Affymetrix Chips are designed for one-

sample-for-one-array, it is very common to apply
multiple samples onto the same array on customized
platforms, including in-house spotted arrays and
Nimblegen arrays. The natural log transformed intensity
values from multiple arrays were averaged for each probe
to minimize variation caused by sample processing and
hybridization. We used genomic DNA samples because
these hybridizations allow a comparison of probe perfor-
mance under similar target concentrations.
Linear models were selected to model the relationships

between individual PDFs and probe performance based
on our observation that most scatter plots generated
from multiple data sets consistently showed a linear rela-
tionship. The actual relationships may be far more
complex. Nevertheless, from a practical point of view,
linear models are easy to handle and generate more
accurate predictions than more complex models based
on model diagnosis with ARSS (34). The finding of
these correlations is a useful first step in trying to under-
stand the physical phenomena, which are clearly not
subsumed in all the parameters currently in use. In
future research, we plan to identify more advanced
models (for example non-linear association models) that
may reduce the ARSS we have achieved in the current
study.
PMFE, dimer score and hairpin score are factors that

estimate probe–probe hybridization capability. Of all the
traditional PDFs (all factors except PPBE), PMFE corre-
lated most significantly with probe hybridization intensity
in all four data sets, followed by dimer score and hairpin
score in most data sets. Although these three PDFs
contain redundant information for estimation of the
probe–probe hybridization capabilities, they cannot be
simply replaced by each other as shown in the stepAIC
analysis, which optimizes the complexity of the model
versus the fit (32). All three PDFs therefore deliver
unique information that needs to be considered for
probe design.
Probe hybridization free energy (PHFE) is a

long-established parameter for measuring probe–target
hybridization capability in solution. In our study, PHFE
was not as reliable in predicting probe hybridization inten-
sity as other factors (PMFE, dimer score and hairpin),
which may be largely due to the linkage of probes to a
solid phase in microarray hybridizations. To compensate
for the attachment of one end of the probe to the matrix,
we introduced PPBE, which modifies the PHFE calcula-
tion by adding a positional weight parameter and
iteratively fitting positional weights and dinucleotide
stacking energies. PPBE showed much better capabilities
of predicting probe hybridization than all other PDFs,
and was a tremendous improvement over PHFE. The
drawback of PPBE is that it is platform-dependent, and
preliminary aCGH data are required for developing the
PPBE model prior to application. The quality of the
training data is critical for the construction of an
accurate PPBE model. There are many factors that may
result in bad quality arrays, e.g., bad sample quality. In

order to solve these problems, we suggest that multiple
CGH be performed using genomes without copy number
variation to minimize the noise caused by sample
processing.

Both PMFE and PHFE are sodium dependent.
Generally, changes in free energy are linearly correlated
to log-transformed sodium concentration (17), which has
been confirmed by us on the Mfold web server (18) for
PMFE and PHFE. That means that all oligonucleotide
PMFE/PHFE values will change proportionally if the
sodium concentration changes. Subsequently, these
changes will be canceled out through adjustment of
related coefficients in linear models. Therefore, changes
in sodium concentration had no influence on the signifi-
cance of linear modeling.

The PPBE model is empirical by nature, similar to the
positional-dependent nearest neighbor model, which was
designed for the Affymetrix array platform (34).
Parameters of this model similarly need to be empirically
estimated based on hybridization data, and significantly
vary among different Affymetrix array platforms. At this
stage, we do not understand the physical properties gov-
erning the parameters, but present a practical approach to
optimize oligo design.

The position dependence of the weighting factors is a
conspicuous feature in such models. In previous work, the
sensitivity profiles of base C and base A change in a
parabola-like fashion in a 25-base probe sequence, while
the same profiles for G and T change monotonically
(35–38). The overall position weighting factors change
like the shape of a parabola, with peak and width
varying across different GeneChip platforms (14,34,39).
Our data reveal weight distribution patterns different
from this previous work. Our data were obtained on two
types of platforms: Nimblegen in situ synthesized
oligonucleotide arrays and a spotted oligonucleotide
array. For three Nimblegen platforms, the weights
change linearly for the first 35�45 bases or so from the
30 end and get weaker at the free end (Figure 1B,
Supplementary Figure 2B and 2E). In contrast, a
parabola-like curve is observed on the other platform
(Supplementary Figure 2H). Although it is not the
object of this article to explore a physical explanation
for these differences, we point out some facts that may
be important in further studies:

. We are using platforms of 50-mer probes, while the
quoted previous work used 25-mer Affymetrix
GeneChip platforms. Lengthening of the sequence on
the platform inevitably reduces the importance of each
single base or position, and weakens the position
dependence.

. Unlike Affymetrix platforms and Nimblegen plat-
forms, the probes of the spotted array in this study
are linked to the array at the 50 end, and there are no
terminal oligonucleotide linkers between probes and
the array surface. The impact of this difference is
unknown, but it may reduce the freedom of a probe
and even its effective length, leading to a pattern of
position dependence similar to platforms of lower
probe length, e.g. Affymetrix platforms.
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For the fitting of the PPBE model, it is not critical
whether weights or energies were fitted first. Either way,
the final converged models reach similar ARSS values
(average difference is <0.005). The final weights and
pseudo-stacking energies are similar as well. We began
to fit the models with the conventional dinucleotide
stacking energies simply because the modes reached con-
vergence faster. The dinucleotide stacking energies may
express a relevant part of the physical properties underly-
ing the model. However, further evidence is required to
confirm this speculation.

Blast and complexity scores reflect occurrences of
sequence segments similar to the probe, and are used for
evaluating probe specificity. It would be simpler and easier
to use cutoff thresholds for these PDFs to filter out bad
quality probes. In this study, we applied four different
patterns for the complexity score calculation, which are
based on 2, 5, 8 and 11 base patterns. The complexity
score (8 bases) showed better correlation with probe
specificity than other complexity score patterns and blast
score.

Langmuir isotherm oriented models were not included
in our studies. Although Langmuir models were initially
developed for adsorption of gases on glass surfaces (40),
its variations have been widely applied in research for
hybridization of oligonucleotides on DNA microarrays
(13–16,41). In these models, the hybridization signal
intensities were in essence divided into two parts: the
hybridization of the probe with its perfect-matching
target and the background noise. Although such models
fit hybridization intensity values well for spiked-in genes
and corresponding targets with controlled concentrations,
they are of less help in screening probes for microarray
design because they are based on the equilibrium constant
or the change of standard Gibbs free energy �G�, which is
a PDF of less sensitivity and specificity in comparison to
PMFE and PPBE in our study. In contrast, platform-
dependent empirical models based on pseudo free
energies and position weights can make predictions very
close to the observed hybridization intensities (34,39). This
fact encouraged us to explore pure empirical models in
microarray design.

In summary, we used aCGH as a model system to
study the correlation between individual PDFs and
probe performance during microarray hybridization.
These individual correlations can be used as guidance
for designing microarray probes for other complex exper-
imental setups such as gene expression analysis. In gene
expression microarray hybridization, non-specific binding,
probe–targets complex formation and probe–probe
binding capability will all be influenced by the varying
concentrations of the targets. Systematic study of probe
performance in such systems is beyond the scope of this
study.

Nevertheless, if preliminary aCGH data is available, a
complex multivariate linear model including the empirical
factor PPBE can be developed and used for refining
arrays. The model can predict a probe hybridization
intensity value which will be an indicator of probe
quality. Higher predicted intensity values will be equiva-
lent to higher sensitivity, improved specificity and

reproducibility. In practice, this strategy can be used for
improving an existing array platform by replacing bad
probes or by expanding the array by selecting probes
predicted to perform well.
If aCGH data are unavailable for microarray platform

design, we suggest using each individual PDF to filter
or rank probes instead of using a complex model,
because the coefficient parameters (intercept and slopes)
vary significantly among different data sets/platforms.
PMFE, hairpin score and probe dimer score can be used
to rank probe qualities. PHFE, blast score and complexity
score can be used to filter probes with low specificity. We
have provided all correlation parameters generated from
four data sets to be used as a guideline for filtering or
ranking probes. All the programs for calculating individ-
ual PDFs are also available from the authors.

Supplementary Data

Supplementary Data are available at NAR Online.
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