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Early prediction of diagnostic-related groups and estimation
of hospital cost by processing clinical notes
Jinghui Liu 1,2, Daniel Capurro 1,3, Anthony Nguyen 2 and Karin Verspoor 1,3,4✉

As healthcare providers receive fixed amounts of reimbursement for given services under DRG (Diagnosis-Related Groups)
payment, DRG codes are valuable for cost monitoring and resource allocation. However, coding is typically performed
retrospectively post-discharge. We seek to predict DRGs and DRG-based case mix index (CMI) at early inpatient admission using
routine clinical text to estimate hospital cost in an acute setting. We examined a deep learning-based natural language processing
(NLP) model to automatically predict per-episode DRGs and corresponding cost-reflecting weights on two cohorts (paid under
Medicare Severity (MS) DRG or All Patient Refined (APR) DRG), without human coding efforts. It achieved macro-averaged area
under the receiver operating characteristic curve (AUC) scores of 0·871 (SD 0·011) on MS-DRG and 0·884 (0·003) on APR-DRG in
fivefold cross-validation experiments on the first day of ICU admission. When extended to simulated patient populations to
estimate average cost-reflecting weights, the model increased its accuracy over time and obtained absolute CMI error of 2·40
(1·07%) and 12·79% (2·31%), respectively on the first day. As the model could adapt to variations in admission time, cohort size, and
requires no extra manual coding efforts, it shows potential to help estimating costs for active patients to support better operational
decision-making in hospitals.
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INTRODUCTION
The payment system based on diagnosis-related groups, or DRGs,
was designed to manage healthcare costs and maintain sustain-
able operations for inpatients and it has become a significant
component of healthcare payments in many countries to promote
risk-sharing between healthcare providers and payers1,2. The DRG
system classifies inpatients with similar clinical and treatment
characteristics into groups, where patients in the same group are
expected to use similar amounts of resources, thus incentivizing
providers to enable effective cost management. Hospital opera-
tion managers may review quarterly or even monthly DRG-based
statistics to assess its patient mix3,4 and financial efficiency5,6

under DRG reimbursement. Meanwhile, such review is limited to
retrospective assessment since DRGs are typically obtained after
patient discharge, making it impossible to act upon this
information to make adjustments for active patients. Furthermore,
calculating DRGs is a time-consuming process requiring expert
efforts to manually identify information from patient records,
standardize it to ICD (International Classification of Diseases)
format, and then obtain DRGs.
The rapid spread of electronic health records (EHRs) has created

large amounts of patient data and provides an opportunity to
estimate DRGs and related costs at early patient admission using
machine learning. A prior study7 applied statistical machine
learning for early DRG prediction and resource allocation at a 350-
bed hospital in Germany, examined a range of feature selection
and classification techniques in different prediction settings, and
showed their DRG predictions were relevant for optimizing scarce
hospital resources allocation and the improvement of contribution
margin for the hospital. However, the study utilized derived
patient-related data, including coded diagnosis and approximated
DRG results, and evaluated the model with hospital-specific

information on resources. In this study, we hypothesized that by
processing routine clinical text with a deep learning-based model
for active patients in the hospital, an automatic system can bypass
the labor-intensive coding process that usually happens post-
discharge and provide assistance to estimate hospital cost and
case mix in a scalable way, thus supporting administrative
decisions in real time. By leveraging a large set of patient data,
deep neural network models have the potential to identify
important diagnostic indicators from the raw data and encapsu-
late clinical patterns8–10. Since each DRG group corresponds to a
defined weight representing the expected payment, the modeling
results can be applied to estimate DRG-based inpatient cost at the
hospital level. We developed a deep learning-based natural
language processing (NLP) model on ICU patients using MIMIC-
III11 for early classification of two DRG systems, namely Medicare
severity-DRG (MS-DRG) and all patient refined-DRG (APR-DRG),
which was subsequently applied to estimate cost for patient
populations and assessed its potential to provide cost indicators,
such as case mix index (CMI), for hospital administration.

RESULTS
Study Cohort
Statistics on the datasets are presented in Table 1 for both MS-
DRG and APR-DRG cohorts. For cost estimation on hospital
populations, we kept only the first hospital visit of the patient in
the test set to form the patient group. MS-DRG test cohort was
reduced to 1648 hospital stays and APR-DRG test cohort to 2252. If
a patient had both an MS-DRG and an APR-DRG, which sometimes
may happen due to certain insurance policies, the patient was
assigned to both cohorts. As mentioned previously, each unique
DRG code in the APR-DRG cohort is an explicit combination of
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DRG group and patient severity that is assigned with a cost
weight. The three most common major diagnostic categories
(MDCs) in the two cohorts are diseases and disorders of the
circulatory system (05), the nervous system (01), and the
respiratory system (04).

DRG prediction
We first present the evaluation results of the NLP model, adjusted
convolutional attention for multi-label classification (CAML)12, for
the two cohorts in Table 2, where mean (standard deviation [SD])
on the hold-out test set are reported based on five different
models obtained in cross-validation experiments. For both MS-
and APR-DRG, the NLP model achieved macro-averaged area
under the receiver operating characteristic curve (AUC) over 0·86
and micro-averaged AUC over 0·95. For each MDC subset, the
model was examined only on test cases with DRGs belonging to
the MDC, such as diseases and disorders of the circulatory system,
showing the capacity of the model to distinguish between major
cases while alleviating the impact of numerous negative samples
when calculating AUC scores. The model was able to achieve
macro-AUCs (SD) of 0·836 (0·016), 0·850 (0·011), and 0·833 (0·013)
on MS-DRG for diseases and disorders of the circulatory system,
nervous system, and respiratory system, respectively, and similarly
0·881 (0·003), 0·892 (0·004), and 0·759 (0·012) for APR-DRG. The
performance was also evaluated using F1 scores, where the model
obtained 0·270 (0·006) and 0·244 (0·005) of micro-F1 on all cases in
the two cohorts. Meanwhile, when looking at common DRG codes
that account of 80% of total test stays, the results improved to
0·329 (0·008) and 0·306 (0·004), respectively and would further
boost when examining more frequent DRGs.
The results of the reference model trained on structured clinical

measurements are also reported in Table 2. Trained on time-series
constructed on 104 clinical measurements using long short-term

memory (LSTM)13, this model achieved macro-AUC of 0·819
(0·009) and 0·838 (0·017) for MS-DRG APR-DRG on all DRG codes.
Although strong performances were observed with structured
data, the NLP-based model consistently performed superior than
the model using structured clinical data (p value < 0.01 under two-
sided t-test), with strongest contrast on F1 scores. Detailed results
of LSTM on DRG subgroups are listed in Supplementary Table 3.

CMI prediction
The predicted CMI made by the NLP model on these two sets
achieved errors of 2·40 (1·07%) and 12·79% (2·31%) on 24 h post-
admission (HPA), or the first day of ICU, and tended to stabilize by
48 HPA (detailed numbers in Supplementary Table 2). Figure 1
shows how the CMI error changed with varying HPA, indicating
the population progressed in the hospital stay. We included
observations from a day before ICU admission (−24 HPA) to
simulate the flow of patients through the ICU, which would
include those that have already been admitted. The CMI
prediction significantly improved around the ICU admission (−6
HPA and 6 HPA) and error reached lower than 5·0% for MS-DRG
and 15·0% for APR-DRG after 24 HPA.
Besides admission time, we also examined how population size

impacted the model on CMI prediction. For each population size,
we randomly sampled 20 subgroups with replacement from the
test cohort containing one visit per patient, and applied one of the
five models obtained in the cross-validation experiments to
predict CMI. This resulted in 100 subpopulations of the same size
and the mean CMI and 95% confidence interval (CI) with
bootstrapping were calculated at both 24 and 48 HPA on the
two DRG types. Figure 2 demonstrates that at 24 HPA the model
contained the CMI error under 8·0% for MS-DRG and 15·0% for
APR-DRG with different cohort sizes, ranging from 200 to over
1500. Also, predictions made at 48 HPA tended to outperform
those at 24 HPA.
Finally, we mixed the two explorations on CMI above by

randomly sampling 500 hospital stays from each DRG test set and
presented predicted CMIs instead of absolute CMI errors. By
assuming a base payment rate of $6000 and approximating DRG-
based payment by the product of the rate and DRG weight, we
could also estimate the DRG payment amount for a hospital.
Figure 3 shows the model tended to underestimate population
payments in the beginning and gradually became more reliable,
with MS-DRG approaching true payment amount and APR-DRG
stabilized at slightly lower level.

DISCUSSION
Healthcare expenditure has become a significant component of
global spending14, and many health systems face challenges to
improve efficiency and provide sustainable care15,16. Various
payment incentives have been proposed and experimented with
curbing the rising cost in the healthcare system to encourage
healthcare providers to plan discreetly on resources17,18, promot-
ing risk-sharing between payers and providers. Under prospective
payment models, cost monitoring and management are vital for
providers to stay financially competitive and are also essential for
them to offer high-quality care. At the same time, precise cost
information based on well-represented patient data may also
assist payers in adjusting payment policies to further increase
efficiency and support new payment initiatives19,20.
In this study, we focused on predicting episode-level DRG and

estimating DRG-based expected payment at population level,
which could help hospitals learn about their case mix and average
cost at an early stage and make decisions accordingly. Existing
studies21,22 examined health cost prediction from a payer
perspective, such as using claims data to predict cost in
subsequent years. Also, studies have shown the promise of

Table 1. Statistics for the two datasets on DRG.

Train set Test set Test cohort

MS-DRG

Patient 14,836 1648 1648

Hospital stay 17,815 1977 1648

Unique DRG 595 369 349

DRG weight 3·045 (2·747) 3·049 (2·790) 3·147 (2·835)

Stay of MDC 05 4633 (26·0%) 522 (26·4%) 456 (27·7%)

Stay of MDC 01 2765 (15·5%) 320 (16·2%) 293 (17·8%)

Stay of MDC 04 2115 (11·9%) 219 (11·1%) 169 (10·3%)

APR-DRG

Patient 20,266 2252 2252

Hospital stay 24,667 2747 2252

Unique DRG 893 517 480

DRG weight 3·265 (3·166) 3·291 (3·211) 3·300 (3·153)

Stay of MDC 05 6473 (26·2%) 733 (26·7%) 613 (27·2%)

Stay of MDC 01 3556 (14·4%) 424 (15·4%) 379 (16·8%)

Stay of MDC 04 2881 (11·7%) 319 (11·6%) 239 (10·6%)

Data is reported in count (%) or mean (SD). DRG is assigned on the basis of
hospital stay, and a patient can have more than one stay in both datasets.
Each unique DRG code in MS-DRG corresponds to the DRG group, whereas
in APR-DRG the DRG code combines clinical group and patient severity. All
DRG codes have a relative weight that is connected to reimbursement.
Three most common MDCs: diseases of disorders of the circulatory system
(05), nervous system (01), and respiratory system (04).
DRG diagnostic-related group, SD standard deviation, MS-DRG Medicare
severity-DRG, APR-DRG all patient refined-DRG, MDC major diagnosis
category.
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machine learning in predicting events like unexpected 30-day
readmission8,23 and identifying high-need high-cost patients24

that could preempt avoidable health expenses. Meanwhile, these
studies did not focus on active patients to provide support for
provider decisions. A prior study7 investigated DRG prediction in
early hospital settings to enable better resource allocation, and it
showed the machine learning-enabled approach could increase
the contribution margin for the hospital. In our study, we
developed deep learning-based models to process only routine
clinical notes. The end-to-end modeling and the use of only
routine patient data enables scalable and timely estimation at a
population level to provide cost indicators, especially given that
the standard calculation of DRGs involves intensive human effort
and lengthy turn-around via manually coding ICDs. This is a major
difference of our study on early DRG prediction as compared to
the previous work including ICD codes in learning and prediction;
ICD codes may not be readily available for all hospitals at early
admission—at least not automatically. We also proposed to
estimate hospital cost by predicting DRG-based payment at the
hospital level instead of adopting hospital-specific evaluation.
Our study showed the feasibility of applying an NLP-based

model to estimate the hospital cost based on DRG payment. DRG
prediction using clinical text consistently performed better than
clinical measurements alone, demonstrating the value of mining

Table 2. Main results on DRG prediction.

DRG set MACRO-AUC MICRO-AUC MACRO-F1 MICRO-F1 Number of DRG
targets

Number (%) of
hospital stays

MS-DRG

CAML with clinical text All DRGs 0·871 (0·011) 0·956 (0·002) 0·084 (0·008) 0·270 (0·006) 369 1977 (100·0)

MDC 05 0·836 (0·016) 0·974 (0·002) 0·141 (0·010) 0·382 (0·011) 67 522 (26·4)

MDC 01 0·850 (0·011) 0·974 (0·001) 0·121 (0·008) 0·343 (0·016) 52 320 (16·2)

MDC 04 0·833 (0·013) 0·971 (0·003) 0·112 (0·018) 0·294 (0·024) 34 219 (11·1)

Top
80% cases

0·923 (0·005) 0·983 (0·001) 0·192 (0·012) 0·329 (0·008) 131 0·923 (0·005)

Top
50 DRGs

0·940 (0·002) 0·991 (0·000) 0·320 (0·014) 0·436 (0·009) 50 1083 (54·8)

Top
30 DRGs

0·943 (0·002) 0·993 (0·001) 0·395 (0·013) 0·502 (0·006) 30 842 (42·6)

LSTM with clinical
measurements

All DRGs 0·819 (0·009) 0·940 (0·004) 0·041 (0·008) 0·183 (0·011) 369 1977 (100·0)

APR-DRG

CAML with clinical text All DRGs 0·884 (0·003) 0·963 (0·001) 0·069 (0·008) 0·244 (0·005) 517 2747 (100·0)

MDC 05 0·881 (0·007) 0·986 (0·000) 0·116 (0·004) 0·333 (0·006) 87 733 (26·7)

MDC 01 0·892 (0·004) 0·984 (0·001) 0·123 (0·019) 0·321 (0·019) 63 424 (15·4)

MDC 04 0·759 (0·012) 0·963 (0·002) 0·096 (0·032) 0·193 (0·016) 47 319 (11·6)

Top
80% cases

0·936 (0·002) 0·985 (0·000) 0·180 (0·013) 0·306 (0·004) 180 2197 (80·0)

Top
50 DRGs

0·952 (0·001) 0·993 (0·000) 0·336 (0·005) 0·434 (0·008) 50 1285 (46·8)

Top
30 DRGs

0·942 (0·002) 0·995 (0·000) 0·375 (0·008) 0·484 (0·009) 30 976 (35·5)

LSTM with clinical
measurements

All DRGs 0·838 (0·017) 0·946 (0·006) 0·037 (0·004) 0·160 (0·012) 517 2747 (100·0)

AUC and F1 scores on individual DRGs were macro-averaged or micro-averaged within each fold of the experiments, then the results were summarized in
mean (standard deviation) over the performances of five models on the hold-out test set. DRG sets refer to stays in the test set used for evaluation that were
assigned with either all DRGs (the original test set) or certain subgroups of DRGs (subsets of the test set). The DRG subgroups include most frequent DRGs and
DRGs in the three most frequent MDCs, namely diseases and disorders of circulatory system (MDC 05), nervous system (MDC 01), and respiratory system (MDC
04). The number of DRG targets counts the unique DRGs in the DRG category, followed by the number (%) of hospital stays in the test set that were covered in
the evaluation. For the model using clinical measurements, we only reported results using all stays as comparison.
DRG diagnostic related group, MS-DRG Medicare severity-DRG, APR-DRG all patient refined-DRG, AUC area under the receiver operating characteristic curve,
MDC major diagnosis category.

Fig. 1 Absolute error on CMI across HPA. The plot shows the mean
and standard deviation of absolute CMI errors at different HPA for
MS-DRG test cohort (1648 patient stays) and APR-DRG test cohort
(2252 patient stays), averaged over five models developed using
different train folds. Predictions were made on the 6-h intervals from
24 h before ICU admission (−24 HPA) to 48 HPA. CMI case mix index,
HPA hour post-admission.
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clinical text to support active care management. Though the deep
learning-based NLP model could extract indicators to infer a
reasonable DRG group for a patient stay, especially for diseases of
circulatory system (MDC 05) and frequent DRGs, accurately
predicting each individual DRG is still a challenging task. Error
analysis showed the model correctly predicted many true
negatives for each DRG given the class imbalance, thus increasing
the average AUC performance, whereas the F1 scores reflect the
errors on false positive and false negative predictions requiring
future improvement. Meanwhile, at a population level, we showed
that the model could achieve promising results when its
predictions were translated to payment-reflecting weights and
to reflect patient case mix. Population CMI, which averages over a
set of patient DRG weights, is adopted by hospitals and payers as
a cost indicator to review clinical complexity and efficiency. Our
results showed the machine learning-based prediction could
contain the CMI error under 8·0% for MS-DRG and 15·0% for APR-
DRG on the first day of ICU admission. When calculating CMI,
mistakes on individual cases offset each other to drive down the
overall error, and we showed such performances were robust
when the patient population size changed. Finally, performances
in MS-DRG were in general better than APR-DRG, which could be
due to APR-DRG having more fine-grained severity stratification
and hence more prediction targets (1136 vs. 738).
Practically, early prediction of hospital CMI can provide valuable

information on expected resource use, which can lead to better
decision making in administration for improved care and
managed cost25. Assuming a base payment rate of $6000 for
the hospital, the CMI error rate of ~5·0% may lead to ~$472,500
difference in final reimbursement for a simulated cohort of 500

patients with a CMI of 3·15, but it allows the hospital to learn
about its CMI at an early stage using only routine data and make
decisions accordingly, implementing resource allocation and
revenue capture. We observed better CMI performances for the
MS-DRG cohort while the errors on APR-DRG were higher.
Nevertheless, the model still achieved a mean below 15·0% and
was more robust against changes in cohort size. The current
examination of MS-DRG and APR-DRG showed the flexibility of the
modeling approach on different DRG systems, which may be
extended to other DRGs with similar structures of grouping and
weight. Furthermore, it is possible to generalize the cost modeling
strategy to scenarios other than DRG, where the model skips the
DRG classification step and learns to predict patient cost in real
numbers directly. We presented the approach in Supplementary
Method 3 to apply the model to predict DRG payment weights in
regression, where the model achieved mean absolute error (MAE)
under 1·51 for both DRG cohorts (see Supplementary Table 1).
We should note that the current experimental results on CMI

predictions show promise to provide management support at a
hospital/population level rather than an individual/patient level.
By forecasting the overall CMI of an in-hospital population, the
model prediction may help administrators foresee peaks and
troughs in resource usage and better arrange resources such as
staffing and operating theaters. The current model performance in
predicting individual DRGs is still inadequate to provide decision
support on individual cases, which requires future research and
additional consideration of ethical concerns.
Since the focus of this work is to examine the feasibility of DRG

prediction and DRG-based cost estimation based on clinical notes,
we did not examine the NLP methodologies comprehensively and

Fig. 2 CMI for patient populations of different sizes. Performance to predict CMI (mean and 95% CI, based on 100 bootstrapped samples) on
24 and 48 h after ICU admission (24 and 48 HPA) for patient groups of different population sizes, ranging from 200 to 1600 for MS-DRG and
200 to 2200 for APR-DRG. Subfigure a shows results on the MS-DRG and b on the APR-DRG.

Fig. 3 Predicted CMIs and related DRG-based payment amounts for a cohort of 500 stays. Predicted CMIs (instead of CMI errors) at
different HPA on randomly sampled 500 hospital stays from each DRG cohort set, averaged over five models. Results on MS-DRG test cohort
and APR-DRG test cohort are shown in subfigure a and b, respectively.
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regard such an investigation as future work. Meanwhile, we found
CAML to be a simple yet effective baseline even compared against
large pretrained models like BERT26 and ClinicalBERT27 (the
domain adapted version of BERT), which provided improved
AUC but lower F1 scores compared to CAML in both cohorts.
Details of our experiments with these models are available in
Supplementary Method 4 and results in Supplementary Table 4.
To better understand the challenges of text-based early DRG

prediction and provide guidance for future methodological
improvements, we selected five discrete hospital stays in the
MS-DRG cohort to compare the model prediction with the true
DRGs and focused on understanding the modeling errors. Here we
leveraged the attention mechanism to identify the most
informative tokens (in this case, 5 g) considered by the model in
making its prediction to support the analysis (the role of attention
to provide interpretability is still under active research28,29), shown
in Table 3. We can observe that the model could extract the most
indicative text when making the correct predictions in Case 1,
including “coronary artery bypass graft” and “cabg”. Meanwhile, the
model could fail at differentiating multiple diagnoses when faced
with complex patient conditions. For example, in Case 2, the
model correctly extracted text on pneumonia, thus classifying the
case as DRG 193, but failed to recognize its diagnostic relation to
more complicated conditions like sepsis. Finally, we should note
that the attention mechanism here aims to support the analysis
and its role to provide interpretability of the model is still under
active research.
The presence of comorbidity or complication (CC) or major CC

(MCC) also introduces challenges to the model in recognizing and
prioritizing diagnoses. Case 3 shows an example where the model
was confused between DRGs with MCC and with CC.
In addition, the machine learning model could also suffer from a

lack of enough training data and make errors on rare DRGs, such
as the model predicted the more frequent DRG 023 for Case 4,
whose true DRG is in fact 955 (both DRGs are related to
craniotomy). Case 5 is an extreme case where DRG 289 only
appeared once in the whole cohort, and it was in the test set,
creating a zero-shot learning scenario for the model as it had not
seen any training sample of the DRG.
Several limitations exist in our study for the early prediction of

DRG-based hospital cost. First, we only examined data from one
medical center in the United States. Though MIMIC-III contains a
large number of patients and the study design is at hospital level,
the dataset is still limited in location and patient representative-
ness. Due to the data de-identification, we were not able to apply
DRG weight mapping to the exact fiscal year, so we used the
official DRG weights published for fiscal year 2013 given MIMIC-III
collected data until 2012. Second, the focus on ICU patients also
leaves room for further exploration, including input data and
predictor selection. On the one hand, the acute conditions of ICU
patients are more dynamic and less predictable, and strong
performances on them may indicate the capacity of the approach
to model other inpatients, which should be studied. On the other
hand, intensive care for ICU patients usually generates more data
than other inpatients, providing more signals for a learning model.
Sufficient data is vital for proper modeling and hence further
investigation is necessary to explore the possible trade-off
between disease severity and data availability on new patient
populations.
Thirdly, though achieving favorable results on population CMI,

the modeling method of clinical notes remains to be improved to
make more accurate DRG predictions at an individual level. Early
DRG prediction involves several challenges, including extracting
diagnostic evidence, identifying major or negligible comorbidities,
handling rare or unseen test DRGs, and modeling dynamic patient
trajectories. This will require further innovations with considera-
tion of the task and the characteristics of clinical text. As shown in
the case analyses, CC and MCC play significant roles in the DRG

payment but are challenging to differentiate based on text. The
different clinical functions reflected in the texts could be one
reason for the difficulty; for example, a radiology report can
describe a radiograph for diagnostic purposes or for examination
purposes (i.e., if catheterization is performed appropriately). Future
work could consider modeling different types of clinical texts with
separate modules instead of modeling the concatenated notes.
This could also alleviate the impact of input length on
Transformer-based models like BERT, which we believe was the
main constraint for BERT to outperform the simpler CAML. As we
also found domain adaptation improved BERT performances (see
ClinicalBERT scores in Supplementary Table 4), a domain-specific
efficient BERT, like Longformer30, may achieve much better
performance on the task. In addition, the ontological structure
of DRG could provide information to handle rare DRGs in few-shot
and zero-shot learning scenarios, which are shown to be
applicable in automatic ICD coding31. Finally, the efficacy of the
NLP approach remains to be investigated in other data sets,
including those in languages other than English.

METHODS
Study design
Under the DRG payment system, an inpatient hospital admission is
expected to receive a single DRG code under a specific DRG payment
system to process claims with a payer. Two primary systems are MS-DRG
used by the Centers of Medicare and Medicaid Services (CMS), and APR-
DRG adopted by many private payers. Each DRG system includes two main
components: the grouping logic to define the clinical boundaries and
clinical severity of a case, and the relative weight to indicate the resource
usage and consequent treatment cost for the DRG group. During payment,
the DRG groups and their corresponding weights are pre-defined, so a
provider can expect reimbursement for an assigned DRG by multiplying
the relative weight by a fixed dollar amount, referred to as the base
payment rate, which is specific to the provider based on local factors
like wages.
We perform modeling and evaluation according to the two components

of the DRG system, namely the DRG grouping and cost estimation in the
form of DRG weights. We first developed the NLP model as a multi-class
classifier trained for DRG grouping based on early patient notes. Then we
obtained corresponding DRG weight for cost estimation based on the
predicted grouping.

Dataset and preprocessing
For the current experiments, we used the third version of Medical
Information Mart for Intensive Care (MIMIC-III) that contains de-identified
data from ICU patients at a major medical center in Boston, US. The data
collection process and methods are described in detail in the original
study11. We examined two versions of DRG available in our dataset, namely
MS-DRG and APR-DRG, creating two DRG cohorts for model development
and evaluation on active ICU patients. We constructed the cohort for each
DRG system by selecting hospital stays assigned with the relevant DRG,
including patients over 18 years of age and stays that involve only one ICU
visit (Supplementary Fig. 1 and Supplementary Note 1).
Compared to MS-DRG, APR-DRG has an extra nuance in the grouping as

each DRG group is further stratified into four subgroups by severity and
mortality. Meanwhile, each subgroup in APR-DRG is still associated with a
pre-defined weight. We therefore represented the subgroups with unique
DRG codes in the experiments. In forming the target DRG space for model
design, we excluded codes related to neonate or post-care, resulting in 738
codes for MS-DRG and 1136 for APR-DRG. Notice these numbers were
based on the official DRG rules and were larger than the unique DRGs
observed in the cohorts (611 and 908, respectively).
Patient notes were collected from the beginning of hospital admission,

and were recorded relative to the time of ICU admission, referred to as
HPA. We included only clinical notes charted up to 48 HPA, or 48 h after
ICU admission. Note that a clinical note item can be charted at a negative
HPA like −6, i.e., the 6th hour before ICU admission, due to the possible
gap between hospital admission and ICU admission. We considered only
hospital visits with at least one clinical note in the 48 HPA window for each
DRG cohort. The choice of 48 HPA was to fit the early prediction scenario
while providing sufficient data for learning.

J. Liu et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)   103 



As input data, clinical texts include nursing notes, physician notes,
radiology reports, and other notes charted within the timeframe; reports
created at a later stage, such as discharge summaries, were excluded.
Clinical notes were sorted by chart time and concatenated to form a single
text string per patient admission. We adopted pretrained word embed-
dings trained on large biomedical and clinical corpora from previous
work32 and followed their steps to remove de-identification placeholders
from the concatenated text and tokenize the sequence. Tokens were
lowercased and those appearing at least three times in the cohort dataset
were associated with pretrained embeddings. Infrequent tokens and
tokens not found in the pretrained embeddings were mapped to one
specific, randomly initialized embedding vector. Given the large variance in
note length, we used the mean text length up to 48 HPA of 2000 tokens as
the sequence length for the current experiment; each input is either
padded with zero-vector or truncated to this length.

Model development
The clinical text was modeled using a Convolutional Neural Network
(CNN)33. When modeling sequential data, one-dimensional CNN can be
understood intuitively as extracting predictive n-gram features and
encoding these features in a latent representation. CNN filters slide across
the text and produce corresponding feature maps, which are then pooled
into downstream features. In this study, we adopted an architecture shown
to be effective for automatic ICD coding named CAML12 that pools CNN
features using the attention mechanism, modifying it for the single-label
DRG prediction task. The model encodes text into feature vectors
processed by a fully-connected neural network as classifier; each of its
hidden states corresponds to one possible DRG code. To obtain outputs,
we take the code with the highest probability as the result for DRG
grouping and concurrently obtain the payment weight corresponding to
the predicted DRG code. The mathematical formulation of the model and
training objective are presented in Supplementary Method 1.
To compare the use of clinical text with other readily accessible,

routinely collected data, we developed another neural network-based

model for early prediction of DRGs using structured clinical measurements,
such as vital signs and lab measurements, following a curated benchmark
pipeline34. This provides a vigorous feature set for MIMIC-III data,
constructing patient time-series with 104 clinically aggregated variables
for an alternative model (see Supplementary Method 2 for the complete
variable list). Implementation details of both text and measurement-based
models are provided in Supplementary Note 2.

Cross-validation and statistical analysis
We first kept 10% of data as the hold-out test set for each DRG system and
then performed fivefold cross-validation, training, and tuning the hyper-
parameters of independent models on five different splits of the remaining
90% of data. The performance of these five models on the test set were
aggregated to report the mean and SD under a specific metric. The
datasets were split by patient instead of by admission for both test set and
cross-validation, ensuring that a patient would not appear in both cross-
validation and testing and therefore avoiding data leakage. When
evaluating cost estimation on simulated populations, the test set was
further trimmed by keeping only one hospital admission for each unique
patient to form the test cohort.
To evaluate DRG prediction performance, we calculated the AUC for

each DRG code and aggregated the results via macro- and micro-
averaging on the test set labels. We also computed F1-score in both macro
and micro versions. Besides reporting performances on all test cases, we
created subsets focusing on specific DRGs, including the most frequent
DRGs and DRGs of three common MDCs based on body system or etiology.
The metrics were averaged over the results from the five models on the
hold-out test set and reported in mean (SD).
To evaluate DRG-based cost estimation for patient populations, we

adopted the notion of the CMI3,25, which is an averaged score of DRG
weights given a patient group. We computed the absolute CMI error by
simply dividing the difference between the predicted CMI and the true CMI
by the true CMI of the target population. This CMI error was further
reported under two variations to simulate hospital scenarios. The first

Table 3. Case analyses on DRG prediction.

Case (stay ID) True DRG (case count in the
cohort)

Predicted DRG (case count in the
cohort)

Top n-grams Attention weight

Case 1
(134,183)

236: Coronary bypass
W/O cardiac cath W/O
MCC (634)

236: Coronary bypass W/O
cardiac cath W/O MCC (634)

…disease\coronary artery
bypass graft /sda…
…s/p cabg x 3 s…
…artery bypass graft /sda
respiratory…

0.9523
0.0076
0.0044

Case 2
(112,077)

871: Septicemia or severe
sepsis W/O MV 96+ hours
W MCC (968)

193: Simple pneumonia &
pleurisy W MCC (210)

…<> pneumonia 5:20 pm chest…
…admitting diagnosis:
pneumonia medical…
: 76m with hypoxia reason…

0.6463
0.0691
0.0440

Case 3
(100,852)

025: Craniotomy &
endovascular intracranial
procedures W MCC (376)

026: Craniotomy &
endovascular intracranial procedures
W CC (136)

…s/p right craniotomy for tumor…
…right brain mass/sda
medical condition…
…right cerebellar metastasis,
presurgical…

0.1072
0.0723
0.0596

Case 4
(190,645)

955: Craniotomy for
multiple significant
trauma (21)

023: Cranio W major
dev impl/acute
complex CNS PDX W MCC or
chemo implant (103)

…man s/p craniotomy and
evacuation…
…right frontotemporal craniotomy
with evacuation…
…s/p pedestrian struck medical
condition…

0.4381
0.1583
0.0252

Case 5
(160,077)

289: Acute & subacute
endocarditis W CC (1)

378: G.I. Hemorrhage
W CC (327)

…gastrointestinal bleed 11:22 pm
chest…
…gastrointestinal bleed
medical condition:…
…: gastrointestinal bleed
medical condition…

0.7385
0.0870
0.0715

Here we present five cases from the MS-DRG cohort to explore the predictions of the model and compare them with the expected DRGs. The stay ID of each
case corresponds to the hospital admission ID. In addition to DRG code and description, we also count the number of DRG cases in the whole cohort. For each
case, we present the top three n-grams (in this case 5-g) with the highest attention weights assigned by the model when making its decision.
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variation involved progressively changing the HPA to explore when the
NLP model receives sufficient data to make useful cost estimation.
Secondly, we down-sampled the unique patients in the test set to form
smaller patient populations, aiming to explore whether the model is robust
against changes in population size.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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