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Prediction and reconstruction of metabolic pathways play significant roles in many fields
such as genetic engineering, metabolic engineering, drug discovery, and are becoming the
most active research topics in synthetic biology. With the increase of related data and with
the development of machine learning techniques, there have many machine leaning based
methods been proposed for prediction or reconstruction of metabolic pathways. Machine
learning techniques are showing state-of-the-art performance to handle the rapidly
increasing volume of data in synthetic biology. To support researchers in this field, we
briefly review the research progress of metabolic pathway reconstruction and prediction
based on machine learning. Some challenging issues in the reconstruction of metabolic
pathways are also discussed in this paper.
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INTRODUCTION

Metabolic pathways are a series of enzymatic reactions in a cell, where the products of reactions are
the substrates for subsequent reactions. The reactants, products, and intermediates of an enzymatic
reaction are known as metabolites. There are many metabolic pathways have been identified out and
been stored and characterized in several public repositories according to their functions, including
KEGG (Ogata et al., 1998; Ogata et al., 1999; Okuda et al., 2008; Kanehisa et al., 2019), MetaCyc
(Karp 2002b; Caspi 2006; Caspi et al., 2008; Caspi et al., 2018), BioCyc (Karp et al., 2019). However,
there are still many metabolic pathways remain uncharacterized, because some components of them
are not identified (Roche-Lima 2016). The reconstruction of metabolic pathways aims to refine
incomplete pathways caused by the lack of enzymes, reactions or relationships between reactions.
Some researchers reconstruct the metabolic pathways of an organism based on reference pathways.
That is, mapping the incomplete pathways onto the reference ones to identify the unknown parts. A
variety of reference-based approaches have been developed to reconstruct the metabolic pathways,
including BlastKOALA (Kanehisa et al., 2016), KAAS (Moriya et al., 2007), GhostKOALA (Kanehisa
et al., 2016), and RAST (Aziz et al., 2008). Now that there are many metabolic pathways have been
collected and organized in some public databases, such as KEGG (Ogata et al., 1998; Ogata et al.,
1999; Okuda et al., 2008; Kanehisa et al., 2019), MetaCyc (Karp 2002b; Caspi 2006; Caspi et al., 2008;
Caspi et al., 2018), BioCyc (Karp et al., 2019), Brenda (Schomburg 2002; Jeske et al., 2019), Rhea
(Lombardot et al., 2019), and EcoCyc (Karp 2002a), the reference-based methods make use of the
pathways in the public databases as references, and map the protein sequences of an organism onto
the reference pathways according to sequence homology (Herrgård et al., 2008) to reconstruct the
metabolic pathways of the organism. However, if some enzymes or reactions are also missed in
reference pathways, such reference-based methods may reconstruct incorrect metabolic pathways
and lead to incorrect elucidation. Furthermore, such kind of methods cannot predict new reactions
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or enzymes that do not exist in the reference pathways. Other
researchers reconstruct metabolic pathways by beginning with
predicting gene sequences from genome data using gene markers
(Besemer 2001). The predicted gene sequences are first assigned
initial functions by a variety of computational approaches such as
clustering, similarity calculation with known sequences, and so
on. Then they are “attached” to pathways by choosing templates
from metabolic pathway database which best incorporate all
observed functions (Overbeek 2000; Mascher et al., 2019); then
a basic functional model is created and evaluated against known
data. Such kind of methods depends on the deduced gene
sequence; however, the protein translated from coding
sequences may be incorrect due to the problem of frameshift,
resulting wrong pathways. For eukaryote, prediction of gene
sequences is even more difficult due to the existence of introns.

In order to overcome the shortcomings of above methods, it is
necessary to have strong evidence on genome context association,
such as gene-gene interactions (Gurkun, 2012), classification and
clustering based on their function and phylogenetic profiling
(Sithambranathan et al., 2020). Now that machine learning has
outstanding ability in dealing with large and complex data sets
and a large amount of data have been obtained through large
projects, it is an inevitable trend to apply machine learning to the
reconstruction of metabolic pathways. Over the past decade, there
have been many researches focusing on the modeling and
reconstruction of metabolic pathways. Wang et al. (2017) have
surveyed some computational tools for design and reconstruction
of metabolic pathways. Cuperlovic-Culf (2018) has reviewed
related work on modeling of metabolic pathways based on
machine learning techniques. Kim et al. (2020) have
summarized the machine learning applications in systems
metabolic engineering. However, there is lack of review on
machine learning applications on predicting components in
metabolic pathways. In this paper, we briefly review the
machine learning approaches for the predictions of metabolic
pathways and their components, including enzymes, metabolites,
and reactions. This review, together with other reviews, can
provide more comprehensive knowledge for machine learning
algorithms in the prediction and reconstruction of the metabolic
pathways.

The remainder of this paper is organized as follows: Prediction
or Reconstruction of Metabolic Pathways describes the prediction
and reconstruction of the metabolic pathways. Prediction of
Missing Enzymes presents the prediction of missing enzymes.
Identification of Metabolites introduces machine learning
methods for predicting metabolites, followed by Prediction of
Reactions, which describes prediction of reactions. Conclusion
concludes this paper.

PREDICTION OR RECONSTRUCTION OF
METABOLIC PATHWAYS

A metabolic pathway is a linked series of chemical reactions that
occur within a cell. These reactions are catalyzed by enzymes,
where the product of one enzyme acts as the substrate for the
next. The reactants, products, and intermediates of an enzymatic

reaction are known as metabolites. In a pathway, the initial
chemical (metabolite) is modified by a sequence of enzymatic
reactions.

There are three pipelines of computational methods for
analyzing metabolic pathways: prediction (Bagheri et al., 2019;
Faust et al., 2011), design or reconstruction (Qi et al., 2014), and
optimization (Ebenhöh and Heinrich 2001; Planes and Beasley
2009; Jeanne et al., 2016). The pipeline of prediction of metabolic
pathways is to predict the metabolic pathways that a given
molecular belongs to, which can help to understand the
metabolic mechanism of the molecular. For example, in drug
discovery, predicting the metabolic pathway of a drug compound
involving in is very useful for knowing how the drug is absorbed,
distributed, metabolized, and excreted. The purpose of the
metabolic pathway design or reconstruction is to design or
find the routines of enzymatic reactions that convert one
metabolite (source) to the others (products). Reconstruction of
metabolic pathways is also useful for finding functional modules
or building the metabolic network of an unknown organism. In
metabolic engineering, design or reconstruction of the metabolic
pathways to a specific product can help to modify a microbial
strain to enable and strengthen the new pathways for efficient
production of biochemical. The optimization of metabolic
pathways involves in finding or generating the optimal
pathways based on the predetermined criteria, such as
maximizing production yield of target products, minimizing
the number of reactions, and so on. The optimization of
metabolic pathways usually needs to meet some constraints,
for example, with specific enzymes and with the highest yield
of target products. Therefore, constraint-based methods are
usually used, and in most cases additional metabolic flux
analysis data is needed for the optimization of pathways,
which is out of the scope of this review.

Prediction of Metabolic Pathways
Now that the annotated metabolic pathways been organized into
different categories according to their functions. For a new or
unknown molecular, knowing which or what kind of pathways it
belongs to can help to understand its metabolic mechanism,
which is very useful for drug discovery. Therefore, the metabolic
pathways prediction mentioned in this paper refers to identifying
the metabolic pathways that a compound involves in. There have
some machine learning methods been applied to building
prediction models for pathways. For example, Baranwal et al.
(2019) proposed a hybrid framework of random forest (RF) and a
graph convolution neural network for predicting the classes of
metabolic pathways that a compound belongs to. Their method
can only identify metabolic pathway types of compounds rather
than the actual metabolic pathways. There remains a gap between
predicting the type of metabolic pathways and predicting actual
metabolic pathways to which the compound belongs. To fill this
gap, Jia et al. (2020) proposed a similarity-based model for
predicting the metabolic pathways of given compounds. They
regarded every pair of compound and metabolic pathway as a
sample, and represented each sample by seven features extracted
from seven associations of compounds. And then they built a
binary classification model with the RF algorithm to output “yes”
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or “no” for every pair, where “yes”means the compound belongs
to the pathway, and “no” for not. However, the method is only
suitable for known pathways, and it is impossible to predict
whether the compounds belong to unknown pathways.
Moreover, just predicting metabolic pathways that given
compounds belong to is not enough to fully understand their
roles in the metabolism, and thus it is necessary to reconstruct or
design the metabolic pathways involved by the compounds.

RECONSTRUCTION OF METABOLIC
PATHWAYS

The reconstruction of a metabolic pathway connects metabolites
and pairs of biochemical reactions catalyzed by enzymes, marking
the routes and connecting source molecules to target molecules.
Pathway reconstruction can be either knowledge-driven objective
(KDO) or data-driven objective (DDO) (Viswanathan et al.,
2008). Since knowledge-driven pathway construction
incorporates a large amount of domain knowledge, the
development of a detailed pathway knowledge base for
particular domains of interest, such as a cell type, disease, or
system is needed. Such knowledge base serves as the pathway
resources that help to reliably identify and extract the pertinent
entities and interactions. For example, Karp and his collaborators
developed a pathway software, Pathologic, to reconstruct
metabolic pathways using functional annotations onto the
MetaCyc collection or reactions of pathways (Karp et al., 1999;
Paley and Karp 2002). However, the development of domain
knowledge is a tedious task. Data-driven pathway construction is
used to generate relationship information of genes or proteins
identified in a specific experiment. Different from KDO, DDO
starts from genes or proteins whose relationships are not well
understood. In order to identify the relationship of the genes or
proteins, reference-based or template-based methods based on
mapping a group of gene and protein sequences of an organism to
known reference pathways have been commonly adopted
(Overbeek 2000; Herrgård et al., 2008; Mascher et al., 2019).
However, they generally cannot predict new reactions that do not
exist in a reference pathway. Some researchers proposed ab initio
methods that do not use reference pathways to reconstruct
metabolic pathways. Most of these methods employ
probabilistic inference methods such as graphical models and
Bayesian networks (Jansen et al., 2003; Friedman 2004; Werhli
et al., 2006; Zhao et al., 2012) or ordinary differential equations
(ODEs) (Koza et al., 2001; Schmidt et al., 2011). Ab initio
reconstruction methods can predict novel reactions and
interactions, but their accuracies tend to be low leading to a
lot of false positives. In order to address the limitations of
reference-based and ab initio methods, Qi et al. (2014)
proposed to combine existing pathway knowledge and a
Bayesian probabilistic graphical model together, and thus to
improve both the coverage and accuracy of metabolic pathway
construction. However, the pathway built through this method
may be an incomplete elucidation due to the unknown enzyme
genes. Therefore, besides inferring interactions or reactions,
predicting the composition of the pathway from a reference

database for the organism is necessary for pathway
reconstruction.

Design of Metabolic Pathways
In metabolic engineering, one usually needs to design or find
metabolic pathways to chemicals of interest that meets certain
constraints in a strain from living organisms. In order to expand
the chemical repertoire for the production of compounds, a major
effort is required in the development of novel design tools that
target chemical diversity through rapid and predictable protocols.
Addressing that goal involves retrosynthesis approaches that
explore the chemical biosynthetic space. The basic idea of a
retrosynthesis approach is to iteratively break down a target
molecule into simpler molecules that can be combined
chemically or enzymatically to produce it until all required
compounds are either commercially available or present in the
microbial strain of choice (Koch et al., 2020). Several researchers
have reviewed efforts of retrosynthesis (Planson et al., 2012;
Wang et al., 2017; Lin et al., 2019). However, the complexity
associated with the large combinatorial retrosynthesis design
space has often been recognized as the main challenge
hindering the approach (Delépine et al., 2018). Pathway
pruning methods (Gerlee et al., 2009) or optimization-based
(Küken and Nikoloski 2019; Koch et al. 2020) methods are
usually used to explore the chemical biosynthetic space. For
example, Connor et al. (2017) proposed a Retrosynthesis
approach Based on Molecular Similarity; Delépine et al. (2018)
developed an automated open source workflow for retrosynthesis
based on generalized reaction rules that perform the
retrosynthesis search from chassis to target through an
efficient and well-controlled protocol; Koch et al. (2020)
proposed to explore the bioretrosynthesis space using the
Monte Carlo Tree Search reinforcement learning method,
guided by chemical similarity. However, the integration of
both metabolic engineers’ expertise and years of lessons from
the industry is not enough when performing pathway searching
and ranking, resulting that the designed pathway may be far from
the optimal.

Issues Need to Be Addressed
In order for the reconstruction of metabolic pathways, de novo
reaction prediction is still a significant challenge. Though some
methods can learn the enzymatic reaction likeness to predict
whether a compound-compound pair is possible converted by an
enzymatic reaction, and even can find hidden reactions among
many compounds at a time, they are insufficient to predict a
multistep metabolic pathway correctly.

In order to construct the metabolic pathways, more efforts
should be paid for the difficulties of distinguishing unidentified
parts of the pathways and structuring pathways for desired
products. In particular, the extraction of useful information
from metabolomics is necessary to structure the pathways.
Moreover, the computational algorithms should consider the
case that an enzyme connects with at least two substrates at
the same time to increase the yield of production. Though the
graph-based approach can be used to analyze flux-balanced
pathways in the metabolic network (Arabzadeh et al., 2018), it
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usually needs extra post-processing steps to adjust co-metabolites
of the predicted pathway that could be unbalanced. In addition,
the prediction of catalytic activities of enzymes has become one of
the hot research topics.

PREDICTION OF MISSING ENZYMES

Description of the Problem
An enzyme is a protein catalyst that acts on substrates and
converts them into molecules known as products. If a
particular function is not assigned to a protein, any reaction
catalyzed by that protein will be referred to as a missing enzyme
or pathway hole (Green and Karp, 2004). The missing enzymes
make it difficult to understand the behaviors of them in the
metabolic pathways. The comprehensive and accurate
reconstruction of the metabolic pathways in an organism
includes the identification of the missing enzymes catalyzing
the reactions of the pathways. Basically, identification of
missing enzymes contains two steps: selecting candidates and
evaluating candidates. The selection of candidates is to find a set
of proteins or encoding genes that may catalyze the specific
reaction based on some strategies, such as calculating
similarities, finding correlations, and so on; and the evaluation
of the candidates is to identify the missing enzyme catalyzing the
reaction from the candidates to fill in the pathway hole.

Identification of Candidates of Missing
Enzymes
Traditional computational efforts to identify missing enzymes in
metabolic pathways have focused on finding candidate enzymes
based on sequence homology (Green and Karp, 2004). That is,
calculating the similarity of a sequence from the organism of
interest to sequences that catalyze the same reaction of other
organisms with known metabolic pathways. However, such
sequence homology methods fail to identify enzymes encoded
by genes with poor sequence homology to known metabolic
enzymes. To solve the problem, Green and Karp (2004)
developed a method that efficiently combined homology and
pathway-based evidence to identify candidates; Yamanishi et al.
(2007) used supervised network inference to select enzyme
encoding gene candidates based on the estimation of the
functional association between the genes with respect to
chromosomal proximity and evolutionary association;
Kharchenko et al. (2006) showed that a number of different
types of functional association evidence, including phylogenetic
profile co-occurrence, physical clustering of genes on the
chromosome and protein interaction data can be used to
identify metabolic enzyme encoding genes, and presented two
kinds of integration methods, that is, direct likelihood-ratio
(DLR) method and alternating decision trees (ADT) built by
Adaboost. Since such kind of methods is based on the generally
accepted biological hypothesis to build the models, the obtained
candidates can more likely fill the pathway hole. However,
complicated strategies are usually needed to integrate
knowledge into the models.

Now that a huge amount of data from multiple omics, such as
transcriptomics, metabonomics, have been accumulated and
there are many feature extracting methods (Iqbal et al., 2014;
Liu et al., 2015; Du et al., 2017; Liu et al., 2017; Gao andWu 2018;
Wang et al., 2020), some researchers regarded the identification of
enzyme candidates as the catalytic and non-catalytic classification
problem and built models to classify protein sequences or
encoding genes into either catalytic or non-catalytic by using
machine learning algorithms such as support vector machine
(SVM), K-nearest neighbors (KNN), Bayesian, and RF (Teng
et al., 2010; Halperin et al., 2008; Ferrari and Mitchell 2014;
Nagao et al., 2014; Amidi et al., 2017). The workflow for
classifying protein sequences as catalytic and non-catalytic
protein sequences is illustrated in Figure 1. The idea of such
kind of methods is very simple. However, large amounts of
positive (enzyme) and negative (non-enzyme) should be
collected to build the models. Moreover, the predicted results
can only answer whether the proteins have catalytic function, but
not whether they may catalyze specific reactions.

Evaluation of Candidates
The purpose of evaluating candidates is to select the missing
enzymes catalyzing the specific reactions from the candidates,
and there have many approaches been proposed for the
evaluation. For example, Green and Karp (2004) proposed
Bayesian method to prioritize candidates according to the
information on whether the candidate gene is located adjacent
to, or in the same transcriptional unit as known enzyme-encoding
genes of related metabolic function. Yamanishi et al. (2007) made
the prediction of the encoding genes of missing enzymes based on
the scores of the candidates and the chemical reaction
information encoded in the EC number. The chemical
information, including substrates, products, and chemical
reactions, can be achieved from their EC numbers, using the
KEGG database (Okuda et al., 2008). After the encoding genes are
indicated, the functional association between genes concerning
evolutionary associations and phylogenetic profiling (Rosetta and
Method 2008; Nives and Dessimoz 2015; Zalguizuri et al., 2019)
can be estimated and the missing enzyme can be deduced. An
example of the phylogenetic profiling for filling the pathway holes
is illustrated in Figure 2. Dugé de Bernonville et al. (2020)
proposed several prioritization strategies, that is, by homology-
based screening, by searching physical gene clusters, by random
mutagenesis and by gene co-expression analysis. For the gene
clustering or co-expression analysis, some algorithms have been
presented to clustering gene sequences into different functional
groups (Zhang et al., 2002; Zhong et al., 2005; Bustamam et al.,
2017; Sharma and Ali 2017).

The problem of evaluating whether the candidate enzyme
catalyzes a specific can also be regarded as the problem of
predicting the interaction of substrate-enzyme-product. Chen
et al. (2010) developed a KNN model for predicting substrate-
enzyme-product triads. In order to measure the nearness between
two triads, they defined a novel metric to weigh similarities
between substrates, products, and enzymes that were
calculated separately. By using their constructed benchmark
date set, they got overall accuracy of 95.41%. Niu et al. (2013)
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also proposed KNN based model combining with mRMR-IFS
(Minimum Redundancy Maximum Relevance, Incremental
Feature Selection) feature selection method to predict
substrate-enzyme-product triads. In order to represent each
triad, they encoded substrate/product and enzyme molecules
with molecular descriptors and physicochemical properties,
respectively, and obtained 290 features; and then they selected
160 features that can be clustered into the ten categories. Testing
on the data set that they generated based on KEGG, the model
achieved the accuracy of 89.1%. Because these methods directly
predict the triads, they can be used not only to predict the missing
enzymes catalyzing specific reactions, but also to predict the
reactions or metabolites. However, large number of labeled
data is needed to promise their good performance.

IDENTIFICATION OF METABOLITES

Description of the Problem
The metabolites are small molecules which are used in, or created
by the chemical reactions occurring in every cell of living
organisms. The reactants, intermediates, and products in a
metabolic pathway are all called metabolites. Interpreting
biochemical characteristics of the metabolites is an essential
part of the metabolomics to extend the knowledge of
biological systems. It is also the key to the development of
many applications in areas such as biotechnology, biomedicine
or pharmaceuticals (Nguyen et al., 2019). The identification of the
metabolites remains a challenging task in metabolomics with a
huge number of potentially interesting but unknown metabolites.

Nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) hyphenated with separation techniques
such as liquid chromatography (LC), gas chromatography
(GC) and capillary electrophoresis (CE) are the most
frequently used techniques to collect large amounts of data on
complex biological mixtures or matrices (Wachsmuth et al.,
2013). They typically yield complicated spectra or feature-rich
chromatograms containing thousands of unknown or
unidentified peaks. NMR has the disadvantage that it requires
abundant and pure samples, yielding low sensitivity. By contrast,
MS is more sensitive and specific, requiring fewer amount of
samples (Nguyen et al., 2019). Therefore, most methods for
identifying metabolites are based on the MS (Yi et al., 2018).
The identification of small molecules from MS data remains a
major challenge.

Identification of Metabolites
A traditional approach to identifying metabolites is to compare a
query MS or MS/MS spectrum of an unknown compound against
a database, such as METLIN (Smith et al., 2005), of a number of
reference MS or MS/MS spectra. The candidate molecules from
the database are ranked based on the similarity of their spectra
and the query spectrum and the best matching candidates are
returned. Though such methods are reliable, they are only helpful
for those unknown metabolites that have reference spectra in the
database (Hufsky et al., 2014). Unfortunately, the reference
database is often incomplete in reality, leading to unreliable
matching results if the reference spectrum of the targeted
compound is not contained in the database (Nguyen et al.,
2019). To alleviate above problem, a lot of machine learning

FIGURE 1 | Classification of catalytic and non-catalytic protein sequences.
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based approaches have been proposed to predict metabolites via
learning the spectra patterns of the known compounds. For
example, Kangas et al. (2012) developed an algorithm based
on Monte Carlo simulations for identifying metabolites. The
algorithm has two phases, illustrated in Figure 3. In the first
phase, it predicts bond cleavage energies from which cleavage
rates can be calculated based on the ANN (Artificial Neural
Network). In the second phase, it generates in silico tandem mass
spectra from molecular structures and uses these spectra for the
identification. There are roughly two schemas for machine
learning methods (Nguyen et al., 2019). Some methods rely on
predicting molecular fingerprints from MS/MS data and finding
the most similar fingerprint from the molecular structure
database (Dührkop et al., 2015; Brouard et al., 2016; Brouard
et al., 2019). And the other methods call for predicting MS/MS
spectra for a set of candidate molecular structures and choosing
the most similar predicted MS/MS spectrum to the observed MS/
MS spectrum (Allen et al., 2014; Shen et al., 2014; Djoumbou-
Feunang et al., 2019). Those approaches have achieved good
identification performance. However, they are highly sensitive
and generally cannot model non-linear relationship. It is known
that deep learning architecture can be used to build internal
representation of large non-linear data, which may lead to
superior predictive performance compared to traditional
machine learning algorithms. For instance, graph convolution

neural network can be directly used to process the graph structure
of small molecules, where nodes represent the atoms and edges
stand for the bonds between atoms. Moreover, different variants
of graph convolution neural network, such as spatial graph
convolution networks and spectral graph convolution
networks, can be used to optimize the predictive performance.

PREDICTION OF REACTIONS

Description of the Problem
With the great developments in metabolomics and synthetic
biology, on one hand a large amount of data related on
metabolic pathways has been generated and been organized in
several databases, such as KEGG (Okuda et al., 2008), BioCyc
(Karp et al., 2019), and MetaCyc (Karp 2002a; Caspi 2006). On
the other hand, it is assumed that a large number of metabolic
pathways remain unknown, and many reactions are still missing
even in known pathways. What’s more, there is an increasing
number of compounds that are known to be present in living
organisms but whose synthetic/degradation pathways are
unknown. The missing of one or more reactions may result
that the pathways from an initial compound to the desired
target in an organism are incomplete. Therefore, it is
necessary identify such missing reactions during the

FIGURE 2 | Schematic illustration of ML-based algorithms.
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reconstruction of metabolic pathways. In the field of biosynthesis,
finding the potential connection betweeen two known pathways
by introducing a novel reaction may lead to a new pathway to the
desired product.

Prediction of Reactions
Reaction prediction remains a challenging task for investigating
metabolic pathways due to resonance structure and specific
products that can be redundant and problematic. However,
recent machine learning developments have alleviated this
problem, resulting in additional performance (Cuperlovic-Culf,
2018). According to whether compounds or pairs of compounds
are used in modeling, there are two kinds of roadmaps for
reaction prediction: focusing compounds (Kotera et al., 2008;
Wei et al., 2016) and focusing compound pairs (Mu et al., 2011;
Kotera et al., 2013; Fooshee et al., 2018).

The compound-focused methods identify products or
precursors for given compounds and then generate the
plausible reactions. For example, Kotera et al. (2008) presented
a substructure-based approach to identify possible products and/
or precursors for a given compound and to generate a plausible
reaction. By using the RF methods, they searched compounds
that were structurally related to the target compound, and the
structural differences were then checked to determine which of
these has the potential to be a product (or precursor) of the target
compound in an enzyme-catalyzed reaction. Wei et al. (2016)

followed the similar roadmap. Given a set of reagents and
reactants, they first built a neural network to predict the
reaction type based on a reaction fingerprinting method, and
then they used SMARTS (SMiles ARbitrary Target Specification)
transformation to predict the likely product from reactants. The
neural network workflow starts with reactant and reagent
molecules and enumerates all possible electron sources and
sinks within the input molecules, based on the atom and bond
descriptors, shown in Figure 4. The fingerprinting approach is
based on a specific pattern of the molecules, searching occurs all
around the molecular structure to detect the presence and
absence of the specific pattern in the molecule. The
fingerprints for concatenated reactants and reagents become
the input for the neural network to predict possible reaction types.

The compound pair-focused methods aim for predicting
whether a given compound-compound pair is possibly reactive
or not. For instance, Mu et al. (2011) built SVM classifiers to
discriminate between functional groups that are reactive and
non-reactive. To train the classifiers, they collected positive
and negative examples from the KEGG database for each
SMARTS-defined substructure, and used atomic properties of
atoms in putative reaction centers and molecular properties as
features. Kotera et al. (2013) applied a sparsity-induced classifier
and SVM to learn whether a compound-compound pair is
possibly converted to each other by enzymatic reactions. In
order to represent the samples, they defined feature vectors

FIGURE 3 | Prediction of metabolites using ML techniques.
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representing the chemical transformation patterns of compound-
compound pairs in enzymatic reactions by using chemical
fingerprints. Recently, Fooshee et al. (2018) presented a deep
learing based reaction prediction method that operated at the
level of elementary reactions. Each elementary step involves the
movement of electrons from an electron source to an electron
sink, and all elementary reactions can be chained together to yield
the complex global reaction.

CONCLUSION

The prediction and construction of synthetic metabolic pathways
is a significant challenge in bioinformatics. Machine Learning
techniques play important roles in constructing and
understanding metabolic pathways and their subparts. This
mini review provided the outline of the applications of
machine learning approaches for prediction and
reconstruction of metabolic pathways. Some related issues
needed to be addressed were also discussed. Moreover, some
machine learning based methods for the identification of missing
enzymes, metabolites, or reactions were introduced in this paper.

This review complements the existing review work and can
provide more comprehensive knowledge for machine learning
algorithms in the prediction and reconstruction of the metabolic
pathways.
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