
Research Article
An Evolutionary Computation Approach for Optimizing
Multilevel Data to Predict Patient Outcomes

Sean Barnes ,1 Suchi Saria,2 and Scott Levin3

1Department of Decision, Operations & Information Technologies, Robert H. Smith School of Business, University of Maryland,
College Park, MD, USA
2Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
3Department of Emergency Medicine, Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, USA

Correspondence should be addressed to Sean Barnes; sbarnes@rhsmith.umd.edu

Received 26 August 2017; Accepted 31 January 2018; Published 18 March 2018

Academic Editor: Weide Chang

Copyright © 2018 Sean Barnes et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Widespread adoption of electronic health records (EHR) and objectives for meaningful use have increased opportunities for
data-driven predictive applications in healthcare. These decision support applications are often fueled by large-scale,
heterogeneous, and multilevel (i.e., defined at hierarchical levels of specificity) patient data that challenge the development of
predictive models. Our objective is to develop and evaluate an approach for optimally specifying multilevel patient data for
prediction problems. We present a general evolutionary computational framework to optimally specify multilevel data to predict
individual patient outcomes. We evaluate this method for both flattening (single level) and retaining the hierarchical predictor
structure (multiple levels) using data collected to predict critical outcomes for emergency department patients across five
populations. We find that the performance of both the flattened and hierarchical predictor structures in predicting critical
outcomes for emergency department patients improve upon the baseline models for which only a single level of
predictor—either more general or more specific—is used (p < 0 001). Our framework for optimizing the specificity of multilevel
data improves upon more traditional single-level predictor structures and can readily be adapted to similar problems in
healthcare and other domains.

1. Introduction

Rapid accumulation of electronic health record (EHR) data
and emphasis on meaningful use of health information
technology (HIT) [1] has given rise to many modeling
applications that attempt to predict individual patient out-
comes. The majority of these prognostic models target
clinical outcomes (e.g., mortality, acute myocardial infarc-
tion, and septic shock); however, others aim at predicting
service-oriented outcomes that span operations (e.g., wait
times and length of stay), cost, quality, and patient satis-
faction [2–10]. Regardless of outcome, these models aim
at improving healthcare delivery by supporting provider
and organizational decision-making.

EHRs are a valuable source of input data commonly
leveraged for these predictive applications. However, the
heterogeneity, large-scale nature, and variability in data entry
create challenges with respect to how to optimally specify
these data for predictive models. Multilevel data describing
patients’ clinical conditions and medical interventions are
commonly hypothesized predictors available in EHRs, but
present unique challenges for model specification.

Multilevel data describes individual patient charac-
teristics at multiple levels of specificity (see Table 1). For
example, the International Classification of Diseases (e.g.,
9th Revision, Clinical Modification or ICD-9-CM) contains
more than 14,000 diagnosis codes and 3900 procedure codes
used to classify the conditions of patients and the services
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they receive [11]. Diagnoses and procedure codes have
inherent hierarchical structure represented by digits and
decimals. For example, ICD-9-CM code 038.12 may be
deconstructed from the lowest-to-highest level of specificity
in the following manner:

(i) Level 1: 001–139 infectious and parasitic diseases

(ii) Level 2: 030–041 other bacterial diseases

(iii) Level 3: 038 septicemia

(iv) Level 4: 038.1 staphylococcal septicemia

(v) Level 5: 038.12 methicillin-resistant Staphylococcus
aureus septicemia

Tools such as the U.S. Agency for Healthcare Research
and Quality’s Clinical Classifications Software (CCS) may
similarly introduce their own conceptual structure [12].
Documentation of medical history and chronic conditions
is also defined by a multilevel structure (see Table 1), for
example, “diabetes” (low specificity) or type I, type II, or
gestational diabetes (high specificity). Medications provide
additional examples, for which definitions can be more
general classes (e.g., antibiotics), more specific subclasses
(e.g., penicillin), or somewhere in between (e.g., broad
versus narrow spectrum).

Hypotheses may be generated about the level of specific-
ity needed to best differentiate patients with respect to the
outcome predicted. However, often, it is unclear which level
will be most effective. Further, the optimal level of specificity
may change for different outcomes or even the same outcome
in different populations. For example, there is a substantial
body of work involving the prediction of readmission for
patients who undergo coronary artery bypass graft (CABG)
surgery [13–16]. In much of this work, there are risk factors
for comorbidities, medications, and complications that could
be defined more generally or more specifically, and minimal
rationale was provided about how these modeling decisions
affected model performance. In addition, the optimal levels
of specification for these risk factors for predicting readmis-
sion rates for CABG patients may not translate to predicting
a different outcome such as mortality.

In many cases, the specification of multilevel data is
hypothesis driven, in that an initial judgment on the appro-
priate level of specificity is made and that specification is
retained throughout the modeling process. We propose a
framework for learning the appropriate level(s) of specificity
from data, and we evaluate the trade-offs of flattening or
retaining the hierarchical structure of these multilevel predic-
tor data. In the first case (i.e., flattening), general and specific
categories are collapsed into a single mutually exclusive level.
Patients are initially placed in their most general category,
and then patients with indications for more specific catego-
ries are extracted from their general categories. In this case,
there is a fundamental change in the structure of the multi-
level data, as patients with the same general category are
now distinct from one another (i.e., some patients in the
general category will retain that category, while others will
convert to a more specific category). This redefinition
differentiates this problem from a simple feature selection
problem, whereby categories that contribute to the predictive
performance (with respect to the desired outcome) are
retained and others are excluded. In the case for which the
hierarchical structure is retained, patients with indications
for more specific categories will also retain indications for
their general category.

There has been previous research focused on modeling
with multilevel data structures, particularly in the areas of
political science, psychology, sociology, public health, and
education [17–23]. In this work, the notion of multilevel data
relates to predictors that are collected at multiple hierarchical
levels, for example, at individual and group levels (e.g., class,
school, department, organization, and district). For example,
Burstein [22] proposes a structure in which background,
educational process, and outcome variables are measured at
the individual (i.e., student) and group (e.g., community,
school, and district) levels. Similar types of research exists
in the healthcare space, with much of it falling within the
health service research subfield [24–28]. For example, Sjetne
et al. [28] developed a model to explain the variation in
patient satisfaction (measured as percentage ratings across
10 categories) as a function of both individual patient (e.g.,
age, gender, education level, and length of stay) and hospital
(size and teaching status) characteristics. The bulk of the

Table 1: Common multilevel predictor data available in electronic health records.

Multilevel predictors Description Examples

Reasons for visit
Descriptors of the reason for the healthcare system

encounter
Ambulatory care chief complaints; inpatient admission

diagnoses

Diagnoses
Descriptors of patients’ differential or final diagnosis

departing the healthcare system
International classification of disease codes (e.g., ICD-10);

read codes

Medical history
Descriptors of previous medical history and chronic

conditions
EHR problem lists (e.g., diabetes, previous coronary

artery bypass graft (CABG), hypertension)

Diagnostic and
therapeutic procedures

Descriptors of diagnostic and therapeutic courses of
action taken

Procedure coding system (ICD-10-PCS), surgical
procedures, rehabilitation

Diagnostic exams Descriptors of medical tests conducted Laboratory exams, imaging exams, physical exams

Medication Descriptors of medications administered
US Food and Drug Administration Drug Class

(e.g., opioids and hydrocodone)

Administrative Descriptor of the administrative status of patients Inpatient, outpatient, observation
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existing research on multilevel data follows this approach
and is inherently different from the problem that we present.
In our approach, we focus only on data specified at the
individual (patient) level, albeit at varying levels of specificity.

In the computer science field, there have been some
recent works that are more closely related [29, 30]. Schulam
and Saria [29] developed a learning framework to predict
clinical trajectories using information measured at multiple
levels of specificity (i.e., population, subpopulation, and
individual). This general approach is similar to the aforemen-
tioned research, but the key difference is that their proposed
method learns the relative importance of each level of the
hierarchical structure, based on its ability to predict the
desired outcome. In Choi et al. [30], the authors develop a
graph-based attention model (GRAM) that leverages an
existing hierarchical system (such as ICD or CCS) to predict
diagnosis and heart failure outcomes. The attention mecha-
nism primarily balanced the need for specificity of informa-
tion with the observed sample size of that predictor in the
training data. This approach was designed to address a
specific limitation of deep learning models (in healthcare)
that typically lack the requisite sample size for accurate
training. Overall, our objective is similar in that we develop
a learning framework for adapting hierarchical data struc-
tures for individual patient predictions, and this previous
work underscores the need to develop such methods. How-
ever, we believe that our approach is more easily applied
and more flexible and preserves the hierarchical predictors
for interpretation by practitioners.

In the next section of this article, we define the general
evolutionary computation (EC) framework. Then, we dem-
onstrate the performance of this approach in predicting
critical outcomes for emergency patients across five patient
populations. After that, we discuss the implications of this
approach and how it can be applied more broadly. Lastly,
we conclude with some final thoughts and some proposals
for future development.

2. Methods

We present a general EC framework for optimizing mul-
tilevel data for predictive modeling. This framework is
suitable for both classification and regression problems.
First, we introduce the reader to a case study of predicting
critical outcomes for emergency department patients, which
provides a specific context for which to present the frame-
work. Then, we describe the framework itself, which can be
readily adapted to other applications within healthcare and
other domains.

2.1. Case Study: Predicting Critical Outcomes for Emergency
Department Patients. Emergency Departments (EDs) have
experienced a surge of patient volume to over 136 million
visits annually in the United States (US) [31]. This has
exacerbated the ED crowding crisis and places patients at
undue risk of adverse events associated with delays in care
[32, 33]. EDs are required to see all comers, thus patients
must be quickly evaluated at presentation to determine the
urgency of care needs. This process is called triage and has

standards in place that require the provider to record the
patient’s demographics (age, gender), elicit a chief complaint
(i.e., reason for visit), and measure vital signs (heart rate,
respiratory rate, temperature, blood pressure, and oxygen
saturation). Triage standards in the US require clinicians to
apply the Emergency Severity Index (ESI), an algorithm used
to assign patients to a 5-level scale from 1 (high severity;
need for immediate treatment) to 5 (low severity; nonur-
gent) [34]. ESI relies heavily on provider judgment, is subject
to high variation [35], and poorly differentiates a large
majority group (ESI level 3), counter to the true objective
of the triage [36, 37].

Thus, an alternative, outcome-based approach for
conducting triage has been developed and is being used in
several EDs in the US [37, 38]. A key component of this
data-driven approach involves predicting critical care events
for ED patients based on the information collected at presen-
tation. Here, we define a critical care event as a composite
and binary outcome that includes in-hospital mortality,
direct admission to a hospital intensive care unit, or emer-
gent surgery or catheterization for the same patient stay.
These outcomes are analogous to the types of outcomes that
would require immediate action on the part of care providers
when the patient arrives in the ED and correspond to the
most urgent ESI levels (i.e., one and two). This critical care
event is the outcome that we aim to predict with our model.

In this study, we apply our EC framework to optimize
multilevel predictors—specifically chief complaints—for
predicting critical care events for ED patients. This predic-
tion model utilizes the same information that is collected
for the traditional triage process and includes the age, gender,
and arrival mode of the patient, along with the aforemen-
tioned vital signs and the chief complaints that will be
optimized using our EC framework. The vital signs were
(nonuniformly) discretized into clinically meaningful catego-
ries, including a dedicated category for missing information
[37, 38]. We summarize the categorical predictor variables
in Table 2.

We apply our method across five patient populations,
including a large, urban academic medical center (ACAD),
a medium-sized community hospital (COMM), interna-
tional hospitals in Brazil (BRAZIL) and the United Arab
Emirates (UAE), and the nationally representative National
Hospital Ambulatory Medical Care Survey (NAT). We pro-
vide summary characteristics of these five patient popula-
tions in Table 3.

2.2. General Evolutionary Computation Framework. Evolu-
tionary computation is a class of metaheuristic algorithms
that mimic biological processes to solve difficult optimization
problems [39]. Relative to exact algorithms, evolutionary
algorithms are stochastic and are not guaranteed to find
global optima; however, they work well in practice and can
provide good solutions within manageable computation
times. In addition, evolutionary algorithms provide a flexible
framework that can be readily adapted to different types of
problems or variations of similar problems.

Specifically, we utilize a genetic algorithm (GA) to search
for the optimal combination of complaints and complaint
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categories, for which the complaints represent more spe-
cific information on each patient’s reason for visit and
the complaint categories combine specific complaints into
clinically meaningful groups. GAs imitate the process of
natural selection, whereby stronger candidate solutions sur-
vive and weaker candidate solutions are eliminated [40].
We implemented our GA using the distributed evolutionary
algorithms in Python package [41].

For this application of a GA, candidate solutions in the
population are represented by binary bit strings of length
n—where n represents the number of specific complaints—
for which each bit bi represents whether a specific complaint
is excluded (0) or selected (1) as a predictor in the classifica-
tion model for the critical care outcome in ED patients. We
include all aforementioned age, gender, arrival mode, and
complaint categories in the prediction model and therefore
do not need to include them in the search process. The
population contains N candidate solutions, each of which is
initialized with randomly generated 0 and 1 values (i.e., a
random selection of specific complaints). For each genera-
tion, a subset of the population is selected via a tournament
selection scheme for crossover operations. Uniform cross-
over is ideal for this application (as opposed to other com-
mon crossover operations such as single- or multipoint
crossover) because there is minimal advantage in preserving
contiguous blocks of chromosomes (i.e., each selected com-
plaint is essentially independent from the others). Once
crossover is completed, a subset of candidate solutions in
the new generation is selected for mutation. We utilize a sim-
ple bit flip operation for mutation, which inverts a subset of
complaint bits within each candidate solution. For example,
complaints selected for mutation that are currently excluded
become selected, and complaints selected for mutation that
are currently selected become excluded. We summarize the
representation of candidate solutions and the crossover and
mutation operations in Figure 1. Control parameters for the

GA (summarized in Table 4) were selected via experimenta-
tion to maintain the diversity of the population and prevent
premature convergence toward a suboptimal solution. In
general, there is evidence that a broad range of control
parameters leads to good performance [42]; therefore, it
was determined that comprehensive experimentation with
these parameters would add little value and be computa-
tionally prohibitive for this application.

We model the fitness of each candidate solution using
5-fold cross-validated area under the receiver operating
characteristics curve (AUC, also commonly referred to as
the C statistic), which is a standard measure of predictive
performance for classification models [43]. We use logistic
regression for the classification estimator for two reasons.

Table 3: Patient population summary.

ACAD COMM BRAZIL UAE NAT

Sample size 104.5 K 144.9 K 94.8 K 103.5 K 74.6 K

Unique complaints 686 616 358 288 649

Critical outcome prevalence 3.45% 3.48% 3.00% 1.68% 3.05%

Table 2: Summary of categorical predictor variables (abnormal ranges indicated in bold).

Predictor Categories Ranges/categories

Age 8 18–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, >90
Gender 2 Male, female

Arrival mode 2 Via ambulance, walk in

Temperature (°F)∗ 6 <94.8, 94.8–96.1, 96.1–99.2, 99.2–100.4, >100.4
Pulse (bpm)∗ 8 <49, 49–59, 59–105, 105–109, 109–119, 119–129, >129
Respiratory rate (bpm)∗ 6 <13, 13-14, 14–19, 19–23, >23
Blood pressure (mmHG)∗ 6 <99, 99–106, 106–176, 176–199, >199
Oxygen saturation (%)∗ 4 <93, 93-94, >94
∗Each vital sign also includes an additional category for missing data.

1 0 1 1 0 1 0 1 0 0 1 0 0 1 … 1 0 0 1 0 0 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0 0 1 0 0 1 … 1 0 0 1 0 0 1 0 1 0 1 0

Abdominal pain

Abdominal mass
Wound check

Candidate solution representation

Uniform crossover

Bit flip mutation

0 1 1 0 1 0 1 0 1 0 1 1 1 0 … 0 1 0 1 1 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1 0 0 1 0 0 1 … 1 0 0 1 0 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1 0 1 1 0 0 1 … 1 0 0 1 1 0 1 0 1 0 1 0

Figure 1: Genetic algorithm representation and recombination
operators.
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First, logistic regression is a deterministic algorithm and
therefore does not confound the performance of the GA
as would a stochastic ensemble approach such as a ran-
dom forest or boosting algorithm. Second, logistic regres-
sion is computationally efficient and therefore allows the
GA to explore more generations of candidate solutions
for a fixed computation budget.

The specific calculation of fitness depends on the model-
ing approach for the multilevel data. For the flattening
approach, patients only have a positive indication for either
a selected complaint or a selected complaint category.
Patients with a selected complaint are removed from their
corresponding complaint category before the classification
model is trained. For example, suppose a complaint for
abdominal cramping is selected, which belongs to the more
general abdominal pain category. Therefore, patients with
the specific abdominal cramping complaint will be removed
from the more general abdominal pain category. Patients
with complaints that are not selected (e.g., abdominal mass
in Figure 1) retain positive indications for the corresponding
complaint category (i.e., abdominal pain for this example).
This structure maintains a single, mutually exclusive, level
for the chief complaint predictor. By contrast, the hierarchi-
cal approach retains positive indications for the correspond-
ing complaint category regardless of whether a specific
complaint is selected or not. For example, patients with
abdominal cramping will have positive indications for both
the specific complaint and the corresponding complaint
category (abdominal pain). Once the chief complaint spec-
ification has been updated for each candidate solution
(based on the selected complaints), we calculate the 5-fold
cross-validated AUC for the critical care outcome using
logistic regression as the classification algorithm and the
age, gender, arrival mode, complaint categories, and selected
complaints as predictors. The top N candidate solutions with
respect to fitness are retained for the next generation, and the
process terminates when it reaches the prespecified number
of generations.

2.3. Model Evaluation. We run our GA using the flattened
and hierarchical fitness functions for each of the five
patient populations and compare the performance of the
best-found solutions with two baseline models. The first

baseline model only includes the specific complaints for
the classification model, whereas the second baseline model
only uses complaint categories. We utilize DeLong’s method
to evaluate the statistical differences in fitness function values
between our EC approach and the baseline models [44]. In
addition, we evaluate the performance of each model for
specific subgroups of patients using a bullseye analogy, in
order to characterize any performance differences across
relevant subsets of the population.We define the inner region
as patients who are directly affected because their specific
complaint is selected by the GA. The middle region contains
patients who are indirectly affected by a change in their
complaint category. Although their specific complaint is
not selected, the composition of their complaint category is
altered because some patients within the complaint category
are treated differently. Finally, the outer region contains
patients with no direct connection to patients with selected
complaints and is only affected by the overall classification
model. We also compare differences in the predicted proba-
bilities for each subgroup between the GA and the baseline
models.

In addition to overall model performance, we explore the
selected and excluded complaints themselves, which can pro-
vide valuable insight as to which complaints are meaningful
in this specific context. An advantage of an EC approach is
that each candidate solution—and particularly the strongest
candidate solutions—provides feedback about the impor-
tance of specific complaints. We compare the selected com-
plaints between the flattened and hierarchical approaches
for a given population, and we also attempt to draw compar-
isons across the five populations.

3. Results

We first present detailed results for the academic hospital
and then summarize the results for the other ED populations.
In Figures 2 and 3, we summarize the bullseye performance
for the flattened and hierarchical approaches, respectively,
relative to the two baseline models. We note here that
separate figures are required for the comparison due to
the distinct selection of complaints by each approach
and therefore distinct specifications of the inner, middle,
and outer subpopulations.

Overall, both GA approaches demonstrate a statistically
significant improvement in the overall 5-fold cross-
validated AUC relative to the baseline models (p < 0 001 for
the both cases), so there is a benefit to including both specific
and categorized complaint information for this application.
In addition, statistically significant improvements were
observed for all subgroups relative to the baseline model with
complaints only and for the inner and middle subgroups rel-
ative to the baseline model with categorized complaints only.
These results suggest that the GAs achieved improvements
for multiple subgroups in the population without sacrific-
ing the model’s performance on other subgroups.

In Figure 4, we summarize the differences in predicted
probabilities for the hierarchical approach relative to the
baseline models. The results for the flattened approach are
very similar (not shown). One notable difference is that the

Table 4: Summary table of genetic algorithm control parameters
and operators.

Parameter Setting

Population size (N) 40

Number of generations 100

Selection Tournament (k = 3)

Crossover operation Uniform

Crossover rate 0.6

Mixing ratio 0.2

Mutation operation Bit flip

Mutation rate 0.2

Bit flip rate 0.05

5Journal of Healthcare Engineering



predicted probabilities for patients in the inner subgroup are
frequently adjusted relative to the baseline model with cate-
gorized complaints only. These adjustments are the direct
effect of including more specific information (i.e., com-
plaints) in addition to the categorized complaints. Therefore,
some patients are shifted toward being a higher risk of a
critical care outcome, and others are shifted toward a lower
risk, depending on their specific (rather than categorized)
complaint. The other notable difference is the significant
frequency of adjustments to predicted probabilities for the
middle subgroup of patients relative to the baseline model
with specific complaint information. The predicted probabil-
ities for these patients are adjusted by augmenting specific
complaint information with categorized complaints. Mini-
mal changes are made to the predicted probabilities for the
outer subgroups that are not directly affected by the selection
of specific complaints.

The performances of the flattened and hierarchical
approaches on the four other patient populations were quite
similar to their performances on the academic hospital
patient population. Specifically, both approaches achieved
a statistically significant improvement in overall 5-fold
cross-validated AUC relative to the baseline models. In
addition, both approaches consistently achieved statistically
significant improvements relative to the baseline model
with categorized complaints only for the inner bullseye
subgroup and relative to the baseline model with com-
plaints only for the middle bullseye subgroups (i.e., the
subgroups most directly affected by the EC approach).
Statistically significant improvements were observed for
other bullseye subgroups, but these improvements were
not consistent across all populations. Finally, there were
more adjustments for predicted probabilities relative to
the baseline model with categorized complaints only than

Baseline
complaints only

0.8395⁎⁎⁎

0.7089⁎⁎

0.8768⁎⁎⁎

0.8468⁎

(a)

Baseline
categorized complaints only

0.8330⁎⁎⁎

0.7150⁎⁎⁎

0.8803⁎

0.8328⁎⁎⁎

(b)

Flattened
genetic algorithm

0.8433

0.7184

0.8836

0.8478

(c)

Figure 2: Bullseye performance for baseline models (with specific complaints only and complaint categories only, resp.) and flattened genetic
algorithm for the academic hospital. Overall performance is indicated outside of the bullseye. Statistical significance for the difference in
5-fold cross-validated AUC (using DeLong’s method) between the flattened genetic algorithm approach and the corresponding baseline
models is indicated by ∗∗∗ for p < 0 001, ∗∗ for p < 0 01, and ∗ for p < 0 05.

Baseline
complaints only

0.8395⁎⁎⁎

0.7293⁎⁎

0.8266⁎⁎

0.8747⁎

(a)

Baseline
categorized complaints only

0.8330⁎⁎⁎

0.7339⁎⁎⁎

0.8308⁎

0.8587⁎⁎⁎

(b)

Hierarchical
genetic algorithm

0.8433

0.7358

0.8327

0.8758

(c)

Figure 3: Bullseye performance for baseline models (with specific complaints only and complaint categories only, resp.) and hierarchical
genetic algorithm for the academic hospital. Overall performance is indicated outside of the bullseye. Statistical significance for the
difference in 5-fold cross-validated AUC (using DeLong’s method) between the flattened genetic algorithm approach and the
corresponding baseline models is indicated by ∗∗∗ for p < 0 001, ∗∗ for p < 0 01, and ∗ for p < 0 05.
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the baseline model with complaints only, particularly for
the inner bullseye subgroup.

Overall, there is minimal difference between the per-
formance of the flattened and hierarchical approaches,
and there is no significant difference across any of the five
populations (see Table 5). In addition, there are similar
effects on predicted probabilities (as in Figure 4), in that
the most substantial effects are differences for the inner
subgroup relative to the baseline model with categorized
complaints only and for the middle subgroup relative to
the baseline model with complaints only.

Despite the similarities in performance, there are some
key differences between the two approaches. Training
times are much faster for the hierarchical approach (see
Table 5), as there is no restructuring of the multilevel data
as for the flattened approach. On the other hand, the
flattened approach has the advantage of reducing the
dimensionality of the data into a single level, which could
improve run times once the multilevel structure has been
reduced into a flattened format. We note, however, that
prediction times using either trained model would be very
fast. Finally, there is significant disagreement among the

selected complaints for a given population (see Table 5).
In general, the two approaches only agree on approxi-
mately 55–60% of the complaints to either exclude or
select in the predictive model for critical outcomes for ED
patients. The remaining complaints were uniquely selected
by only one approach.

4. Discussion

This EC approach demonstrates a statistically significant
improvement over single-levelmodels that use only complaint
or categorized complaint information. These improvements
are significant not only for the overall population, but for
directly affected subgroups within the population without
sacrificing performance on others. It is important to note
that these improvements, although seemingly small in
magnitude, would have a significant impact over the large
volume of patients who visit the ED. Similar (in magnitude)
improvements were observed in previous work relative to
their selected baseline models [29, 30], although their
performance was only evaluated at the overall (not the
subgroup) level.
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In addition to the performance improvements, this
approach reduces the dimensionality of multilevel features.
For the flattened approach, multilevel data is collapsed into
a single mutually exclusive level. This is advantageous when
population size may limit the number of predictor variables
that can be meaningfully included. For the hierarchical
approach, excluded complaints are pruned from the multi-
level data structure. Once enforced, these reductions in
dimensionality can facilitate faster development of prediction
models, including algorithm selection, parameter tuning,
cross-validation, testing, and prediction. The output from
these feature selection approaches also provides practitioners
with important feedback about the relevance of specific
information in the context of a particular outcome. We
believe that feature selection—as opposed to using an atten-
tion mechanism—has advantages in interpretation over
previous approaches.

It is unclear whether the uniquely selected complaints are
meaningful in the context of a specific complaint structure
(i.e., flattened or hierarchical), or if they are simply insignifi-
cant artifacts of the stochastic GA. However, jointly selected
complaints have strong support that they are meaningful
for a particular outcome, and jointly unselected complaints
have strong support that they are not meaningful. Potential
improvements to this approach may involve a hybrid solu-
tion that leverages output from both approaches. For exam-
ple, select complaints for the prediction model only if they
are jointly selected by both approaches. Or alternatively,
select complaints for the prediction model only if they are
selected by at least one approach and they meet some mini-
mum sample size requirement.

The stochastic nature of the evolutionary approach
may raise questions about its reliability. However, the top
candidate solutions for a given run consistently select the
same complaints to exclude or include in the prediction
model. Very few complaints (<10% for each population)
are inconsistently excluded or selected in the prediction
model, and for many of these cases, the complaints lean
strongly toward being excluded or included (e.g., bladder
pain was included in 19 of 20 of the top candidate solutions
for the academic hospital).

5. Conclusion

In this study, we propose an EC framework for the speci-
fication of multilevel data for predictive models. This
framework is easy to implement, leverages readily available
open-source software, and can be adapted to optimize speci-
fication of multilevel data for many predictive applications.
This includes the flexibility to accommodate other evolution-
ary algorithms (e.g., random mutation hill climbing and
simulated annealing). The representation of candidate solu-
tions (i.e., binary bit strings) would most likely be similar,
and selection, crossover, and mutation operations (and
associated control parameters) can be adjusted according to
performance. Further, alternative fitness functions may be
applied in place of the 5-fold cross-validated AUC. For
example, a different cross-validation scheme (e.g., train-
test split and stratified cross validation), estimator (e.g.,
classification tree and regression estimator), or performance
measure (e.g., classification accuracy, R2) could readily be
substituted into the framework. In addition, alternate types

Table 5: Comparison of results generated from flattened and hierarchical approaches across five patient populations.

(a)

Flattened
ACAD COMM BRAZIL UAE NHAMCS

Overall AUC 0.8431 0.8361 0.8261 0.8820 0.8429

Training time (hr) 42.47 78.67 19.89 15.00 29.06

Selected complaints (%) 48.3 52.8 53.4 59.0 49.9

(b)

Hierarchical
ACAD COMM BRAZIL UAE NHAMCS

Overall AUC 0.8433 0.8364 0.8260 0.8819 0.8436

Training time (hr) 4.93 8.91 3.46 3.27 3.09

Selected complaints (%) 49.3 64.6 55.6 55.6 46.4

(c)

Comparison

Difference in overall AUC (p value) 0.6144 0.2210 0.7022 0.3622 0.2579

Jointly selected complaints (%) 28.1 33.1 32.4 37.5 27.5

Jointly excluded complaints (%) 30.6 27.6 23.5 22.9 31.2
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of preprocessing—similar to the dynamic restructuring of
multilevel data for the flattening approach—can be inserted
prior to the computation of the fitness function, which is a
noted advantage over other feature selection approaches.

We focus here on the specific application of specifying
complaint information for predicting critical outcomes for
ED patients; however, this approach is generalizable to many
types of multilevel data within healthcare. For example, the
other key component of the electronic triage algorithm
requires prediction of admission outcomes for ED patients.
We have applied this framework to this prediction problem
as well, and the results are quite similar to those reported here
for the critical care outcome.
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