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Probabilistic Assessment of Glass 
Forming Ability Rules for Metallic 
Glasses Aided by Automated 
Analysis of Phase Diagrams
Aparajita Dasgupta   1, Scott R. Broderick1, Connor Mack1, Bhargava U. Kota2, 
Ramachandran Subramanian   2, Srirangaraj Setlur   2, Venu Govindaraju2 & Krishna Rajan1

The use of machine learning techniques to expedite the discovery and development of new materials 
is an essential step towards the acceleration of a new generation of domain-specific highly functional 
material systems. In this paper, we use the test case of bulk metallic glasses to highlight the key issues 
in the field of high throughput predictions and propose a new probabilistic analysis of rules for glass 
forming ability using rough set theory. This approach has been applied to a broad range of binary alloy 
compositions in order to predict new metallic glass compositions. Our data driven approach takes 
into account not only a broad variety of thermodynamic, structural and kinetic based criteria, but also 
incorporates qualitative and descriptive attributes associated with eutectic points in phase diagrams. 
For the latter, we demonstrate the use of automated machine learning methods that go far beyond text 
recognition approaches by also being able to interpret phase diagrams. When combined with structural 
descriptors, this approach provides the foundations to develop a hierarchical probabilistic predication 
tool that can rank the feasibility of glass formation.

While data driven computational materials design has had far reaching consequences including important break-
throughs in crystal structure, atomic energy predictions, and approximations of density functionals, the potential 
of using machine learning approaches to accelerate the materials discovery process has yet to reach desirable lev-
els1. A chief reason for this is the absence of key informational parameters that significantly explain the formation 
of specialized materials and the resulting gap in machine learning algorithms that can efficiently capture these 
informational parameters from the many sources of literature and physical models available today.

A key source of information within the materials science domain has been various pictorial and graphical 
representations of data, including phase diagrams, CV curves, and micrographs. While many advancements have 
been made in text recognition, limited progress has been made in handling these types of representations beyond 
the capability of handling line plots. In the current study, we use the example of metallic glasses to address the 
above mentioned issues.

A long standing problem in identifying potential binary alloy chemistries that can be good candidates for 
metallic glass formation has been the challenge of finding a unified thermochemical, structural and kinetic crite-
ria for glass formability2,3. A first order criteria in bulk metallic glasses that is based on inspecting phase diagrams 
has been the ‘deep eutectic’4,5, a parameter which has not been fully defined in a quantitative manner. Logically, 
a deep eutectic indicates a narrow solid region within the phase diagram bounded by liquidus regions, thus indi-
cating a propensity of the region towards amorphous structure6,7.

A large amount of the work and progress in the field has been chiefly related to thermochemical parameters. 
These have primarily constituted three main characteristics: glass transition temperature (Tg), crystallization tem-
perature (Tx) and liquidus temperature (TL). These parameters have been shown to have correlation with glass 
forming ability (GFA), particularly when accompanied with kinetic information in the form of critical cooling 
rate Rc

4,8–14. The reduced glass transition temperature =T T T/rg g l measures directly the depth of the eutectic 
point4. Similarly, the width of the supercooled liquid (Δ = −T T T )x x g  has been shown to correlate well with the 
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glass forming ability of the alloy15. Cao et al. for instance, showed recently that the glass transition temperature, 
Tg of a variety of metallic glasses has a close relationship with the eutectic and peritectic points within binary 
phase diagrams16.

In addition to these thermodynamic metrics, certain empirical rules have been proposed for glass formability. 
Chief among these are the rules defined by Inoue8. These rules dictate a multi-component system, a large negative 
heat of mixing, and a large radii difference between the constituent elements. This builds on other existing rules 
involving enthalpy of mixing, melting temperature, bulk moduli, and Pauling electronegativity17,18. Therefore, 
this problem clearly spans multiple data types and classes of problem, necessitating a machine driven approach to 
address this design challenge and accelerate discovery.

Ren et al. have recently demonstrated the applications of machine learning and high throughput experimen-
tation to propose new metallic glass chemistries in specific ternary systems (Co-V-Zr, Co-Ti-Zr, Co-Fe-Zr and 
Fe-Ti-Nb)19. A previous model by Ward et al.20 was used as the starting machine learning model and validations 
and subsequent iterations were made using high throughput experiments, thus illustrating the computational pre-
dictive power of an iterative machine learning/experimental approach. One missing component of their work is 
the integration of thermodynamic description, which is known to relate with metallic glass formation and which 
is a focus of this current paper. In another recent study, Perim et al. performed an extensive computational study 
on potential glass forming systems21. From their work, which largely utilized formation enthalpies and additional 
metrics related to similarity to predict glass formation, they concluded that the number of systems which may 
be glass formers is far larger than previously thought, with more than 17% of binary alloys serving as potential 
glass formers. This motivates the current study, which is to provide a clear design rule for glass formers, while also 
building on the previous analyses by defining the compositional ranges which are glass formers. A summary of 
the various design rules (thermochemical, structural, and kinetic) for glass formability is provided in the supple-
mentary material.

We assess (i) the thermochemical space in the form of phase diagrams, and (ii) the structural aspect through 
utilizing a series of elemental descriptors which we have carefully assessed in our prior works22. To accelerate the 
interpretation of and design from phase diagrams, machine reading applications are utilized. We have previously 
described an approach for the rapid machine reading of phase diagrams23. We apply that approach to the assess-
ment of phase diagrams, particularly as relates to deep eutectics, to allow for the rapid reading and integration 
of phase diagrams. This represents a challenge, as the thermochemical metric must be a value which is readable 
from a phase diagram (as opposed to TRG and ΔTx which do not correspond to points graphically appearing on 
the phase diagram). Using our previously developed elemental databases, machine reading capabilities, and appli-
cations of machine learning approaches to a variety of design problems22–24, we are able to address the following 
objectives in this paper:

	 i.	 Develop a quantitative definition of ‘deep eutectic’
	 ii.	 Identify compositional ranges, as opposed to single composition values, for glass formability of a com-

pound (based on a probabilistic approach)
	iii.	 Integrate experimental and computational data (in the form of phase diagrams), and thermochemical and 

structural data, to develop a clear glass forming design rule.
	 iv.	 Generalize this framework for accelerated design so that all data entries are applicable to machine reading 

approaches.

Results
As identified previously, a key component in predicting new metallic glasses has been to identify deep eutectic 
compositions indicating the importance of analyzing phase diagram information. We have previously demon-
strated our automated phase diagram reading methodology23, which correctly classified phases and associate 
phase labels with 94% accuracy, and which we demonstrated with the capability to identify and characterize 
eutectic points. This capability is a key component of the design framework developed in this project. We sum-
marize that prior work here.

As opposed to typical line plots, phase diagram lines represent boundaries instead of changing values. 
Therefore, the boundaries are not represented through simple tabular formats, and thus require a more in depth 
analysis than a simple digitization. An additional challenge includes the accurate identification of textual labels 
where the variations may arise in the form of orientation and placement (horizontal vs vertical vs labels indicated 
by arrows), language (Latin alpha numeric characters vs Greek characters) and the image resolution of the label 
where a high resolution is preferred but is not always the case in phase diagrams. Furthermore, phase diagrams 
have different line thicknesses, and particularly important for this application is the correct assignment of text 
to a phase. Ultimately we need to identify the phase boundaries between the liquid phase and two solid plus liq-
uid phases. While these can be identified easily by eye, it is not a trivial exercise for a machine to read, although 
machine reading is required for scaling up and accelerating the design. A final point worth mentioning is the 
assignment of phase labels to regions which are unlabeled in the diagram since labeling in these regions would 
need to be built as a standard functionality on top of the above rules. Figure 1 depicts the current challenges in the 
computational analyses of phase diagrams.

This work builds on some standard challenges in diagram recognition, such as handling types of different 
diagrams, the complexity in representing the syntax and semantics, and particularly the challenge in handling 
noise25. In order to develop a phase diagram reading tool, a database of approximately 720 phase region contours 
and about 7100 text region contours was created. A gradient boosted tree-based (GBT) classifier was applied 
to classify between phase contours and text contours. The eutectic points can then be determined by analyzing 
the contour of the liquid phase for which both contour separation and accurate matching of label and region is 
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critical. When compared to other classifiers, we found the GBT classifier to have the most robust classification to 
unbalanced data. In order to distinguish between text and phase contours, we applied Hu’s invariant moments26, 
which describe the shapes of the contours. The moments in this context referring to statistical moments. The 1st 
order moment for a group of points is their mean and thus for a shape or contour it will be a centroid. The 2nd 
order moments are proportional to variance and for shapes hold the orientation and eccentricity information 
(due to eigen decomposition).

In addition to the challenges mentioned above, a key quantity is the “depth” of the eutectic. Since there is no 
formal definition of this qualitative term, defining this in logical terms so that a machine learning algorithm is 
able to filter the appropriate systems is a challenge. By defining the eutectic angle in our study as the angle formed 
by the tangents of each curve at both ends of the eutectic point, we are able to surmise a rough idea of the geomet-
rical features necessary in a given phase diagram for the system to constitute a metallic glass and hence provide 
a rapid screening. Furthermore, due to the nature of the assumptions and to offset the associated uncertainty, we 
use rough sets to provide a probabilistic framework within which we define our subsequent predictions.

Combining Machine Learning with the Heuristics Space.  A focus on the design of BMG systems 
has been the eutectic points within the thermodynamic phase diagram of a system. The rule of thumb has been 
that concentration regions lying within or near “deep eutectics” have the highest probability for possessing GFA 
since alloys close to such a composition tend to form stable liquids at lower temperatures, allowing for efficient 
glass formation7. An approach to identify and understand GFA has used T0 curves to calculate the Glass Forming 
Region (GFR) within an alloy system, with the T0 curve as the locus of the temperatures and compositions where 
the free energies of the two phases are equal27. The challenge in utilizing this value in a broader framework is that 
this value represents points which do not exist on the actual diagram. An objective of this work is to provide a 
probabilistic framework which can provide rapid search of the existing knowledge base through machine reading 
approaches. Therefore, to address this issue, we define an approach where a measure of “deep eutectic” is repre-
sented through an actual geometrical feature that can be extracted from the phase diagram. The logic we have 
developed and apply in this paper is described in Fig. 2, with the approach encompassing the thermochemical 
aspect of design represented by our representation of deep eutectic and the structural design represented through 
elemental descriptors.

Our approach predicts glass formability as a function of the alloy chemistry, as well as the composition, allow-
ing us to identify not just the applicable chemistries, but additionally the compositional ranges through the appli-
cation of uncertainty analysis. From the phase diagrams, we define a measure of glass formability which can be 
machine read, as opposed to the existing rules associated with T0. This allows us to screen a larger number of 
diagrams than otherwise possible. These measures are coupled with a separate informatics analysis which corre-
lates elemental descriptors of the constituent elements with glass formability. The integration of these two separate 
design metrics allows us to account for the complexity of glass formability and to uncover previously unidentified 
chemistries. Uncertainty analysis is integrated into this framework to account for uncertainty associated with the 
new representation of deep eutectics, the lack of a clear quantitative definition of deep eutectic, and the composi-
tional spread of glass forming compounds at off eutectic compositions.

Figure 1.  Demonstration of process for automated analysis of phase diagrams. (Left) Detection and recognition 
of text used to label phases. From this input figure, boundary lines are identified through Hu’s invariant 
moments approach, which allows us to define the shape of the curves, such as the shape of the liquidus lines at 
the eutectic point. (Right) Through contour analysis, we identify and separate the different regions, associated 
with their labels. From this, we are able to detect eutectic points by defining the eutectic point as corresponding 
to a single point where liquid and two separate solid + liquid phases meet.



www.nature.com/scientificreports/

4SCientifiC REPOrTS |           (2019) 9:357  | DOI:10.1038/s41598-018-36224-3

Our training data for defining glass formability is based on the work of Miracle18, where he assessed the vari-
ous contributions, largely based on radii, to define the metallic glass forming compounds. We assess 200 chemis-
tries, with 385 eutectic compositions, for phase diagram calculations based on experimental observations18,28–31. 
The class assignment is based on Miracle’s comprehensive table. We couple the phase diagram with our extensive 
compositional database, to define clear design rules spanning thermochemical and structural criteria.

Descriptor Extraction from Phase Diagrams.  As discussed, a key design guideline is the selection of a 
‘deep eutectic’. This presents a design challenge as the term is largely ambiguous. Effectively, it implies the need for 
steep liquidus lines at the convergence of the eutectic point, indicating an inclination to remain liquidus (ie. amor-
phous). However, no clear quantitative definition or guidelines exist. A well accepted approach is summarized in 
Fig. 3. For instance, by narrowing the alloy search space to compositions close to the eutectic composition, liquid 
stability is enhanced at low temperatures7. As an example of a parameter used to represent the concept of deep 
eutectic, a line Tm

mix can be defined as a common tangent line connecting the maximum temperatures of the liq-
uidus lines (ie. maximum melting temperatures of the solid + liquid phases). The temperature difference (ΔTe

mix) 
between Tm

mix and Teutectic provides a potential representation of the deepness of a eutectic2. An alternately pro-
posed approach is to use T0 curves to calculate the GFR within an alloy system. The GFR phase is defined as the 
range of compositions within the alloy system where it is least likely to find nucleation of crystal phases. Between 
the solid and liquid phases, the curve predicts the minimum undercooling of the liquid for the partition-less 
formation of the crystalline solid with the same composition27. Hence we took the approach of identifying alter-
native geometrical characteristics which lend themselves to autonomous detection and can potentially serve as 
surrogate features that can be associated with the geometrical constructs described above. Hence we used the 
acuteness of angle between the tangents of the liquidus lines at the eutectic point as a rough measure of “deepness” 
of the eutectic. It should be emphasized that we treat this angular metric a surrogate feature that relates to one of 
many metrics that are used as indicators of glass forming ability, its value that lies in the fact that it lends itself to 
automated extraction of features in diagrams. Also the qualitative nature of this metric highlights the need for 
introducing the concepts of addressing uncertainty analysis in materials informatics studies, where the uncer-
tainty is governed by heuristics.

To consider the structural component of metallic glass formability, we developed a descriptor space based 
on elemental components. This included size effects, electronic effects, and bonding characteristics. While radii 
have been identified as a key component previously, by performing a principal component analysis (PCA) we 

Figure 2.  Approach developed for probabilistic design of new glass forming alloys. This approach encompasses 
two regimes of the defined design rules of Table S1.
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were able to quickly screen the descriptor space on the impacts on glass formability. In addition to the thermody-
namic parameters discussed, certain empirical rules have been suggested to aid in the a priori discovery of bulk 
metallic glasses. In addition to the previously discussed rules, various other rules/suggestions have been identified 
involving thermodynamic descriptors such as melting temperature and enthalpy of mixing16, as well as structural 
and electronic parameters such as the bulk moduli and Pauling electronegativity18. Many of these rules seem to 
work well on certain systems while failing in others. Thus, even within the heuristics space, a unified approach is 
lacking.

This motivates the application of a manifold learning approach to assess the elemental contributions to glass 
formability. The descriptor for glass formability was defined in a binary fashion, with zero being the compounds 
which have not been identified as glass forming and unity being the compounds which have been identified as 
glass forming. That is, the compounds labeled as “zero” are those which were not listed in the review work of 
Miracle18, which we used as the basis for training, and therefore does not mean that the compound cannot form 
a metallic glass, but rather that it has not been identified. This last point is important as in our models, we do not 
consider compounds classified as zero but which are identified as glass forming as ‘false positives’. That is, while 
the training data is comprehensive, it is not complete. From the result of principal component analysis (PCA) 
(Fig. 4), where Euclidean proximity defines correlation, we find that a function of the atomic radii is the key 
descriptor on glass formability, as no other descriptors sit near the glass formability point within the same quad-
rant. Therefore, we have recovered and expanded on existing knowledge in an unbiased manner.

To assess the potential combinations of radii, we follow our previous works where we used the scaling of 
Villars32–34, Pettifor35, and Miedema36,37 to expand from elemental descriptors to the alloy contribution. However, 
for this particular case, no sufficient expansion exists for the radii, and therefore we need to assess the various 
combinations (particularly sum, difference, product, and ratio). Further, as will be discussed in the next section, 
a system may have multiple eutectic points, but without all of the eutectic points corresponding to glass forming 
compositions. Therefore, the radii contributions need to be normalized by the composition. The result of the vari-
ous density mappings of metallic glass forming compounds, with the eutectic angle versus the different radii con-
tributions, is shown in Fig. 5. The objective is to find the alloy expansion which results in the highest density and 
most localized representation of metallic glass forming binaries. The contouring of the figures refers to the density 
of glass forming compounds, and within this we clearly find the radii difference and radii ratio as being the most 
reasonable representations, as the sum and product representations have a large spread of data. To compare the 
two descriptor scalings, we visualized the performance through Receiver Operating Characteristics (ROC), which 
quantify the performance of class assignment38. In this case, the two metrics are compared in terms of the number 
of correctly assigned systems versus incorrectly classified systems. In this case, we find that the radii difference 
has a much higher classification accuracy than the radii ratio, therefore motivating our final selection of radii 
difference to represent the structural contribution to glass formability.

Therefore, we have identified the ‘eutectic angle’ as a measurable metric associated with a deep eutectic and 
radii difference scaled by composition are the optimal descriptors for discriminating glass forming compounds 
and non-glass forming compounds. Although we have a good binary classifier in this case, in principle we can 
develop more complex classifier metrics for more chemically complex systems based on the framework described 
in this study.

Figure 3.  Schematic depicting the eutectic angle measurement. (a) Is for a symmetric eutectic system and (b) is 
depicted for an asymmetric system. In both figures for a hypothetical AB compound phase diagram, the T0 lines 
are drawn (dashed lines). The T0 lines intersect at XB

T0 and the GFR is represented by the intersection of these 
lines with Tg. In the first case, the GFR is around the eutectic composition, whereas in the second case, it is 
slightly off-eutectic. For the current study, the eutectic angle was measured by drawing tangents to the liquidus 
lines at either end of the eutectic point (lines drawn in red depict the tangents). We observe that this method of 
drawing tangents and measuring their intersection angle is a rough estimate of the geometry between the T0 
lines, but does not require the need to calculate the geometry, thus including important thermodynamic 
information within the model. Phase diagrams were redrawn from Shi et al.27.
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Figure 4.  Correlation mapping of a range of elemental descriptors with glass formability. The elemental 
descriptors include radii, electronegativities, enthalpies, energetic contributions, electronic structure 
configurations, spatial misfits, thermal properties, and mechanical properties, among others, with each black 
circle representing a different descriptor. The axes represent the contribution onto the principal components 
(PCs) characterizing the different alloy systems. PC1 captured 41.4% of the variance, PC2 captured 33.1%, 
PC3 captured 14.5%, and all other PCs captured 11.0%. The identification of radius is consistent from two 
PC mapping, as well as three PC mapping. Glass formability (red square) is defined in a binary fashion 
to those systems which form a glass versus those that do not. From this figure, we find that radius has the 
largest correlation to glass formability and therefore is the key descriptor that we consider for predicting glass 
formability.

Figure 5.  Assessment of the different combinations of elemental atomic radii to represent the multi-component 
contribution to glass formability. The left figure represents the denmapping of glass forming compounds with 
radii difference, radii ratio, radii sum, and radii product. RA is defined as the radius of the majority element 
and RB is the radius of the minority element. %X represents the atomic percentage of the majority element 
in the eutectic composition. We find the highest density representations are for the difference and ratio. To 
select between the two combinations, we consider the ROC (Right). From this analysis, we find that the radii 
difference provides the highest accuracy classification of glass formability. Therefore, in the final design map, we 
select this function as the representation of structural contribution to glass formability.
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The plotting of the training data for these systems is shown in Fig. 6. From this figure and the density of glass 
formers in Fig. 5, we find a clear cluster of glass forming compounds at radii differences just below zero, and with 
eutectic angles less than 75°.

Further, if we measure the Euclidean distance from the middle of the cluster (defined as the highest density 
grouping in Fig. 5), we can define the likelihood of glass formability. The circle drawn in Fig. 6 is mainly intended 
as a visual aid, but a more quantitative perspective is provided by using rough set theory. We have employed rough 
set theory to statistically define the region boundary while taking into account uncertainty, thus providing a 
thorough analysis of the region selected. This description is provided in the next section. As far as the selection of 
the center of the design region, we have performed an additional analysis to verify the selection of this point. We 
selected multiple points within the region to test for metallic glass compounds, as was done for the center point to 
identify compounds in Fig. 6. This analysis coupled with the rough set analysis in subsequent sections allows us 
to predict the composition as well as uncertainty of new metallic glass formers quantitatively (Table 1). We found 
through this analysis, that the point selected captured 28% more known metallic glasses than any of the other 
points tested. Therefore, the center point used captured the most known metallic glasses, which was the objec-
tive of this step of the work, i.e. to capture the most known systems within some distance and then explore the 
unknown compounds. From this, we find that Ag-Pr has a very high propensity towards glass formation, while 
not being previously identified as such. Further, we identify Be-Fe, Ag-Yb, Mg-Eu, Ag-Te and Ag-Sm as com-
pounds with previously unidentified high likelihood towards glass formability. Therefore, we have developed a 
new approach for machine reading of phase diagrams which allows us to discover new glass forming compounds, 
demonstrating the utilization of the merger between machine reading and machine learning.

Discussion
Focusing on specific regions of the selection map, we consider the different regions where metallic glass form-
ing compounds exist. An important consideration is that the selection criteria defined here is for identifying if 
a compound is a metallic glass former, and not for defining the negative of this criteria. This can be seen in the 
high density region of Fig. 7, where a very high proportion of the compounds are glass forming, while the other 
highlighted regions have some metallic glass formers intermixed with non-glass formers. Extracting the values 
around the high density glass region, we define a set of design criteria for identifying new glass forming com-
pounds across multiple design criteria:

Thermochemical Design.  Require a ‘deep eutectic’, meaning an angle between the tangents of the liquidus 
lines of less than 72°.

Structural Design.  Require that the two constituent atoms have similar atomic radii, but with the minority 
element having a larger size than the majority element.

Compositional Design.  Require a composition close to a deep eutectic composition, and selecting composi-
tion such that the difference in radii scaled by the composition of the majority element results in a value between 
−25 and 0 nm.
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Figure 6.  Design mapping for discovery of new glass forming alloys. (Left) From a mapping of the two 
identified design metrics (the metric ‘eutectic angle’ capturing thermochemical behavior and radii difference 
capturing structural behavior while accounting for composition), we are able to uncover a high density 
clustering (circled region) of glass forming chemistries. The red squares are compounds which have been 
identified as glass forming, the black circles have not been identified as glass forming, and the black squares 
correspond to glass forming compounds but with compositions which fall outside of the circled region. RA, 
RB and %X are defined as the same as in Fig. 5. This demonstrates the utilization of the previously unidentified 
descriptors for uncovering new targeted compounds. (Right) Distance from the middle of the circled region, 
indicating the propensity of glass formability, with the coloring corresponding with the left figure. From this, we 
identify six new chemistries for glass forming compounds.
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To account for the uncertainty in our descriptor definition, the fuzziness of the definition of a ‘deep eutectic’ 
and to account for compositional fluctuations, we applied a rough set analysis. The main aim was to be able to 
classify each data point as a metallic glass system or not. In the current study, the decision system,

∪= ∉DS T U A d d A: ( , { })

represents the model39–41. Here, U represents the 385 eutectic points studied, a non-empty finite set of objects; 
A represents the attribute set which in our case are the system identifiers, the eutectic angle and radii difference 
scaled with the atomic eutectic composition; and d is the decision attribute (whether or not the system forms a 
bulk metallic glass). From the analysis, three decision criteria were set: good bulk metallic glass former (“yes”), 
bad bulk metallic glass (“no”) and an in-between category where both the probability of a good or bad bulk metal-
lic glass former exists (“yes/no”). Effectively this defines a ‘lower boundary’ which captures only glass formers and 
an ‘upper boundary’ which captures all glass formers. As discussed, some glass formers fall outside of our design 
range and therefore we relax the definitions of boundaries, and instead only focus on the high density region from 
Fig. 6. The result of our analysis is provided in Fig. 8. This therefore defines the confidence that a compound will 
form a bulk metallic glass. However, it should be noted that these terms are relative, as we anticipate all of the 
compounds within even the ‘low’ confidence region are glass forming, as no negative reports have been given on 
these compounds. Within the low confidence region, we do have a smaller compositional range that will form 
metallic glasses.

No. System Composition(s)

1. Ag-Yb Ag20.7Yb79.3

2. Mg-Eu Mg30.3Eu69.7

3. Ag-Eu Ag21.03Eu78.97

4. Ag-Ho Ag19Ho81

5. Ag-Pr Ag22.28Pr77.72

6. Ag-Sm Ag18Sm82

7. Al-Th Al31.16Th68.84, Al42.79Th57.21

8. B-Cu B13.1Cu86.9

9. B-Mn B14.38Mn85.62, B38.58Mn61.42

10. Be-Fe Be35.01Fe64.99

11. N-Fe N8.93Fe91.07, N15.82Fe84.18

12. Na-Sb Na55.56Sb44.44

13. Pd-In Pd37.05In62.95

14. Rb-Tl Rb13.24Tl86.76

15. Ag-Pb Ag4.51Pb95.49

16. Ag-Te Ag69.66Te30.34, Ag88.52Te11.48

17. Al-Pd Al22.89Pd77.11, Al41.04Pd58.96

18. B-Re B41.78Re58.22

19. Be-Ag Be10.79Ag89.21

20. Be-Ni Be23.9Ni76.1

21. Be-Th Be34.44Th65.56

22. C-Ni C2.87Ni97.13

23. Cd-La Cd22.47La77.53

24. Mg-Pb Mg14.82Pb85.18

25. O-Cu O1.69Cu98.31, O39.27.Cu60.73

26. Pr-Tl Pr61.68Tl38.32

27. Ru-U Ru18.52U81.48

28. Sb-Gd Sb13.04Gd86.96

29. Sb-La Sb3.18La96.82

30. Sb-Nd Sb4.47Nd95.53

31. Sb-Pr Sb4.86Pr95.14

32. Sb-U Sb46.76U53.24

33. Se-Tl Se41.91Tl58.09

34. Si-Ag Si4.1Ag95.9

35. Si-Ba Si13.13Ba86.87

36. Sn-La Sn12.41La87.59

37. Tb-Tl Tb73.75Tl26.25, Tb84.83Tl15.17

38. Yb-Pb Yb54.99Pb45.01, Yb77.31Pb22.69

Table 1.  List of previously unidentified glass forming compounds, and the composition of the pertinent 
eutectic point, based on the design map.
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Based on these limits, we propose Ag-Yb and Mg-Eu as the potential to form metallic glasses with the highest 
confidence. While Ag and Yb have been used as alloying elements in multicomponent metallic glass systems to 
a successful degree and the scope and applications of Mg based metallic glass systems has been extensively stud-
ied42–44, their binary compositions predicted here have not yet been studied for GFA. The binaries Ag-Pr, Be-Fe, 
Ag-Yb, Mg-Eu, Ag-Te and Ag-Sm are also proposed with confidence to form bulk metallic glasses. Of these, 
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Figure 7.  Design map comparing regions of high density metallic glass formers and low density regions. RA, 
RB and %X are defined as in Fig. 6. In the bottom left panel, the key design area is highlighted, where we see a 
very high proportion of glass forming compounds. We applied rough set theory to further assess these regions, 
account for uncertainty, and define compositional ranges that can be accommodated. The right panels show 
regions of low density which contain glass formers not following our design rules. This highlights that the 
approach discussed here predicts positive response and is not intended to predict negative response, in terms 
of glass forming ability. However, as highlighted in this figure, the majority of glass forming compounds falls 
within our defined design region. From this, we identify 38 previously unidentified glass forming compounds 
(Table 1).

Figure 8.  Rough set analysis of the metallic design region, to incorporate uncertainty due to the unclear 
quantitative definition of ‘deep eutectics’ and to expand our rule to define the compositional ranges that would 
be applicable, while providing confidence measures of the uncertainty. This figure highlights the different 
confidence intervals, which are further elucidated in Table 2. A compound falling in the lower bound is 
very likely a glass former, although we only capture a fraction of all glass formers. Relaxing the confidence 
requirements allows us to screen a larger space, but with larger uncertainty, as shown in the ROC curve.
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Ag-Pr has been suggested as a potential metallic glass former15 and Fe, Ag and Te have been used as additions in 
multicomponent metallic glass systems in various combinations45–47, similar to Ag-Yb and Mg-Eu. Furthermore, 
nearly pure Ag-Te has been reported in some cases when investigating Te- based chalcogenide glasses48.

As an example of defining compositional limitations to glass formation, for Ag-Yb the eutectic concentration 
is 20.7% Ag. The radius of Ag is 144 pm and the radius of Yb is 190 pm, and therefore rA–rB is equal to −46 pm. 
When scaled by the composition, the value of (rA–rB) * %A is equal to −9.53. We can define the compositional 
ranges which would result in values between −25 and 0, as defined in Table 2 (thus highlighting the meaning of 
low confidence in the table), given the thermodynamic constraints of the melting temperature of the compound 
not reducing at a given composition and that the eutectic tie line has not terminated at that composition. Based 
on our compositional rule, and given the confidence definitions, the potential high confidence compositions are 
between 20.6% Ag and 32.6% Ag. Therefore, not only have we identified that Ag-Yb is a glass former, we have 
defined the compositional range for which it is a glass former.

Our machine learning aided approaches to describe “deep eutectics” based on geometric features of phase dia-
grams can be extended to multicomponent phase diagrams, even though the number of available phase diagrams 
becomes more limited as we increase the number of constituent elements. For instance, one can interrogate phase 
diagrams where crystallization pathways and/or temperature isotherms are mapped onto the compositional space 
of the ternary or quaternary phase diagrams. One can then use our automated feature detection strategy to map 
out the curvature of the liquidus surface to characterize a “deep eutectic’ for example. We are presently extending 
our work to multicomponent phase diagrams, the results of which will be reported at a later date.

Conclusion
In this paper, we identified 38 new glass forming compounds, and introduced a metric for prediction confidence 
and defined the compositional range of glass formability. Within this, we have now quantitatively defined the 
meaning of a deep eutectic, with 54° between the tangents of the liquidus lines at the eutectic point defining the 
most rigorous definition of ‘deep’. This approach has been developed so that the pertinent information is machine 
read, providing an automated design framework. The theory for metallic glass formation has been expanded 
to include both the deep eutectic definition and a structural design aspect, which is based on atomic radii. The 
highest probability of metallic glass formation requires the minority element be slightly larger than the majority 
element. Future reports will describe experimental synthesis and characterization of predicted compounds, as 
well as new machine reading approaches which capture not just points on the phase diagram, but also capture 
points (such as To and Tmix) which do not correspond to points on the diagram. This represents a unique merger 
of thermochemical design and machine learning, with implications for many graph based design applications.
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