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mylin is a member of the calcitonin family of hor-

 

mones cosecreted with insulin by pancreatic 

 

�

 

cells. Cell culture assays suggest that amylin could
affect bone formation and bone resorption, this latter
function after its binding to the calcitonin receptor (CALCR).
Here we show that 

 

Amylin

 

 inactivation leads to a low bone
mass due to an increase in bone resorption, whereas bone
formation is unaffected. In vitro

 

,

 

 amylin inhibits fusion of
mononucleated osteoclast precursors into multinucleated
osteoclasts in an ERK1/2-dependent manner. Although

A

 

Amylin

 

 

 

�

 

/

 

�

 

 mice like 

 

Amylin

 

-deficient mice display a low
bone mass phenotype and increased bone resorption,

 

Calcr

 

 

 

�

 

/

 

�

 

 mice display a high bone mass due to an increase
in bone formation. Moreover, compound heterozygote
mice for 

 

Calcr

 

 and 

 

Amylin

 

 inactivation displayed bone
abnormalities observed in both 

 

Calcr

 

 

 

�

 

/

 

�

 

 and 

 

Amylin

 

 

 

�

 

/

 

�

 

mice, thereby ruling out that amylin uses CALCR to inhibit
osteoclastogenesis in vivo. Thus, amylin is a physiological
regulator of bone resorption that acts through an uniden-
tified receptor.

 

Introduction

 

Bone remodeling is the process by which bone mass is
maintained constant throughout life in vertebrates. This is a
dynamic two-step process that begins with bone resorption by
osteoclasts followed by bone formation by osteoblasts. The
dynamic nature of bone remodeling suffices to explain why our

 

molecular understanding of this process has gained so much
from in vivo studies and especially from mouse genetic stud-
ies. These latter studies have identified transcription factors,
growth factors and their receptors, hormones and intracellular
signaling molecules that affect one or the other arm of bone
remodeling at the level of cell differentiation, proliferation, or
function (Boyle et al., 2003; Teitelbaum and Ross, 2003).

Mouse genetic studies have also uncovered unexpected
functions for known regulators of bone remodeling. One

example of these surprising results has been the characteriza-
tion of calcitonin function in vivo. Indeed, mice lacking
calcitonin and calcitonin gene–related peptide (CGRP) have
a high bone mass phenotype due to an increase in bone for-
mation parameters (Hoff et al., 2002). This was surprising as
the calcitonin receptor (CALCR) is expressed on osteoclasts
but not on osteoblasts (Nicholson et al., 1986; Lee et al.,
1995). Moreover, numerous studies have demonstrated that
it is a specific marker of osteoclast differentiation and that
calcitonin can inhibit bone resorption in vitro and in vivo
(Quinn et al., 1999; Cornish et al., 2001). The increase in
bone formation observed in 

 

Calcitonin/Cgrp

 

-deficient mice
suggests that the expression of 

 

Calcr

 

 in osteoclasts may not
be pivotal for the function of calcitonin/CGRP itself in bone
remodeling and/or that CALCR on osteoclasts may have
other ligands.

 

R. Dacquin and R.A. Davey contributed equally to this paper.
The online version of this article contains supplemental material.
Address correspondence to Gerard Karsenty, Dept. of Molecular and
Human Genetics and Bone Disease Program of Texas, Baylor College of
Medicine, One Baylor Plaza, Room S921, Houston, TX 77030. Tel.:
(713) 798-5489. Fax: (713) 798-1465. email: karsenty@bcm.tmc.edu
Key words: osteoclast; islet amyloid polypeptide; CTR; CALCR;
mouse models

 

Abbreviations used in this paper: BFR, bone formation rate; BMM, bone
marrow macrophage; CALCR, calcitonin receptor; CGRP, calcitonin
gene–related peptide; ERK1/2, extracellular signal–regulated protein
kinase1/2; M-CSF, macrophage colony–stimulating factor; PTH,

 

parathyroid hormone; RANKL, receptor activator of NF-

 

�

 

B ligand;
TRAP, tartrate-resistant acid phosphatase; WT, wild-type.



 

510 The Journal of Cell Biology 

 

|

 

 

 

Volume 164, Number 4, 2004

 

Calcitonin is the founding member of a small family of
polypeptide hormones that comprises of CGRP, adreno-
medullin, intermedin, CALCR stimulating hormone, and
amylin or islet amyloid polypeptide (Wimalawansa, 1997;
Katafuchi et al., 2003; Roh et al., 2003). Amylin, the fo-
cus of this paper, was identified as a protein present in
pancreatic 

 

�

 

 cells that is cosecreted with insulin after food
ingestion (Westermark et al., 1987; Kahn et al., 1990).
Despite many efforts it has been difficult to ascribe a sig-
nificant function to amylin in the control of glucose me-
tabolism in vivo (Gebre-Medhin et al., 1998). In contrast,
in the last 10 yr a growing body of cell culture–based stud-
ies have suggested that amylin may be a regulator of bone
remodeling by favoring bone formation and possibly by
inhibiting bone resorption (Su et al., 1992; Zaidi et al.,
1993; Cornish et al., 1999, 2001); that amylin is able to
bind in vitro to CALCR has raised the hypothesis that it
may be a physiological ligand of CALCR on osteoclasts
(Christopoulos et al., 1999).

To address the role of amylin in bone remodeling and to
determine whether it is a physiological ligand of CALCR
we analyzed 

 

Amylin

 

-deficient as well as 

 

Amylin 

 

�

 

/

 

�

 

 and

 

Calcr

 

 

 

�

 

/

 

�

 

 mice. Here, we show that 

 

Amylin

 

-deficient
mice develop a low bone mass phenotype mimicking an
osteoporosis that is due solely to an increase in bone re-
sorption. We also provide genetic and histological evi-
dences ruling out that amylin acts through CALCR to reg-
ulate osteoclastogenesis.

 

Results and discussion

 

Low bone mass phenotype in 

 

Amylin

 

-deficient mice

 

Amylin

 

-deficient mice are born at the expected mendelian
ratio, have a normal life span, are fertile, and do not display
any overt phenotypic abnormalities (Gebre-Medhin et al.,

1998). Unlike what has been shown in gain of function ex-
periments (Cornish et al., 1998), body and gonadal fat pad
weights were normal in 

 

Amylin

 

-deficient mice as were food
intake, serum insulin, and glucose levels (Fig. 1 A; Table I).
Thus, amylin is dispensable for regulation of food intake,
body weight, and glucose metabolism in vivo.

To determine whether amylin affects bone remodeling in
vivo

 

,

 

 we analyzed wild-type (WT) and 

 

Amylin

 

-deficient
mice by X rays and histology. In 24-wk-old mice, X ray re-
vealed a decrease in bone density in 

 

Amylin

 

-deficient com-
pared with WT long bones (Fig. 1 B). Histological analysis
revealed a 50% decrease of bone mass as measured by bone
volume over tissue volume (Fig. 1 C, BV/TV). Further anal-
ysis revealed a decrease in cortical and trabecular thickness
and in connectivity between trabeculae in 

 

Amylin-

 

deficient
mice, this latter feature being a hallmark of osteoporosis
(Fig. 1, E–G). This low bone mass phenotype observed in
both sexes, starting in 12-wk-old mice (Fig. 1, D and H),
was not secondary to metabolic abnormalities because all
hormonal and metabolic parameters measured were normal
in 

 

Amylin

 

-deficient mice (Fig. 1 A; Table I).

Figure 1. Low bone mass in Amylin-deficient mice. 
(A) Body weight, gonadal fat pad weight, and food 
intake are identical between Amylin-deficient and 
wild-type (WT) mice. (B) X-ray analysis showing a 
decrease in mineral density in 6-mo-old Amylin-
deficient compared with WT femurs. (C) Histological 
analysis of 6-mo-old WT and Amylin-deficient 
vertebrae showing a decrease in bone volume over 
tissue volume (BV/TV). (D) Low bone mass pheno-
type in both male and female Amylin-deficient mice. 
(E–G) Microarchitecture parameters in Amylin-defi-
cient mice. Cortical thickness (E), trabecular thick-
ness (F), and number of nodes (G) were decreased in 
Amylin-deficient compared with WT mice. (H) Bone 
mass of 6-, 12-, and 24-wk-old WT and Amylin-
deficient mice vertebrae. Asterisks indicate statis-
tically significant differences (t � 0.01) between two 
groups (n � 8). Error bars represent SEM.

 

Table I. 

 

Hormonal and metabolic measurements in 
amylin-deficient mice

WT mice
Amylin-deficient

mice

 

Serum calcium (mg/dl) 9.40 

 

� 

 

0.29 9.45 

 

� 

 

0.34
Serum phosphate (mg/dl) 7.04 

 

� 

 

0.31 6.98 

 

� 

 

0.45
Serum PTH (mg/ml) 20.32 

 

� 

 

1.0 22.74 

 

� 

 

3.9
Serum insulin (pg/ml) 218.2 

 

� 

 

10.5 222.1 

 

� 

 

26.0
Blood glucose (mg/ml) 150.4 

 

� 

 

9.9 144.88 

 

� 

 

5.4
Urine calcium/Creat. (mg/dl) 0.52 

 

� 

 

0.13 0.57 

 

� 

 

0.02
Urine phosphate/Creat. (mg/dl) 27.64 

 

� 

 

0.9 25.46 

 

� 

 

1.3

Creat, creatine.
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Increased bone resorption in 

 

Amylin

 

-deficient mice

 

To determine whether the low bone mass phenotype of the

 

Amylin

 

-deficient mice was due to a decrease in bone forma-
tion and/or an increase in bone resorption, we performed
histomorphometric, cell biology, and biochemical analyses.
Bone formation assessed by measuring the bone formation
rate (BFR) after double injection of calcein was comparable
in 12- and 24-wk-old WT and 

 

Amylin

 

-deficient mice; like-
wise the number of osteoblasts was similar in 

 

Amylin

 

-defi-
cient and WT mice at all ages analyzed (Fig. 2, A and B; not
depicted). To exclude that any cellular phenotype in osteo-
blasts not revealed by histology existed, we cultured osteo-
blast progenitor cells and analyzed them after 10 d of culture
for alkaline phosphatase activity, Type I collagen synthesis,
and the presence and size of mineralization nodules. We did
not observe any differences between WT and 

 

Amylin

 

-defi-
cient osteoblasts for these parameters (Fig. S1, available at
http://www.jcb.org/cgi/content/full/jcb.200312135/DC1).
These data do not support the hypothesis that amylin affects
osteoblast differentiation or function in vivo and rule out
that the low bone mass phenotype of 

 

Amylin

 

-deficient mice
is secondary to a defect in bone formation.

Next, we studied bone resorption through biochemical
and histological means. Urinary elimination of deoxypyridi-
noline, a degradation product of collagen and an indicator
of bone resorption was increased in 8-, 12-, and 24-wk-old

 

Amylin

 

-deficient mice (Fig. 2 C). There was an increase in
the number of tartrate-resistant acid phosphatase (TRAP)–
positive cells and surface, i.e., osteoclasts, in 

 

Amylin

 

-defi-
cient bones (Fig. 2, D and E). The increase in deoxypyridin-

 

oline excretion in 8-wk-old mutant mice establishes that the
abnormalities in osteoclast biology underlying the low bone
mass phenotype observed in older 

 

Amylin

 

-deficient mice
were present early during life. These results suggest that the
phenotype of the amylin-deficient mice is related, at least in
part, to bone loss as it occurs in osteoporosis.

 

Amylin inhibits osteoclastogenesis

 

The increased osteoclast number in 

 

Amylin

 

-deficient mice led
us to test whether amylin affects differentiation and/or func-
tion of the osteoclasts. To study osteoclast differentiation, we
used ex vivo culture of bone marrow macrophages (BMMs)
that were cultured in medium supplemented with serum from

 

Amylin

 

-deficient mice to achieve a better controlled amylin
concentration in the extracellular medium when added.

In the presence of receptor activator of NF-

 

�

 

B ligand
(RANKL) and macrophage colony–stimulating factor (M-
CSF) and in absence of amylin, BMMs differentiate into
TRAP-positive multinucleated osteoclasts (Fig. 3, A and B).
This was observed whether we used WT or 

 

Amylin

 

-deficient
BMMs (unpublished data), thus, ruling out the existence of
a cell-autonomous defect in 

 

Amylin

 

-deficient osteoclasts. In
contrast, when amylin was added to the culture medium, we
consistently observed a decrease in the number of TRAP-
positive multinucleated osteoclasts (Fig. 3 A). This decrease
was dose dependent and was observed when using a physio-
logical concentration of amylin (0.5.10

 

�

 

10 

 

M; Fig. 3 A).
Moreover, multinucleated osteoclasts cultured in the pres-
ence of amylin were smaller and had consistently fewer nu-
clei per cell than those cultured in absence of amylin (Fig. 3

Figure 2. Increased bone resorption in Amylin-
deficient mice. (A and B) Calcein double labeling 
in 6-mo-old WT and Amylin-deficient mice. The 
bone formation rate (BFR) is not affected in Amylin-
deficient mice nor is the number of osteoblasts. (C) 
Urinary deoxypyridinoline cross-links elimination 
was significantly increased in Amylin-deficient com-
pared with WT mice at 8, 12, and 24 wk old. (D) 
Increased number of TRAP-positive multinucleated 
osteoclasts in Amylin-deficient compared with WT 
bones. Note the thinner appearance of the trabecu-
lae. (E) Increased TRAP-positive surface per bone 
perimeter in Amylin-deficient compared with WT 
osteoclasts. Asterisks indicate statistically significant 
differences (t � 0.01) between two groups (n � 8). 
Error bars represent SEM.
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B). Similar results were obtained when spleen cells were used
as a source of osteoclast progenitors (unpublished data).
That the number of TRAP-positive mononucleated cells was
similar whether cells were treated with amylin or not,
whereas the number of multinucleated osteoclasts was lower
after amylin treatment indicates that amylin does not affect
the early steps of osteoclast differentiation but only fusion
of TRAP-positive mononucleated cells into TRAP-positive
polynucleated osteoclasts (Fig. 3 C). Consistent with this
function of amylin in vitro, the number of nuclei was signif-
icantly increased in 

 

Amylin

 

-deficient osteoclasts in vivo
when compared with WT osteoclasts (unpublished data).

To determine if amylin affects the function of TRAP-posi-
tive multinucleated osteoclasts, WT BMMs were differenti-
ated into osteoclasts on dentine slices and resorption pit sur-
face was measured. In the presence of amylin, dentine slice
resorption was decreased compared with what was observed
when osteoclasts were cultured in absence of amylin. How-
ever, this decrease was proportional to the decrease in the
number of multinucleated osteoclasts induced by the addition
of amylin (Fig. 3 D). These results demonstrate that amylin is
a regulator of osteoclast differentiation and that it does not af-
fect overtly the function of osteoclasts once differentiated.

 

Amylin inhibition of osteoclastogenesis requires 
ERK1/2 phosphorylation

 

Next, we tested whether signaling events occurring after bind-
ing of calcitonin to CALCR in vitro also occurred when osteo-
clasts were treated with amylin (Chen et al., 1998). Primary
osteoclasts generated from BMMs were stimulated with am-

ylin. Western blot analysis using an antibody specific for the
phosphorylated form of extracellular signal–regulated protein
kinase 1/2 (ERK1/2) showed that ERK1/2 was transiently
and rapidly phosphorylated after amylin stimulation of osteo-
clasts (Fig. 3 E). To demonstrate that ERK1/2 activation is re-
quired for amylin inhibition of osteoclast differentiation,
BMMs were infected with a retrovirus containing a dominant
negative form of ERK1/2 (Robinson et al., 2002) and differ-
entiated in the absence or presence of increasing concentra-
tions of amylin. In osteoclast cultures expressing the dominant
negative form of ERK1/2 amylin could not affect osteoclast
fusion or the number of TRAP-positive multinucleated osteo-
clasts, regardless of the dose used (Fig. 3 F). These data indi-
cate that ERK1/2 phosphorylation is a necessary intracellular
event for amylin inhibition of osteoclast differentiation.

Calcr and Amylin inactivation affect bone remodeling 
in opposite manner
The data presented are compatible with the hypothesis that
amylin inhibitory action on osteoclastogenesis occurs via
CALCR. This hypothesis would predict that haploinsuffi-
ciency of either CALCR’s physiological ligands or of Calcr
itself should result in identical phenotypic and cellular ab-
normalities in bone. Thus, to determine whether CALCR is
the main receptor for amylin in vivo, we generated and
analyzed Calcr-deficient mice and compared their bone
phenotype to the one of Amylin-deficient and Calcitonin/Cgrp-
deficient mice (Fig. 4, A–C). Because homozygous Calcr-
deficient embryos die before skeletogenesis is initiated (un-
published data), this analysis was conducted in heterozygous

Figure 3. Amylin inhibits osteoclasto-
genesis ex vivo. (A) In vitro differentiation 
of osteoclasts is inhibited by amylin at a 
physiological concentration (10�10 M). 
(B) Multinucleated osteoclasts differenti-
ating in the presence of amylin are smaller 
and have fewer of nuclei. (C) BMMs 
proliferation and early steps of osteoclast 
differentiation was not affected by amylin. 
(�) 10�10 M amylin; (�) vehicle. (D) Den-
tine slice resorption assay in the presence 
of vehicle or physiological levels of 
amylin. Resorption is decreased by the 
presence of amylin in a manner propor-
tional to the decrease in the number of 
osteoclasts. (E) In vitro differentiation of 
ERK1/2 dominant negative infected and 
noninfected osteoclasts in presence of 
amylin. ERK1/2 is phosphorylated 5 min 
after stimulation by amylin in noninfected 
culture, whereas this phosphorylation is 
abolished in ERK1/2 dominant negative 
infected cells. (F) Amylin inhibition of 
osteoclastogenesis is abolished in ERK1/2 
dominant negative infected culture. Error 
bars represent SEM. The asterisks indicate 
a statistical difference (t � 0.05) between 
vehicle and treated culture.
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mice. That Calcr expression is decreased twofold in Calcr �/�
osteoclasts allowed us to use Calcr �/� mice as a true model
of Calcr haploinsufficiency (Fig. 4 D).

Calcr �/� mice displayed a high bone mass phenotype due
to an increase in bone formation, whereas bone resorption was
normal (Fig. 4, G and F). This observation indicates that
Calcr is a regulator of bone formation. Calcitonin/Cgrp �/�
mice also had an increase in bone mass (unpublished data)
suggesting that calcitonin and/or CGRP are ligands of
CALCR in vivo. In contrast, Amylin �/� mice presented a
low bone mass phenotype almost as severe as that observed in
homozygous Amylin-deficient mice. This phenotype was also
due to an increase in bone resorption, whereas bone forma-
tion was unaffected (Fig. 4, F and G; Fig. S2, available at http:
//www.jcb.org/cgi/content/full/jcb.200312135/DC1). That
the bone histological abnormalities caused by Amylin haploin-
sufficiency were opposite to those observed in Calcr �/�
mice, indicates that the CALCR is not the main receptor
through which amylin affects osteoclastogenesis in vivo. This
notion was further established by the fact that compound het-
erozygote mice for Amylin and Calcr inactivation presented an
increase in osteoclast number similar to the one observed in
Amylin �/� mice and an increase in BFR similar to the one
observed in Calcr �/� mice (Fig. 4, F and G).

Thus, to date, amylin is the only physiological regulator of
bone resorption among the members of the calcitonin family
of peptide. The fact that Amylin �/� mice develop a low

bone mass phenotype illustrates how important this hor-
mone is for the regulation of bone resorption in vivo. The
observation that amylin is a physiological inhibitor of bone
resorption has medical relevance. Indeed, the predominant
expression of amylin in pancreatic � cells support the hy-
pothesis that the low bone mass phenotype observed in Type
I diabetes patients (Levin et al., 1976) may be secondary, at
least in part, to the absence of amylin secretion in these pa-
tients. This hypothesis can now be tested in animal models.
In view of the important role that amylin plays in the con-
trol of bone resorption, it is now necessary to identify a spe-
cific amylin receptor in order to fully understand how this
novel pathway regulates osteoclastogenesis in vivo.

Materials and methods
Biochemistry
Parathyroid hormone (PTH) was measured using a mouse intact PTH ELISA
kit (Immunotopics). Insulin and glucose were measured after 6 h of fasting
using the immunoassay kit purchased from Peninsula Laboratories and the
Accu-Check glucometer (Roche). Deoxypyridinoline cross-links and cre-
atine were measured in evening urines using the Pyrilinks-D immunoassay
and creatine kit (Metra Biosystems).

Morphological and histological analyses
X rays were performed using a Faxitron (Philips). For histological analyses,
mice were injected with 25 mg/kg calcein 10 and 2 d before sacrifice and
undecalcified bones were embedded in methylmethacrylate according to
standard protocols (Parfitt et al., 1987). Measurements were performed us-
ing a microscope (model DMLB; Leica), a 3CCD color video DXC-390

Figure 4. Different bone phenotypes in 
Amylin �/� and Calcr �/� mice. (A) 
Targeted disruption of Calcr (arrowheads 
represent primers). (B) PCR analysis using 
primers specific for the targeted construct 
confirming efficient recombination at 
the Calcr locus. (C) Presence of the Calcr 
targeted allele was assessed by PCR. (D) 
Decreased Calcr expression in Calcr �/� 
compared with WT osteoclasts as mea-
sured by real time PCR. (E) Bone volume 
over tissue volume (BV/TV) is increased 
in Calcr �/�, decreased in Amylin �/� 
(Am �/�) mice, and increased in Am 
�/�; Calcr �/� mice compared with WT 
littermates. (F) Osteoclasts number per 
bone perimeter is normal in Calcr �/� 
mice and increased in both Amylin �/� 
and Am �/�; Calcr �/� compared with 
WT mice. (G) BFR is increased in Calcr 
�/�, and Am �/�; Calcr �/� mice, 
whereas it is normal in Amylin �/� 
mice. Asterisks indicate statistically sig-
nificant differences (t � 0.01) between 
WT and mutant mice (n � 6). Error bars 
represent SEM.
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camera (Sony) and the OsteoMeasure Analysis System (Osteometrics). Sta-
tistical differences between groups were assessed by t test.

Cell biology and protein chemistry
For in vitro osteoclast differentiation, bone marrow of 6–8-wk-old C57Bl6
mice were flushed and the monocyte fraction isolated by centrifugation on
a lymphocyte separation medium gradient (ICN Biomedicals). Cells were
washed and seeded at 2,500 cells/mm2 and cultured for 7 d in differentia-
tion medium: 	-MEM containing 10% FCS (Invitrogen), 30 ng/ml M-CSF
(R&D Systems), and 50 ng/ml soluble recombinant RANKL (Sigma-
Aldrich). TRAP staining was performed as described previously (Suda et
al., 1997). To assess bone resorption, bone marrow monocytes were
plated on dentine discs (ALPCO Diagnostics) and cultured for 9 d in differ-
entiation medium. Cells were removed by immersion in 0.5 M ammonium
hydroxide and dentine slices stained with Toluidine blue. Resorption areas
were analyzed using osteomeasure software.

Osteoclast infection
BMMs were isolated over a gradient of LSM and 5 
 10�6 cells were plated
in 	-MEM supplemented with 10% FBS and 100 ng/ml M-CSF (R&D Sys-
tems). After 2 d, cells were infected with ERK1/2 dominant retrovirus (a gift
from R. Faccio and S. Teitelbaum, Washington University School of Medi-
cine, St. Louis, MO) for 24 h in the presence of 100 ng/ml M-CSF and 4 �g/
ml of polybrene (Sigma-Aldrich). Infected cells were cultured for an addi-
tional 2–3 d. For in vitro differentiation, 5,000 cells/well were plated in 96
well plates in the presence of 10 ng/ml M-CSF and 100 ng/ml RANKL
(Sigma-Aldrich). After 5 d, cells were stained for TRAP activity. For Western
blot analysis using P-ERK1/2 and ERK1/2 antibodies (Cell Signaling Technol-
ogy), osteoclasts were lysed in RIPA buffer containing 5 mM iodoacetamide,
10 mM NaF, and 0.4 mM Na2VO4 with protease inhibitor cocktail (Roche).

Mice
Generation of Amylin-deficient mice has been described previously (Ge-
bre-Medhin et al., 1998). For the generation of Calcr-deficient mice, a neo-
mycin cassette was inserted in reverse orientation into the Calcr allele in
place of exons 6 and 7 of mouse Calcr (Anusaksathien et al., 2001). After
electroporation of the targeting construct into embryonic stem cells and
subsequent G418/Gancylcovir selection, surviving clones were isolated
and screened by PCR using Neo and Calcr exon 5–specific primers. Het-
erozygous mice were obtained from these embryonic stem cells by stan-
dard procedures. PCR genotyping was performed on tail DNA using Neo
and Calcr exon 6–specific primers. For Calcr expression analysis, RNA was
isolated from osteoclasts generated from WT or Calcr �/� BMMs precur-
sors using TRIzol and reverse transcribed using the superscript II kit (Invi-
trogen). 12.5 ng total RNA equivalent was analyzed by TaqMan technol-
ogy (primer and probe Mm00432271_m1) using an ABI7000 apparatus
(Applied Biosystems). Calcr relative expression value was obtained after
normalization to rodent Gapdh expression (primer and probe 4308329).

Online supplemental material
Fig. S1 provides evidence of the normal osteoblast biology in Amylin-defi-
cient mice. Fig. S2 shows histomorphometric analysis of Amylin �/�
mice. Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200312135/DC1.
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