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Abstract

Patent Citation Analysis has been gaining considerable traction over the past few decades.

In this paper, we collect extensive information on patents and citations and provide a per-

spective of citation network analysis of patents from a statistical viewpoint. We identify and

analyze the most cited patents, the most innovative and the highly cited companies along

with the structural properties of the network by providing in-depth descriptive analysis. Fur-

thermore, we employ Exponential Random Graph Models (ERGMs) to analyze the citation

networks. ERGMs enables understanding the social perspectives of a patent citation net-

work which has not been studied earlier. We demonstrate that social properties such as

homophily (the inclination to cite patents from the same country or in the same language)

and transitivity (the inclination to cite references’ references) together with the technicalities

of the patents (e.g., language, categories), has a significant effect on citations. We also

provide an in-depth analysis of citations for sectors in patents and how it is affected by the

size of the same. Overall, our paper delves into European patents with the aim of providing

new insights and serves as an account for fitting ERGMs on large networks and analyzing

them. ERGMs help us model network mechanisms directly, instead of acting as a proxy for

unspecified dependence and relationships among the observations.

Introduction

A patent is a contract between the inventor or assignee and the state, granting a limited period

of time to the inventor to exploit his invention. The reasons for patenting could be myriad,

ranging from the elementary need for exclusive rights to a particular technology or invention

to building a positive image of an enterprise. In the context where they apply, patents are vital

for technological innovation. Patents often incentivize synergistic partnerships between com-

panies and academic institutions. They are known to be used for generating revenues for pat-

ent assignees and are often used as tools for competitive market advantages. Patents are also

the basis for productive activities within and outside of firms engaged in services and other

important business sectors. An invention is a solution to a specific technological problem and

is either a product or a process. So, essentially patents are important not only for the protection

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241797 December 3, 2020 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chakraborty M, Byshkin M, Crestani F

(2020) Patent citation network analysis: A

perspective from descriptive statistics and ERGMs.

PLoS ONE 15(12): e0241797. https://doi.org/

10.1371/journal.pone.0241797

Editor: Stefan Cristian Gherghina, The Bucharest

University of Economic Studies, ROMANIA

Received: May 3, 2020

Accepted: October 21, 2020

Published: December 3, 2020

Copyright: © 2020 Chakraborty et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is publicly

available and can be accessed from the following

link: http://www.ifs.tuwien.ac.at/imp/marec.shtml

and at https://github.com/Manajit89/ERGM-patent-

analysis.

Funding: This work was partially supported by The

Global Structure for Knowledge Networks project

grant under the SNSF National Research

Programme 75 Data" (NRP 75). There was no

additional external funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-1745-5007
https://doi.org/10.1371/journal.pone.0241797
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241797&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1371/journal.pone.0241797
https://doi.org/10.1371/journal.pone.0241797
http://creativecommons.org/licenses/by/4.0/
http://www.ifs.tuwien.ac.at/imp/marec.shtml
https://github.com/Manajit89/ERGM-patent-analysis
https://github.com/Manajit89/ERGM-patent-analysis


of intellectual rights but also in solving a wide category of technological problems and promot-

ing innovation. Usually, patents are associated with economic growth, but in certain cases,

such as in a time of economic crisis, they can prove to be detrimental to such growth. While

there have been a lot of studies and research carried out on academic research papers [1], the

patents have not been the subject of such a rigorous study on the same scale despite the fact

that the history of patents dates back to the thirteenth century [2].

Patent citations are references to already existing technology within either patents or scien-

tific literature based on which the current patent is modeled. They bear a resemblance to

references in academic research papers. These references are primarily concerned with older

patents (patent-to-patent citations) on which the current one is build to prove novelty or

for continuity (“prior art”) and, generally to a lesser extent, to non-patent items (non-patent

references, NPRs), particularly academic and scientific publications (scientific non-patent

references, SNPRs). The onus of including relevant references in academic and scientific publi-

cations is on the authors. However, in the case of patents, both inventors, as well as patent

examiners, are equally responsible [3]. Having said that, there are significant differences

between patent citations and scientific ones. As pointed out by Meyer [4], there are both orga-

nisational influences, legal and strategic factors and differences in patent examination offices

that dictates which patents are cited. Often a patent not only contains a solution to a problem

but also highlights opportunities for applications. In addition, journal articles do not empha-

sise the deficiency in earlier undertakings as frequently or as rigorously as in patents. Account-

ing for all these factors in understanding which patents are cited and why is beyond the scope

of our study. Hence, we do acknowledge that while there are some parallels between patent

and scientific citations, there are several unique differences as well. In this paper, our objective

is solely focused on trying to understand which factors can possibly affect formation of cita-

tions from a network structure point of view, without accounting for extraneous factors.

In the patent application process, patent examiners suggest missing citations to applicants

to ensure full coverage of related works so as to avoid patent infringement issues. There are

basically two kinds of citations: forward citation and backward citation. Forward citations con-

cern patents which cite a particular patent while backward citations are patents that are cited

by a specific patent. Often, citation analysis is performed over citation graphs to identify simi-

lar works or to measure the impact factor of journals, researchers etc. With respect to academic

citations, numerous methods have been proposed for computing these scores, such as biblio-

graphic coupling [5], co-citation [6] or the Hirsch h-index metric [7]. References to prior pat-

ents i.e., patent citations and the state-of-the-art included therein, along with the frequency

with which prior documents are cited are regularly used as indicators for estimating the com-

mercial and technological value of a patent. Depending on the nature of the technology, patent

citations are often used to identify “key” or pivotal patents.

Global trends for transferring technology could also be inferred from patent data. The geo-

graphical regions that a patent is granted in, demonstrates the wide applicability of the technol-

ogy as perceived by the inventor. Based on the fact that protection for an invention may be

sought in multiple countries, the Organisation for Economic Co-operation and Development

(OECD) developed a proxy measure of technology transfer [8]. This stems from the notion

that inventors and organizations would not be interested in filing patent applications in more

than one country unless there is a market potential for the technology proposed in the patent

in those particular countries.

There are several factors that determine how innovation evolves in a particular geographical

location over a period of time, which includes political, social, environmental, and judicial pol-

icies, among others. While it is nearly impossible to chart all the factors and measure their

impact on innovation, investigating how innovation grows and affects the knowledge flow
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across countries and classes, irrespective of such influences is still very important. Previous

studies, like the one by Acs et al. [9], suggested that patents provide a fairly reliable measure of

innovative activity. According to Trajtenberg [10], apart from serving as indicators, patent

citations represent the causal relationships between citing and cited patents reinstating the

view that innovation is a continuous and incremental process. All of these necessitates a closer

look at patent citation networks, especially with respect to how citations are formed and their

relevance in imparting knowledge about factors influencing them. The literature on patent

citations is vast, and numerous studies have been conducted on different aspects, e.g., ethnicity

[11, 12], social networks [13], geographic proximity [14, 15] and so on. Instead, in this paper

we aim to study the patent citation network from the perspective of citation forming mecha-

nisms and the factors that influence them. This is a novel perspective on the problem.

In this paper, provide an extensive study of the patent citation network from a statistical

viewpoint. In particular, we carry out experiments to understand citation formation mecha-

nisms in patents. We extract comprehensive information on patent meta-data such as assignee,

language, country among others, and employ it in Exponential Random Graph Models

(ERGMs) [16], which are well established statistical models for the analysis of network data.

For our study, we carry out the analysis with the European (EPO) patents from MAREC data-

set (http://www.ifs.tuwien.ac.at/imp/marec.shtmlhttp://www.ifs.tuwien.ac.at/imp/marec.

shtml). The patents in this collection have been aggregated and curated within the period of

1976-2008 in several languages. Thus the contributions in the paper are as follows:

• We provide a methodology based on descriptive analysis of the patent citation network to

gain a shallow understanding of the network structure and its implications.

• We carry out an in-depth study of the citation network among top patent applicants to verify

whether the “small-world” effects holds true in this context. This also acts as a case-study to

identify hubs and authorities within the sample network, thus enabling us a deeper under-

standing of how top companies interact among themselves in terms of patent citations.

• We employ ERGMs on the patent citation network to study the effect of various self-defined

covariates on the patent citation forming mechanisms. We posit that since the patent net-

work is a large network consisting of several nodes and edges, ERGMs will be able to esti-

mate parameters effectively. To the best of our knowledge, such a study focusing on patent

citation forming mechanisms using ERGMs does not exist in the literature that deals with

the effects of factors like the influence of patent recency, overlapping categorization and

so on.

The paper is organized as follows: In the section titled Related Works, we discuss past cita-

tion network studies with special emphasis on patents and delineate our contributions to the

literature. The section titled Exponential Random Graph Models describes the ERGM model in

a brief while also emphasizing the novelty of the algorithm in this context. In Section titled

Data and Analysis Strategies, we describe the dataset used for analysis and the methodology

employed. In the section titled Results and Analysis, we present the results and analyses of our

experiments and finally conclude the paper in section Conclusions.

Related works

The literature on patent data analysis is vast and varied. It is, thus, nearly impossible to list all

the important works in conjunction patent analysis which deal with citations and other biblio-

metric measures. In this section, first we state a few important works in that regard which are
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relevant in context to our work in the broader sense. Also, we devote a section to the relevant

works that involve ERGMs, which again is a vast research landscape on its own.

Patent analysis

It has already been established that statistical analysis of international patent documents acts

as an invaluable instrument for technological planning and analysis within companies. Patents

are a known source of detailed information, providing comprehensive coverage of technolo-

gies and countries, a relatively standardized level of invention, and a long time-series of data

[17]. So, it essentially provides us with a technological indicator to measure technological

growth, which in turn could be extrapolated to get a better understanding of the relation and

mutual dependence of innovation and economics [18, 19].

The field of quantitative evaluation of scientific impact is built upon the intrinsic notion

that the scientific standard of papers [20], scholars [7, 21], journals [22], universities [23] and

countries [24] can be measured by metrics based on the citations received. Bibliometrics has

been employed in a variety of scenarios to measure and analyze citations since they provide a

rich source of information. Scientific papers and scholarly articles have been investigated

using various bibliometric tools, especially citations for a long period [25]. While it is nearly

impossible to study the characteristics of the complete citation graph of scholarly articles,

researchers have chosen to focus on either different aspects of the network or on a subset of

the graph [26]. Patent citation analysis gained traction relatively late (in the 1990s) compared

to their scholarly articles’ counterpart. One of the early studies to measure the technological

impact based on patent citations was done by Karki [27], who proposed several technological

indicators based on citations among patents. Criscuolo et al. [28] have investigated the signifi-

cance of R&D internationalization with respect to host country innovation systems providing

aids in quantifying relative asset augmentation compared to the exploitative nature of foreign-

located R&D Some studies, like the one by Albert et al. [29], have considered only citations

counts as indicators of industrially important patents. The pattern of knowledge flows, as indi-

cated by patent citations between European regions, has been studied by Maurseth and Ver-

spagen [30]. The authors observed that patent citations are industry-specific and citation

propensity increases between geographical regions that are focused on industrial sectors with

specific technological linkages between them. It has also been observed that the frequency of

patent citations is high between regions which belong to the same linguistic groups.

Almeida [31] investigated the contribution patterns of multinational firms in the U.S. semi-

conductor industry through citation analysis. The study reported that foreign firms also con-

tribute to local technological progress significantly. In a study, Hall et al. [32] found that firm

market value, as indicated by the Tobin’s Q ratio, was correlated to the citation-weighted

patent portfolio of the firms. Carpenter et al. [33] and Fontana et al. [34] juxtaposed award-

winning inventions in the form of patents against patents belonging to a control group, dem-

onstrating that important patents are more cited. In fact, it was found that the average number

of citations received by important patents was about 50% higher than other patents. Zhang

et al. [35] proposed to weigh 11 indicators of patent’s technological value by using Shannon

entropy and selected forward citations. Thus, patent analysis spans a multitude of research

areas right from patent search [36], patent classification [37, 38] and categorization to measur-

ing the social impact of patents [39, 40]. Patent citation analysis can thus act as a bridge

between these overlapping areas while providing a cursory overview of the patent landscape.

The primary reason for using citations received as a quality indicator is that citations are able

to capture some form of knowledge spillovers. In fact, citations either serve a similar role or

allows building new technology from an existing one [41]. Consequently, citation chains are
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helpful in tracing technological evolution. In this regard, the centrality of patents in the cita-

tion network can be used to assign scores to patents. However, not all measures of centrality

are equally applicable in all scenarios. There are situations for instance, where we would like to

quantify the citations received as positive but not necessarily how many citations are spawned.

Also, there are various challenges and limitations to citation analysis of patents, including lack

of technical knowledge to process patent citations, geographical constraints and language bar-

riers [42]. Some problems and critiques to citation analysis are presented in the papers by For-

tunato et al. [43], MacRoberts and MacRoberts [44] and Garfield et al.[45]. For patents as well,

citations often are used as proxies or indicators of knowledge growth and spillovers. However,

as pointed out by Jaffe et al.[41], this does come with some inherent limitations especially

when studying the mechanisms associated with the movement of knowledge flows. Our

research also operates under these set of assumptions. There have been prior studies on patent

collaboration network [46] for specific fields, but none have focused on the patent citation net-

work from the perspective of categorical sectors (explained later). A number of studies [13, 47,

48] have focused on the sociological aspects of a patent citation network. In particular, Agrawal

et al.[47] observed that knowledge flows to an inventor’s prior location are approximately 50%

greater than if they had never lived there, suggesting that social relationships, not just physical

proximity, are important for determining knowledge flow patterns. While such sociological

factors are equally relevant for our study, it is often difficult to replicate similar findings for

other datasets due to difference in patenting processes. The impact of innovation on revenue

generation for renowned companies has been studied by Singh et al.[49]. Recently Kuhn et al.
argued that due to systemic changes in the data generation process, many of assumptions in

patent citations are no longer valid [50].

In this paper, apart from presenting detailed descriptive analyses of the citation networks,

we also use ERGMs to study how technical features of the patents and social processes influ-

ence citation formations. Similar to the work done by An and Ding [51], we model the effects

of a list of covariates we extracted from patents distinguishing between receiving and sending

citations. In this study, we provide theoretical expectations on the effects of the covariates and

discuss how different patent characteristics can matter for citations. We also aim to account

for the homophily in citation formations, especially with respect to the same country and the

same language.

Exponential random graphs

Exponential Random Graph Models (ERGMs) are statistical models of network structure, per-

mitting inferences about how network ties are patterned [52]. ERGMs have been applied to

several fields such as economics [53], sociology [54], political sciences [55], international rela-

tions [56], medicine [57] and public health [58] with varied application ranging from modeling

micro-blog networks [59], studying relational coordination among healthcare organizations

[60] to strategic management research [61]. Social network models too have attracted consid-

erable attention from physicists [62, 63] and have been pivotal in the development of interdis-

ciplinary perspectives [64]. On the other hand, networks have been extensively studied from

the perspective of preferential attachments. For instance, Barabási et al. [65] demonstrated that

in a large network such as World Wide Web, despite its apparent random character, the topol-

ogy of the graph has a number of universal scale-free characteristics. While Jeong et al. [66]

proved that nodes acquire links depending on the node’s degree, offering direct quantitative

support for the presence of preferential attachment in scientific citation networks. However,

little research exists on studying and understanding patent citation networks from a social and

structural perspective. We believe our current work will help researchers gain a preliminary
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understanding of how treating patent citation networks can lead to a more inclusive and inter-

disciplinary understanding of the impact of patents.

Exponential random graph models

We use Exponential Random Graph models (ERGMs) to examine citation patterns. ERGMs

are a well established family of statistical models for the analysis of network data. An ERGM

assumes that the observed network is a random network, and comes from an exponential fam-

ily of probability distributions [67, 68]. Let us assume that x is a network with N nodes. Mathe-

matically, it can be represented by a N × N matrix x = [xi,j] of binary tie variables. Here xi,j = 1

if patent i cites patent j, otherwise xi,j = 0. ERGM may be written in the following form:

pðxÞ ¼ exp
XS

s¼1

ysgsðxÞ

 !

=Z ð1Þ

where π(x) is a probability of network x and Z is a normalizing constant to ensure that this

probability distribution sums to 1; θi are model parameters, and gs(x) are the network statistics

that will be employed for the study. The number of statistics S may be large, but as it states in

Eq (1) we have one parameter for one statistic. The value gs(x) may be defined for any feature

of interest. A simple example is the number of network ties gL(), which is given by:

gLðxÞ ¼
X

xi;j ð2Þ

The typical network features are transitivity, degree distribution and homophily [16]. Statis-

tics for these structural features were proposed by Snijders et al. [69]. ERGMs have been

known to account for both endogenous network formation processes and covariate effects.

ERGMs can be used to model many different network features simultaneously and do not

assume that these features are isolated. In order to find a feature in the network data or to

check a hypothesis, researchers may compare the value of statistics of the network under study

with that in a random network. However, real networks are not random, and instead of com-

paring them with completely random networks it is better to compare with a NULL model,

that takes into account both transitivity, degree distributions, and all the other important net-

work features. The capability of ERGMs to model all these features simultaneously solve the

problem of the NULL model in an elegant way.

ERGMs permit statistical inference from the observed network xobs. The parameter of the

model should be estimated by maximizing the likelihood π(xobs). It may be shown [70] that

maximizing the likelihood for this probability distribution is equivalent to finding the solution

of the following system of equations:

gðxobsÞ ¼ EygðxÞ ð3Þ

where Eθ g(x) = ∑x π(x)g(x) are expectation under the ERGM distribution, and we adapted the

vector notations g(x) = (g1(x), g2(x),.., gS(x)), θ = (θ1, θ2,.., θS). In completely random networks,

we would have θs = 0 for all the statistics, but real networks are not completely random. If the

estimated parameter θs is significantly larger than zero, then the corresponding statistics

gs(xobs) is larger than might be expected by chance given all the other parameters of the model.

This statistical methodology allows a detailed analysis of the network data and is particularly

suitable for hypothesis testing.

Nevertheless, as has been pointed out by An and Ding [51], studying citation networks

using ERGMs poses several challenges. It is a known fact that it is difficult to fit ERGMs on

large networks. For large networks composed of thousands of nodes and edges such as the
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ones studied in this paper, fitting ERGMs may be very slow. This is owing to the fact that

ERGMs rely on Markov chain Monte Carlo to simulate networks for estimations. The estima-

tion of parameters of ERGMs by maximization of the likelihood is a computationally expensive

procedure. In practice, the size of the largest network for which ERGM parameters may be

estimated by this method is limited to a few thousand nodes [71]. For larger networks, the

solution of Eq (3) cannot be found in a reasonable time. Researchers either have to study

smaller sub-networks or to use very crude approximations, like for example, contrastive diver-

gence or pseudolikelihood [51, 71]. Recently a very efficient algorithm for the solution of Eq

(3) was proposed [72, 73]. This new algorithm may be considered as a modification of the algo-

rithm proposed by Laurent Younes [74] and was implemented in open-source software (avail-

able at: https://github.com/stivalaa/EstimNetDirected) for fitting ERGMs to large directed

networks [75]. In this paper we have used this software for the analysis of patent citation net-

works. Loading data and carrying out computations with large networks demands a lot of

memory, and we use a cluster of computers to solve this issue.

A citation network is a directed network, and to analyze it we adapt statistics which are typi-

cal for such networks. We model both the endogenous structural features and the effect of the

patent attributes. The transitivity is modelled by AltKTriangleT (GWESP), the degree distribu-

tions are modelled by AltInStars (GWIDEGREE) and AltOutStars (GWODEGREE), and the

two-paths are measures by AltTwoPathesTD (GWDSP) [16, 76]. Besides, we studied the effects

of some attributes on the network formation, such as the sender and the receiver effects. The

sender effect is the effect of binary patent attributes ai on the probability of tie xi,j which may

be studied by adapting the following statistic:

gsendðxÞ ¼
X

i;j

aixi;j ð4Þ

while the receiver effect may be studied by

grecðxÞ ¼
X

i;j

ajxi;j ð5Þ

The homophily effect increases the probability of ties between node i and j if these nodes

share the same value of an attribute:

ghomoðxÞ ¼
X

i;j

dai ;ajxi;j ð6Þ

where δ is a Kronecker delta function [75, 77]. The homophily has the same effect on both ties

xi,j and xj,i. A citation network is a special type of directed network, because a patent only cites

patents that are already published. Mathematically this means that the probability of a tie xi,j is

very small if di< dj, where di is the date of publication of patent i. One can expect that the pat-

ents do not cite patents that are not published yet, and hence probability of citations from i to j
is close to zero if di< dj. Otherwise we would have gdate(x)>0. From Eq (1) one can see that

the probability π(x) of such networks will be very small if the corresponding parameter has a

large negative value [51]. We incorporated this effect by adding another statistic

gdateðxÞ ¼
X

i;j

Hðdj � diÞxi;j ð7Þ
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where H(y) is a unit step function, defined as:

HðyÞ ¼

(
0; if y � 0

1; otherwise:
ð8Þ

We know in advance that in citation networks the corresponding parameter value θdate is

negative. Following An and Ding [51], instead of estimating the value of this parameter, we

always used a constant value θdate = −1010.

Finally, we fit ERGMs only on the sector citation networks in which isolated nodes (that is,

patents that do not cite or get cited by any other patents) are discarded [78]. The results based

on the sector networks can be interpreted as capturing citation patterns among the patents

from that particular sector. One limitation of this method is that some of the results obtained

for sub-networks may not generally be applied to the complete citation network comprising of

all the sectors. In general, results become more reliable as the size of sub-networks increases.

Data and analytical strategies

Dataset

For our experiments, we worked with the European Patent (EP) sub-collection from the

MAtrixware REsearch Collection (MAREC). This sub-collection of patents consisted of

around 1.2 million (granted) patents in English, German and French for a period of 32 years

(1976-2007), provided in XML format. From each patent document, we extracted the relevant

bibliographic and meta-information such as Date, Language, Title, Applicant Country, Appli-

cant, List of Inventors, Classification Codes, Patent-Patent (P-P) citations, and Patent-Non-

Patent (P-NP) citations. In this study, we only focus on the patent to patent citations and thus

ignore the patent to non-patent citations, such as to scholarly papers, books etc. We discarded

some patents with missing Applicant Country, Classification Codes and P-P citation fields.

The total number of curated patents thus stood at 757,869. For building a citation network

from these curated patents, we had to eliminate patent citations outside of European Patent

Office (EPO), since we did not have any information about such cited patents (e.g., patents

from the National Patent Offices, or the World Intellectual Property Organization (WIPO),

etc.) apart from EPO patents contained in this sub-collection. Also, we had to eliminate cita-

tions that belonged to the time period beyond our collection scope, such as the ones from

before 1976. The citations formed by these patents that are out of our dataset and older than

1976 are termed as “non-relevant” (although we recognize that they might be). So, the initial

network consisted of 3,252,497 citations, and after eliminating non-relevant citations, the net-

work reduced to 646,537 citations.

European Patents registered with the European Patent Office (EPO) follow the Interna-

tional Patent Classification (IPC) system (https://www.wipo.int/classifications/ipc/ipcpub/)

under which each patent can be broadly classified under one (or more) of the eight classes or

sectors from A to H.

A: Human Necessities

B: Performing Operations; Transporting

C: Chemistry; Metallurgy

D: Textiles; Paper

E: Fixed Constructions
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F: Mechanical Engineering; Lighting; Heating; Weapons; Blasting

G: Physics

H: Electricity

Each of these sectors are further classified into four levels of sub-classes or categories. Fig 1

describes one instance of such classification.

In Tables 1 and 2, we provide the sector wise and category wise (the third level of the classi-

fication hierarchy) distributions of the curated patents respectively. One can notice that the

sum of the number of patents in Table 1 is more than 757,869. This is owing to the fact that a

Fig 1. IPC classification example.

https://doi.org/10.1371/journal.pone.0241797.g001

Table 1. Sector wise distribution of patents.

Sector #Patents

B 218000

C 183809

G 167318

H 157790

A 151226

F 97498

E 33628

D 23581

https://doi.org/10.1371/journal.pone.0241797.t001
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single patent can belong to multiple sectors (and categories). In other words, when we counted

the number of patents belonging to a particular sector (or category), we considered all the pat-

ents that were classified with the sector (or category) label. For instance, in the dataset, patent

document EP0000001 has been classified with sector labels B, F, G and H. Thus, while count-

ing for the number of patents for sectors B, F, G and H, we consider EP0000001 to appear in

each one of them.

In this paper, we study the citation networks built from sectors B and E. Our objective is to

try and compare the results of our experiments on different sized networks. The correspond-

ing networks of sector B and E have 101,128 and 12,256 citations, respectively. The networks

for sector B and E have been made available for public-use on https://github.com/Manajit89/

ERGM-patent-analysis. For building these citation networks, we retained citations from the

original network where both the citing and cited patent belongs to sector B or E. Since sector

B has the largest share of patents, we expect that there will be significant differences of such a

large network when compared to a relatively small network such as the one built from patents

in sector E.

Analytical strategies

In the literature, scientific collaborations and structure of science have been studied using cita-

tion network methods [79–81]. Particularly, citation networks have been examined to study

information diffusion [82, 83] and scholarly impact [84–86]. Most of these previous works on

studying citation networks have been focused on simply providing descriptive analyses. The

work done by An and Ding [51] was one of the first studies that looked beyond descriptive

analyses. ERGMs were employed to investigate how citation formations are affected by techni-

cal features of the scientific publications and social processes.

To the best of our knowledge, no such study exists with respect to patent citation networks.

Taking a cue from the work by An and Ding [51], we extracted a host of covariates from patent

documents (see later) and model their effects, distinguishing effects on receiver and sender

characteristics of citations. We also provide theoretical expectations on the effects of the covar-

iates and demonstrate the influence of patent characteristics on patent citation formation. The

analyses presented in this paper also aims to account for the homophilous nature of the cita-

tion formations [87]. We anticipate that citations have a tendency to form between patents

that are in the same language and patents that belong to the same country.

Further, we also analyze multiple endogenous network formation processes in citations.

We explore citation transitivity (i.e., if Y is cited by X and Z is cited by Y, then Z is more likely

Table 2. Category wise distribution of patents (top 10).

Category #Patents

A61K 47884

C07D 28247

A61P 27234

H01L 24857

C07C 24158

G01N 23894

G06F 23175

B01J 19941

H04L 19807

A61B 18887

https://doi.org/10.1371/journal.pone.0241797.t002
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to be cited by X). We posit that transitivity in citations can occur because inventors (and some-

times even patent examiners) may use a snowball strategy[51] to find new patents and similar

documents by following the references of other such documents. We also examine preferential
attachment [51] or advantage of citation cumulation, namely, the fact that patents that have

historically received a higher number of citations are prone to receive even more citations

over time. We anticipate that some patents will receive more citations than other patents, and

hence the number of citations received by different patents will vary widely. While at the same

time, we expect that the variation in the outgoing citations might be small. Moreover, our anal-

ysis takes into account a distinctive feature for citations i.e., there are no forward referencing

in patents, implying that earlier patents cannot cite later ones.

For each patent, we extracted and constructed a series of covariates. These covariates are

employed to model a host of possible mechanisms for the formation of citations. For example,

a patent may cite another patent because they are written in the same language [88] or if they

belong to several categories indicating a diverse patent. To clarify, assuming two patents on

similar technologies (one in English and other in German) that could be cited by an applicant,

they tend to lean towards the reference patent written in the language of the citing patent. A

recent patent may invoke interest in some sectors or categories, and this might result in accru-

ing more citations and so on. As described below, each of these citation mechanisms can be

quantified and compared using various covariates, and different aspects of the mechanisms

may be measured by each of the covariates. Thus, it is hard to differentiate between the mecha-

nisms and the effect of the covariates to the mechanisms.

The patent covariates that we studied in this paper are listed below:

1. Swiss Patent (binary variable, IsSwiss = 1; others = 0): We wanted to study the effect of

country of origin of the patent on citation formations. In particular, since this is a study

funded by a Swiss National Science Foundation (SNF) project, we were interested in

observing the characteristics of the patents when they are filed by applicants belonging to

Switzerland. Obviously, we could repeat the study focusing on any other country.

2. Patent Recency (binary variable, IsRecent = 1; 0 otherwise): We expect that how long ago a

patent has been granted will affect how many citations it attracts. For this, we define recency
as a measure which can be of either five or ten-year category. This implies that the patent

was granted in the last five or ten years, respectively. Recency effect in the network, espe-

cially of scientific citations, already studied in the literature [89], showed that sometimes

citing a recent scientific can amount to both reputation and visibility of the cited article

over a longer period. In lieu of that, we also wanted to confirm if a similar hypothesis holds

for patent citation networks.

3. Whether the patent belongs to Multiple Categories (binary variable, IsTrue = 1, 0 other-

wise): This parameter takes into account the diversity of a patent. If a patent belongs to four

or more categories (as defined in Section Dataset), it is considered as a multi-categorized

patent. We expect that patents with more categories will attract more citations by virtue of

belonging to several different domains.

4. Whether the patent was filed by a Prolific Applicant (binary variable, IsTrue = 1, 0 other-

wise): We wanted to observe the effect of a patent when it is produced by a company or an

organization which has a history of filing a large number of patents (i.e., a prolific com-

pany). This definition is supported by Fig 2, where we show a truncated view (of 5000

companies from Table 4 except the top 100) of the number of companies with the highest

number of patent grants within the period 1976-2008. We considered the companies with

at least 50 granted patents within the mentioned time period as ‘Prolific Applicant’.
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5. Language (binary variable): We expect that the language that a patent is filed in will also

affect how citations are modelled. In particular, we study the effect of this parameter with

respect to each of the three languages in the dataset, English (EN), German (DE), and

French (FR).

Statistics that are exclusively based on the network information shared by node pairs, a and

b, also known as dyads are referred to as dyadic endogenous network statistics. We create

three dyadic variables to represent assortative mixing mechanisms in citation formations.

• Whether any two patents belong to the same country i.e., they are produced by applicants

from the same country (yes = 1; no = 0).

• Whether any two citing patents are written in the same language (yes = 1; no = 0).

• Whether there is an overlap between the categories of any two patents (yes = 1; no = 0), i.e.,
the two patents share some of the common categories.

We employ two methods to analyze the citation data. Firstly, we present descriptive analy-

ses of the citation network in patents. We present the distribution of the number of patents

over the years, the most cited patents, the top companies, etc. Also, we describe the primary

characteristics of the citation network, including:

• transitivity (the propensity of a patent to cite the references of references)

T ¼
3� number of triangles in the network

number of connected triples of nodes in the network
ð9Þ

Fig 2. Patent distribution by top-5000 companies (best viewed in color) without top-100 companies. The threshold

line for Prolific Applicants is marked with a red dashed line.

https://doi.org/10.1371/journal.pone.0241797.g002
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• density (the fraction of all possible citations that are present in the observed citation net-

work)

D ¼
jEj

jVjðjVj � 1Þ
ð10Þ

where |E| and |V| represents the total number of edges and vertices (nodes) in the network.

• centralization (the propensity of citations to asymmetrically converge on a few patents),

• indegree (the number of citations received),

• outdegree (the number of the patent cited other patents),

• betweenness (the number of times a patent is on the shortest path that connects any two

other patents).

gðvÞ ¼
X

s6¼v6¼t

¼
sstðvÞ
sst

ð11Þ

where σst is the total number of shortest paths from patent s to patent t and σst(v) is the num-

ber of those paths that pass through v.

In the context of patents, indegree may be perceived as indicative of a patent’s influence

in the field, outdegree can be an indicator for a patent’s interaction with other patents, and

betweenness as reflective of a patent’s brokerage power (that is, the concerned patent plays the

role of connecting diverse topics and sub-categories).

By receiver effects, we aim to capture the likelihood of patents with certain traits to overtly

cite patents with similar traits than citing patents without those traits. Similarly, the sender

effects capture the likelihood of patents that are more likely to be cited by patents with certain

traits rather than those without those traits. The assortativity of the citation mechanisms is

measured by homophily effects and indicate whether patents with the same characteristics

(e.g., belonging to the same category or geographical location) are more inclined to cite one

another than those with different characteristics. We fit this model on the sector citation

networks.

Additionally, we also incorporate multiple endogenous network formation processes and a

variable which indicates forward referencing. We have included the geometrically weighted

edgewise shared partners (AltKTriangleT) to account for transitivity in the citations. AltK-

TriangleT indicates the propensity of citations to form a triangle (that is, if X cites Y and Y

cites Z, then X is expected to cite Z). AltTwoPaths represents the propensity of citations to run

across two paths but not form a triangle (that is, X cites Y and Y cites Z, but X does not cite Z).

Generally, if there is a positive coefficient for AltKTriangleT and a negative coefficient accom-

panies it for AltTwoPaths, it indicates that higher levels of transitivity are present in the cita-

tions [90, 91].

Results and analysis

Descriptive statistics

We begin by presenting some statistics about the patent citation network. Table 3 presents pat-

ents with the highest number of citations. The citation distribution for the complete network

is provided in Fig 3. From this figure, we can observe that only few patents have a high count

of citations, while the majority of the patents receive very few citations.

In Table 4, we list the highly influential companies or organisations with the highest num-

ber of granted patents within the aforementioned time period. We did not need to perform
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any form of name normalisation since in the dataset there were no discrepancies associated

with applicant names. In this table only companies with 10 or more patents are presented,

which we label as ‘Prolific Applicant’ and used as covariate in Section “Analytical Strategies”.

Table 5, on the other hand, describes the country-wise distribution of patents. It is interesting

to note that even though the dataset is concerned with patents filed at the European Patent

Office, most of the patents originate from the United States of America (U.S.). A summary of

the descriptive statistics of the complete citation network is presented in Table 6. As indicated

by the extremely low density, the network is extremely sparse. Low centralization score also

depicts that the citations are not concentrated only on a few patents. This is in agreement from

the findings of An and Ding [51] with respect to academic citations. The degree of reciprocity

is also very low which indicates that there are only about 1% mutual citations, due to lack of

forward references. A low degree of transitivity—about 5% of the patents cite their references’

references is also noted. The reciprocity in the network arises due to some discrepancies in the

dataset, i.e., due to presence of some cycles within the network.

Table 3. Top-5 patents by citation count.

PatentID #Citations

EP-1652580 129

EP-1829684 129

EP-1621338 127

EP-1635216 126

EP-1757984 126

https://doi.org/10.1371/journal.pone.0241797.t003

Fig 3. Patent citation count distribution.

https://doi.org/10.1371/journal.pone.0241797.g003
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We can observe that each patent receives about 0.85 citations. There is a high correlation

between indegree and betweenness, suggesting the likelihood that patents that are cited across

different categories are also the ones with a higher number of citations. There is also a strong

correlation between indegree and outdegree, indicating the tendency that highly cited patents

often cite more patents.

In Fig 4 presents the degree distribution of the full citation network. Both indegree and out-

degree show similar patterns with the majority of the patents having both high indegree and

outdegree.

Fig 5, shows the distribution of degree centrality of all patents, and we can observe that a

large number of nodes appear with low centrality. In contrast, only a few nodes have high

centrality.

ERGMs

Endogenous network formation processes contribute significantly in citation formations and

network inference in general and should be taken into account to improve the quality of infer-

ence. A good network generating model should fit density, transitivity, and degree distribution

in addition to other effects, that researchers want to study. For computational purposes, we

Table 4. Patent distribution for companies/organizations.

No. Company/Organization #Patents

1 SIEMENS AG 11939

2 MATSUSHITA ELECTRIC IND CO LTD 5832

3 BAYER AG 5313

4 BASF AG 4575

5 IBM 4328

6 SONY CORP 3927

7 PHILIPS NV 3727

8 GEN ELECTRIC 3702

9 EASTMAN KODAK CO 3691

10 CANON KK 3584

11 BOSCH GMBH ROBERT 3458

12 HOECHST AG 3437

13 CIT ALCATEL 3317

14 SAMSUNG ELECTRONICS CO LTD 3189

15 OREAL 3057

16 HITACHI LTD 2773

17 PROCTER & GAMBLE 2668

18 FUJITSU LTD 2568

19 TOKYO SHIBAURA ELECTRIC CO 2547

20 CIBA GEIGY AG 2468

. . . . . .

7587 SCHIFFER FA M & C 10

7588 WALKER ASSET MANAGEMENT LTD 10

7589 MASONITE CORP 10

7590 OLIVEIRA & IRMAO SA 10

7591 DEHN & SOEHNE 10

. . . . . .

https://doi.org/10.1371/journal.pone.0241797.t004
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chose to work with sector-based citation network, where the citations within the sectors are

preserved, instead of the complete network. In Table 7 we present the covariate effects when

the ERGM is fitted on the sector E citation network. “Edges” (arcs) act like regression inter-

cepts and are required to fit the density of the network under study.

A large coefficient for “AltKTriangleT” implies that a reference’s reference is more likely to

be cited. The negative coefficient for “AltTwoPathesTD” indicates that citations that do not

form a triangle have fewer chances of occurring. Observing “AltKTriangleT” and “AltTwo-

PathsTD” together corroborates that citations have a tendency to be transitive, which could be

due to the fact that inventors, generally, tend to snowball-sample the literature to discover and

learn about existing technologies within the sector. The negative coefficient for “AltInStars”

implies that comparing to other effects, there is no strong preferential attachment.

From Table 7 one can see that besides transitivity another strong effect is the overlapping

category. The high positive value of the corresponding parameter means that when two patents

share the same category, they are about 300 times (e5.71� 300) more likely to cite each other.

Table 5. Patent distribution by country (Top-20).

Country Code #Patents

US 181914

DE 146628

JP 144117

FR 85667

CH 34167

IT 30769

GB 28279

NL 24545

BE 9693

KR 9250

SE 9206

AT 7159

AU 7014

CA 5884

ES 4054

FI 4038

TW 3865

DK 2997

IL 2513

CN 2460

. . . . . .

https://doi.org/10.1371/journal.pone.0241797.t005

Table 6. Summary statistics of citation network.

Parameter Value

Density 1.568e-06

Transitivity 0.005

Reciprocity 0.001

Avg. In-Degree 1.1316

Avg. Out-Degree 1.1316

Betweeness Centrality 8.292e-06

https://doi.org/10.1371/journal.pone.0241797.t006
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Fig 4. Degree distribution of citations (best viewed in color).

https://doi.org/10.1371/journal.pone.0241797.g004

Fig 5. Distribution of degree centrality.

https://doi.org/10.1371/journal.pone.0241797.g005
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Also, if the patents were issued in the same country, they are much more likely to cite each

other. In fact, a patent generated from a particular country has 3 times more chance of citing a

patent from that same country than others. This finding is in line with the research carried out

by Singh and Marx [14] where they showed that there is a 77% greater likelihood of within-

country knowledge flow in the U.S. than across national borders. While this would seem deriv-

ative, it was particularly interesting to see the same effect in a different dataset using a robust

approach like ERGMs. Combining the above two observations, likelihood of patents being

cited because they belong to same categories and that they are generated from country, also

indirectly verifies the findings of Agrawal et al. [13] where they pointed out that both geo-

graphical and social proximity have a positive influence on patent citations.

We also observe a tendency to cite patents written in the same language. However, compar-

ing to “same country” and “overlapping category” the effect of the patent language on citation

pattern is not very strong. In literature, there have been studies focused on whether ethnicity

has a role to play in information diffusion [11]. For instance, Kerr [12] compared the knowl-

edge production and diffusion between two different ethnic communities in the U.S. and

showed that poor access to the codified and tacit knowledge regarding new innovations does

contribute to slow technology diffusion. While very relevant to our study, verifying if the same

holds true for our context was out-of-scope since we did not have information regarding the

ethnicity of the inventors of patents in the MAREC dataset.

Table 7. ERGM results for predicting the sector E citation network.

Estimation Standard Error

Edges -9.660834 0.1017339�

Receiver Effects
Swiss Patent 0.268999 0.0200916�

Recency (5 year) 0.06767537 0.01348582�

Recency (10 year) 0.2858105 0.01691144�

Multi-Categorization -0.5059612 0.01740204�

Prolific Organization/Company 0.130446 0.01019256�

Language (EN) 0.1347897 0.1020575

Language (DE) -0.118628 0.09924686

Language (FR) 0.1186651 0.1016732

Sender Effects
Swiss Patent 0.1379004 0.01411045�

Recency (5 year) -0.1649588 0.01139841�

Recency (10 year) -0.3704575 0.01555657�

Multi-Categorization -0.07931266 0.00865454�

Prolific Organization/Company 0.06954835 0.009215311�

Homophily
Same Country 1.120555 0.02561618 �

Same Language 0.3065091 0.01443439�

Overlapping Categorization 5.713291 0.02372079�

Network Structures
AltInStars -1.197857 0.01680285�

AltOutStars -0.1323321 0.006557173�

AltKTrianglesT 5.095065 0.201787�

AltTwoPathsTD -2.482252 0.02188758�

Statistical significance (p< 0.05) is marked by an asterisk (�).

https://doi.org/10.1371/journal.pone.0241797.t007
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Often it is desirable to identify an important patent as early as possible. A simple measure

of the value of a patent is the number of citation the patent receives. However, the number of

citations depends on both time and many other factors that we want to study. We will measure

these effects by “receiver effect”. The corresponding parameter values in Table 7 measure the

effect of different covariates on the patent value. It is intuitive that, in general, recent patents

will have fewer citations than older ones. However, our results clearly demonstrate (see

Receiver Recency effects in Table 7) that more recent patents are more likely to be cited. This

could be attributed to the fact that often newer patents provide incremental updates on an

existing patented technology, and hence they do not necessarily cite older patents.

Currently, a trend toward interdisciplinary research is observed in science. To the best of our

knowledge by now, nobody studied the impact of interdisciplinarity on the patent value. We

can consider the patent as interdisciplinary if it has many categories in its classification. We can-

not predict it intuitively, but the results from Table 7 suggest that interdisciplinarity does not

increase the patent value. In general, patents with fewer categories are more likely to be cited.

Not surprisingly, the patents from top companies have higher value and are more likely to

be cited, and this is confirmed by our results. Besides, our results clearly show that on average

Swiss patents are more likely to be cited.

Table 8 presents the ERGM model fitted on the Sector B citation network. The number of

patents (nodes) in this network is almost 7 times more than that of in Sector E. However the

results presented in Tables 7 and 8 are qualitatively the same. It should be noted that when

Table 8. ERGM results for predicting the sector B citation network.

Estimation Standard Error

Edges -13.1524 0.2792836�

Receiver Effects
Swiss Patent 0.3411597 0.03394782�

Recency (5 year) 0.202162 0.03496354�

Recency (10 year) 0.5098135 0.03048308�

Multi-Categorization -0.6633106 0.03248871�

Prolific Organization/Company -0.004699791 0.009330533

Language (EN) 1.214152 0.2773483�

Language (DE) 1.050985 0.2756068�

Language (FR) 1.277216 0.2796773�

Sender Effects
Swiss Patent 0.2736611 0.03021695�

Recency (5 year) -0.351124 0.02299567�

Recency (10 year) -0.4450601 0.02443803�

Multi-Categorization -0.402847 0.02749438�

Prolific Organization/Company -0.04666712 0.01378666�

Homophily
Same Country 1.247913 0.03255275�

Same Language 0.1931007 0.02258632�

Overlapping Categorization 6.460526 0.05387754�

Network Structures
AltInStars -0.801325 0.02246942�

AltOutStars -0.2367434 0.01797419�

AltKTrianglesT 6.670764 0.5784175�

AltTwoPathsTD -1.799021 0.03105744�

Statistical significance (p < 0.05) is marked by an asterisk (�).

https://doi.org/10.1371/journal.pone.0241797.t008
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while analyzing the citation networks of each sector with ERGMs, we operate under the

assumption that each sector citation network is independent of each other.

Analysis of citation network among top companies

Often in a large network, we can witness the “small-world” effect where certain nodes can be

reached within a few hops of each other. This effect has been studied extensively in the litera-

ture [92, 93]. Bialonski et al. [94] showed that small-world characteristics of interaction net-

works occur due to the spatial sampling of dynamical systems. Ansmann and Lehnertz [95],

proposed the use of surrogate networks which preserves the strength of the full network in

order to study the network characteristics. Surrogate networks also facilitates the presence of

small-world, in that respect, which sometimes can provide additional information about net-

work-specific characteristics and thus aid in their interpretation.

In our case, the citation network among the 20 most prolific companies with regard to

patents is presented in Fig 6. Companies are represented as nodes, and each edge represents

the citation counts between companies. The size of the node is proportional to the citations

received by the node. The network in the graph exhibits a core-periphery structure with some

specific nodes acting as authorities. For instance, we can notice that “Siemens AG” has a lot of

incoming links but no outgoing links, suggesting that while other companies in top-20 tend to

cite patents from other companies, the leading ones do not necessarily cite others. This repre-

sents a hierarchy among prolific companies and makes the citations asymmetric. Also, there

are companies that tend to cite other top companies a lot like for instance, “BASF AG”. This

could be attributed to the fact that patent citations are often invoked due to legal issues and

completeness ensured by patent examiners. On the other hand, there are companies like “Sie-

mens AG” which are cited a lot while themselves citing very few top companies. This either

reflects that such companies work in a niche area and have a umbrella effect on other compa-

nies or that there are certain patents held by such corporations that are essential to innovation

and production of knowledge in certain areas and hence the large number of citations. Both

kind of companies are helpful in disseminating knowledge throughout the network by virtue

of citing other companies’ patents. In fact to realize this fact we provide in Fig 7 the periphery

structure for the topmost applicant ‘SIEMENS AG’ and we can notice that there is a significant

amount of citations to the central node. Due to lack of clarity in visualizing all the nodes in the

graph, we could not present the plot for the complete set of nodes and edges. However, it is

clear from Figs 6 and 7, that there is a peripheral structure in the network.

For the whole network we computed the list of hubs and authorities which is presented in

Table 9. It is interesting to note some applicants like “Siemens AG” appear in both the top-10

hubs and authorities list and the same effect is observed in the graph of top applicants. Another

interesting observation is that the graph shows a “small-world” effect where any top company

can reach another with only a few steps [96]. To statistically determine this effect we followed

the procedure as listed below:

• We computed the average shortest path length L and the clustering coefficient C of the network.

• We then generated an ensemble of null-model networks, including a Erdös-Rényi random

graph and a Maslov-Sneppen random graph.

• Next we calculated the mean of the average shortest path length Lr over the ensemble of null-

model networks and analogously computed Cr.

• Finally we computed the normalised shortest path l ¼ L
Lr

and g ¼ C
Cr

.
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The values we achieved for λ = 0.897(�1) and γ = 2.346(>1) verify the small world effect in

our network and thus substantiates our hypothesis.

Conclusions

In this study, we review patent citations within the scope of citation networks. Following the

trend of existing studies, we have presented detailed descriptive analyses by indicating the top

patents, the most cited patents, and the properties of the citation networks. However, in partic-

ular, we also use ERGMs to understand detailed statistical analyses of the citation formation

mechanisms in the network. We demonstrate that various patent characteristics have an

effect on citations. Both technical features and social processes, like homophily, preferential

Fig 6. Citation network among top-20 prolific companies (best viewed in color).

https://doi.org/10.1371/journal.pone.0241797.g006
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attachment, and transitivity can lead to the formation of citations. Particularly, our statistical

analysis confirms that patents are much more likely to cite each other if patent applicants are

from the same country, if patents are classified by the same category, or if patents are written

in the same language. We have found that recent patents are more likely to be cited. Finally,

we observed that being interdisciplinary had no the impact on patent citations. We believe

that by employing ERGMs on patent citation network we are facilitating a new research ave-

nue for future exploration by researchers to investigate ways in which existing innovation

affects future innovation.

Moreover, we provide analyses of the citations among the top companies in the citation net-

work. We observed that companies (or organizations), depending on their network positions,

play different roles in the citation network. It corroborated our intuitive hypothesis that the

ones receiving more citations tend to be more influential. Through our analyses, we have

Fig 7. Citation network for topmost applicant ‘Siemens AG’ (best viewed in color).

https://doi.org/10.1371/journal.pone.0241797.g007

Table 9. Top-10 applicant hubs and authorities.

Hubs Authorities

SIEMENS AG SIEMENS AG

MATSUSHITA ELECTRIC IND CO LTD IBM

GEN ELECTRIC BAYER AG

BASF AG PHILIPS NV

BAYER AG MATSUSHITA ELECTRIC IND CO LTD

HOECHST AG HOECHST AG

HITACHI LTD BASF AG

CANON KK HITACHI LTD

BOSCH GMBH ROBERT CIBA GEIGY AG

SONY CORP TOKYO SHIBAURA ELECTRIC CO

. . . . . .

https://doi.org/10.1371/journal.pone.0241797.t009
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demonstrated that there is a significant disparity in the number of patents granted and the

number of citations received by companies in any particular category. Citations between com-

panies are shown to be asymmetrical. These are signals of hierarchy among the companies

within the citation network. Most companies tend to constitute a small world where each com-

pany can be reached from another with a few steps in the citation network. Thus, in the cita-

tion network, sectors can be effectively characterized by a somewhat polycentric structure. In

this structure, there appears to be a high level of cohesion within lower-level categories and a

moderate level of cohesion across higher-level categories depending on the level of the IPC

hierarchy.

We would like to specify that our study is by no means complete and is limited by several

constraints, like assuming that sector-wise citation networks are independent, so not account-

ing for external influences of factors like legal issues, organizational structure of companies etc.
that drive applicants to cite certain patents. Incorporating such factors in our study would

have required assimilating a much larger dataset with information from various heterogeneous

sources, which was currently out-of-scope for us. In our study we also did not consider non-

EP citations, which was again dictated by our dataset limitations, where we did not have infor-

mation for patents either outside of our considered time-span or generated from other patent

offices. It is still a big challenge in the literature to work with patent datasets generating from

multiple patent offices mostly due to mismatch in classification systems adopted by each one

of them (e.g., IPC vs CPC vs USPC).

Having said that, our current study is an exploratory one, and it paves the way for a set of

interesting questions that are worthy of further investigation. Some of them could be directed

towards investigation of the proliferation of knowledge from patents to scholarly papers and

vice-versa. In particular, we would like to study the knowledge flows occurring between coun-

tries across the world and across several sectors while focusing on how the patent production

in one country or geographical location affects the other both in terms of patents and scientific

publications. Another prospect could be to study the evolution of citations by incorporating

temporal aspects in the citation network.

To conclude, this paper provides a descriptive analysis of the patent citation network in

order to describe the structural properties of the network and its implications on the patents

and their citations. It also delivers a deeper analysis into the “prestige” network of top appli-

cants, stressing on the interaction among themselves and their implications in knowledge

flow. And, finally, it performs a study of the effects of various self-defined covariates on the

patent citation forming mechanisms using ERGMs. The findings of this research substantiates

previous works on similar lines especially in terms of homophily and sociological aspects.

However, this is the first study focusing on patent citation forming mechanisms using ERGMs

dealing also with the effects of factors like the influence of patent recency, overlapping and

multiple categorization, the effect of cross-country patent influence, and the interaction of pro-

lific applicants.
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39. Basberg BjÃžrn L. Patents and the measurement of technological change: A survey of the literature.

Research Policy, 16(2):131–141, 1987. https://doi.org/10.1016/0048-7333(87)90027-8

40. Petruzzelli Antonio Messeni. The impact of technological relatedness, prior ties, and geographical dis-

tance on university-industry collaborations: A joint-patent analysis. Technovation, 31(7):309–319,

2011. https://doi.org/10.1016/j.technovation.2011.01.008

41. Adam B Jaffe, Manuel Trajtenberg, and Michael S Fogarty. The meaning of patent citations: Report on

the NBER/Case-Western Reserve survey of patentees. Technical report, National bureau of economic

research, 2000.

PLOS ONE Patent citation network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0241797 December 3, 2020 25 / 28

https://doi.org/10.1073/pnas.0806977105
http://www.ncbi.nlm.nih.gov/pubmed/18978030
https://doi.org/10.1007/s11192-006-0144-7
https://doi.org/10.1007/s11192-006-0144-7
https://doi.org/10.1007/s11192-007-1853-2
https://doi.org/10.1371/journal.pone.0113470
http://www.ncbi.nlm.nih.gov/pubmed/25493626
https://doi.org/10.1186/1742-5581-3-7
https://doi.org/10.1186/1742-5581-3-7
http://www.ncbi.nlm.nih.gov/pubmed/16805916
https://doi.org/10.1007/s10115-003-0128-3
https://doi.org/10.1007/s10115-003-0128-3
https://doi.org/10.1016/S0172-2190(97)00033-1
https://doi.org/10.1080/1043859042000315285
https://doi.org/10.1016/0048-7333(91)90055-U
https://doi.org/10.1016/0048-7333(91)90055-U
https://doi.org/10.1111/1467-9442.00300
https://doi.org/10.1002/smj.4250171113
https://doi.org/10.1002/smj.4250171113
https://doi.org/10.1016/0172-2190(81)90098-3
https://doi.org/10.1016/j.respol.2012.05.014
https://doi.org/10.1016/j.respol.2012.05.014
https://doi.org/10.1007/s11192-017-2337-7
https://doi.org/10.1016/j.ipm.2003.11.004
https://doi.org/10.1016/j.ipm.2003.11.004
https://doi.org/10.1016/j.techfore.2017.02.018
https://doi.org/10.1016/0048-7333(87)90027-8
https://doi.org/10.1016/j.technovation.2011.01.008
https://doi.org/10.1371/journal.pone.0241797


42. Michel Jacques and Bettels Bernd. Patent citation analysis. a closer look at the basic input data from

patent search reports. Scientometrics, 51(1):185–201, 2001. https://doi.org/10.1023/

A:1010577030871

43. Fortunato Santo, Bergstrom Carl T, Katy Börner, Evans James A, Helbing Dirk, Staša Milojević, et al.
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