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ABSTRACT
Background and Objective: Chronic kidney disease (CKD) is a major public health
issue, and accurate prediction of the progression of kidney failure is critical for
clinical decision-making and helps improve patient outcomes. As such, we aimed to
develop and externally validate a machine-learned model to predict the progression
of CKD using common laboratory variables, demographic characteristics, and an
electronic health records database.
Methods: We developed a predictive model using longitudinal clinical data from a
single center for Chinese CKD patients. The cohort included 987 patients who were
followed up for more than 24 months. Fifty-three laboratory features were
considered for inclusion in the model. The primary outcome in our study was an
estimated glomerular filtration rate ≤15 mL/min/1.73 m2 or kidney failure. Machine
learning algorithms were applied to the modeling dataset (n = 296), and an external
dataset (n = 71) was used for model validation. We assessed model discrimination via
area under the curve (AUC) values, accuracy, sensitivity, specificity, positive
predictive value, negative predictive value, and F1 score.
Results: Over a median follow-up period of 3.75 years, 148 patients experienced
kidney failure. The optimal model was based on stacking different classifier
algorithms with six laboratory features, including 24-h urine protein, potassium,
glucose, urea, prealbumin and total protein. The model had considerable predictive
power, with AUC values of 0.896 and 0.771 in the validation and external datasets,
respectively. This model also accurately predicted the progression of renal function in
patients over different follow-up periods after their initial assessment.
Conclusions: A prediction model that leverages routinely collected laboratory
features in the Chinese population can accurately identify patients with CKD at high
risk of progressing to kidney failure. An online version of the model can be easily and
quickly applied in clinical management and treatment.
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INTRODUCTION
Chronic kidney disease (CKD) is a worldwide clinical and public health problem that is
associated with major adverse health events, including kidney failure, cardiovascular
disease, and mortality. It leads to poor quality of life and high costs of treatment (Luyckx
et al., 2023). In China, CKD is integrated into the national public health surveillance
program. The subgroups with a greater incidence of CKD included older age, female, sex,
non-Han ethnic background, and living in rural areas or in the northern and central
regions of China (Wang et al., 2023). Over the past 20 years, the number of CKD-related
deaths has increased by 82.3% worldwide, especially for CKD stages 4 and 5 (Bello et al.,
2017). Early identification of patients who may develop renal dysfunction in the future and
proper management of CKD and its risk factors are crucial for slowing the progression of
the disease. It can effectively reduce progression to end-stage renal disease (ESRD) and
cardiovascular mortality and reduce the economic burden of CKD.

Currently, several clinically reliable biomarkers are available to predict progressive
CKD. Traditional kidney biomarkers, such as serum creatinine and proteinuria, have
many well-recognized limitations, including a lack of specificity and sensitivity in
predicting a decline in renal function and delayed detection of kidney injury. Studies
employing new technologies have focused on identifying structural markers of kidney
tubular and glomerular injury in urine or blood, but these biomarkers are not available or
affordable in clinical practice (Owens et al., 2022). Multiple risk factors for CKD have been
identified, including older age, diabetes mellitus, hypertension, proteinuria, hyperuricemia
and hyperphosphatemia (Kawasoe et al., 2023; Samanta, Bandyopadhyay & Samanta,
2023). Establishing renal prognostic prediction models based on the evaluations of these
variables is a hot and difficult issue in current research. It may be helpful and convenient to
identify those at high risk who may benefit from more intensive management, reduce
progression to ESKD and cardiovascular mortality, and, eventually, improve health system
efficiency. Several studies have developed models for predicting worse clinical outcomes in
CKD patients. Tangri et al. (2011) developed kidney failure risk equations (KFREs) that
can accurately predict the progression to kidney failure. Kawasoe et al. (2023) performed
multivariable logistic regression analysis and assigned scores to each clinical factor to
predict CKD. However, this equation differs in the target population’s ethnicity and CKD
risk factors, and the factors associated with CKD development vary by race (Harada et al.,
2022; Nelson et al., 2019). We need a unique Chinese predictive model for CKD
progression to identify high-risk patients in the Chinese population. Additionally, CKD is
generally managed by primary care physicians in China. The development of convenient
and clinically useful tools for identifying high-risk CKD patients and providing
appropriate counseling where clinical resources are limited is vital.

More recently, machine learning (ML) approaches have shown excellent ability to
identify variables relevant to clinical outcomes, predict better performance, model complex
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relationships better, and overcome the limitations of expert systems. A strong growth of
diagnostic equations for which ML algorithms are designed. Xiao et al. (2019) developed
diagnostic models by deep neural networks to quickly predict the severity of CKD based on
more easily available demographic and blood biochemical features instead of urinary
protein and showed good predictive ability. For the prediction and risk stratification of
kidney outcomes, Chen et al. (2019) used the extreme gradient boosting (XGBoost)
algorithm to select the 10 most important variables and established a prediction model that
can stratify the risk for kidney disease progression in the setting of IgAN. However, the risk
stratification system is specific to IgA and cannot be generalized or applied to other types
of kidney disease (Chen et al., 2019). Ferguson et al. (2022) reported that random forest
algorithms can predict estimated glomerular filtration rate (eGFR) decline or kidney
failure accurately. Nevertheless, the model involves 22 variables; from a clinical point of
view, although a complex scoring system may provide accurate predictions, it is
inconvenient in daily clinical practice. Furthermore, it was targeted at CKD stages G1 to
G5, which is generally too wide, and it is too early to plan possible dialysis sessions since
the G1 stage (Ferguson et al., 2022). Recently, researchers have focused more on the
performance of ensemble learning in medicine than on the performance of a single ML
algorithm (Li et al., 2024). Stacking is a powerful method for integrating different types of
base learners and is rarely used in CKD prediction.

In this study, we developed an accurate but simple online prediction model based on
stacking methods using a new dataset from the Chinese CKD population with long-term
follow-up and evaluated its validity in an external validation set. The aim was to use
variables routinely measured in patients with CKD to create an online calculator to predict
progression to kidney failure that could be easily and quickly applied in clinical diagnosis
and treatment. The model can be generalized to assist clinicians in managing CKD in
primary hospitals in China.

MATERIALS AND METHODS
Study population
We conducted a single-center, retrospective study using the laboratory information
systems (LIS) database and electronic health records (EHR) database from Peking
University First Hospital. Development and validation of prediction models using
demographic, clinical, and laboratory data from patients with CKD stages 3 to 5 (eGFR
between 30 and 60 ml min−1 (1.73 m)2) who were referred to nephrologists between
January 1, 2018, and December 31, 2021, and had at least 24 months of follow-up. The
outcome of ESRD was defined as an eGFR < 15 mL/min/1.73 m2 for more than two times
or the initiation of dialysis or transplantation. The eGFR was calculated via the CKD-EPI
creatinine equation. Participants were excluded if they (1) were younger than 18 years old,
(2) were pregnant, (3) had a history of kidney failure (dialysis or transplant), or (4) had
missing data. Finally, according to the above inclusion and exclusion criteria, the data of
987 participants were analyzed, among which 148 patients reached the endpoint. A total of
148 progressive CKD patients and 148 nonprogressive CKD patients were ultimately
included via propensity score matching (PSM) based on age and sex. The ML model was
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further evaluated on an external test dataset. An external test dataset was also collected
from Peking University First Hospital from January 1, 2018, to December 31, 2021; this
dataset had at least 12 months of follow-up and followed the same inclusion and exclusion
criteria as the internal dataset. Our study was reviewed and approved by the Clinical Ethics
Review Committee of Peking University First Hospital (Ethical Application Ref:
2024Yan237-002). All participants consented to use their de-identified data and access to
electronic health records and laboratory information systems. The participants signed the
informed consent form.

Data collection
The clinical parameters extracted from the LIS and EHR databases included demographic
information, primary renal disease, and laboratory tests. The included patients were
required to have complete demographic information on age, sex, body mass index (BMI),
systolic pressure, diastolic pressure and comorbid conditions, such as diabetes,
hypertension, anemia and cardiovascular disease. These parameters were collected on the
date of the first eGFR. Based on the LIS system, we identified common follow-up indicators
for CKD patients. Through an extensive literature search and discussion with experts in
this area, 53 potential features were ultimately identified, which are as follows: (1)
hematologic indices, such as white blood cell count, mean corpuscular hemoglobin
concentration, lymphocyte count, and blood platelet count; (2) biochemical indices, such
as uric acid (UA), urea, glucose, and total protein (TP); and the urine index, 24-h urine
protein (24 hrUpr). These biomarker measurements were taken at the time of the patient’s
baseline eGFR measurement or ≤7 days before or after the baseline eGFR measurement in
an individual patient.

Statistical analysis
PSM is a commonly used statistical method that eliminates confounding bias from
observational cohorts where the benefit of randomization is impossible owing to a smaller
sample size. It attempts to balance covariates and reduce bias by matching exposure
subjects with control subjects who exhibit a similar propensity based on preexisting
covariates. A new control group was established by removing outlier control subjects, thus
reducing the unwanted effects of covariates and allowing for proper measurement of the
expected variable (Kane et al., 2020). Therefore, PSM was applied to balance the
distribution of covariates (age and sex) between the progressive and non-progressive CKD
groups.

Continuous variables are expressed as the means ± standard deviations (SDs) for
normally distributed variables or medians with interquartile ranges (IQRs) for
nonnormally distributed variables, and categorical variables are expressed as the number
of events and the percentage of events to total events. Demographic and laboratory tests
were compared via t-tests or Mann–Whitney U tests for continuous variables and
chi-square tests for categorical variables. We applied the Kolmogorov‒Smirnov normality
test and Levene’s test to assess the distribution of variables across the entire patient cohort.
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Then, normally distributed variables were compared via Student’s t-test, and nonnormally
distributed variables were compared via the Mann‒Whitney U test. In this study, all the
statistical tests were two-sided and p < 0.05 was considered significant. R (version 3.6.1; R
Core Team, 2019), Python (version 3.4.3), and SPSS (version 25.0) were systematically used
for statistical analysis. The Deepwise & Beckman Coulter DxAI platform (https://dxonline.
deepwise.com/) was used to construct CKD prediction models.

Machine learning-based model development and evaluation
(1) Feature selection

Feature selection over the initial set of included variables is needed to reduce the
probability of overfitting and improve the generalization capabilities of predictive models.
In the training cohort, least absolute shrinkage and selection operator (LASSO) logistic
regression analysis was used to select laboratory variables that best-identified high-risk
patients. The LASSO regression reduces the β coefficient of variables not strongly
associated with the outcome to 0 and eventually removes these variables from the model.
Two different λ optimization criteria, lambda with the standard error of the minimum
distance (λ-1SE) and lambda with the minimum mean square error de (λ-min), were
selected in this study to construct the prediction model.

(2) Stacking ensemble technique
The stacking ensemble model is an ML technique that combines multiple base models

to improve predictive performance. In stacking, meta-models are trained to learn how to
best combine the predictions of the base models. The stacking models include base models
and meta-models. The base-model classifier is trained using the initial training dataset.
The output of the base model is used as the input feature of the meta-learner. A new
dataset is then formed using the corresponding original labels as new labels to train the
meta-learner. First, we use three algorithms, XGBoost, LightGBM and Random Forest,
as the base models. The meta-model included a logistic regression model, which
combined the predictions from the aforementioned three base-learners, analogous to
the propensity score method (Li, Stein & Nallasamy, 2023). In this study, the aim of using
an integrated ML model is to take full advantage of different classes of ML algorithms and
improve the overall performance of the prediction model. K-fold cross-validation (k = 5)
was applied to the modeling dataset, and various parameter combinations were exhausted
via grid search.

Models were evaluated for accuracy via the area under the receiver operating
characteristic curve (AUC) with 95% confidence, F1 score, sensitivity, specificity, positive
prediction value (PPV), and negative prediction value (NPV). The calibration curve was
assessed for the prediction of the outcome at 1 to 4 years in 1-year intervals, and decision
curve analysis (DCA) assessed the clinical benefit of the model. SHAP is used to interpret
models, which calculates the contribution and influence of each feature toward the final
prediction precisely. The SHAP values describe how each predictor enhances or detracts
from the outcome variable. The workflow to develop the prediction model of CKD
progression is shown in Fig. 1.
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RESULTS
General characteristics
A significant difference in age and sex was observed between the CKD progression and
nonprogression groups (p < 0.001, p < 0.001; Table S1). After PSM, 148 progressive and
148 nonprogressive patients were selected for further analysis, where age and sex were well
balanced between the two groups. An overview of the baseline descriptive statistics is
provided in Table 1. The median ages of the patients in the progressive and nonprogressive
cohorts were 48 (34, 62) and 49 (36, 61) years, respectively. The percentage of males in the
two cohorts was almost two times greater than that of females. Compared with those in the
CKD nonprogressive cohort, patients in the CKD progression cohort had higher rates of
diabetes, hypertension and anemia (p < 0.05) and higher laboratory indicators, including
Cr, 24hrUpr, potassium, P, CL, urea, UA, glucose (GLU), total cholesterol, and red blood
cell distribution width (p < 0.05). However, lower levels of eGFR, albumin (Alb), total
bilirubin, direct bilirubin, indirect bilirubin, total bile acid, and TP were observed in
patients with progressive CKD (p < 0.05).

ML model establishment and evaluation
LASSO regularization was used to select laboratory variables that best identified patients at
high risk for ESRD. Since the eGFR is used to define the outcome and is calculated from the
serum creatinine level, the eGFR and creatinine level were not considered in the

Figure 1 A workflow to develop the prediction model of CKD progression. Abbreviations: AUC, area under curve; EHR, electronic health
records; LIS, laboratory information systems; LASSO, least absolute shrinkage and selection operator; NPV, negative predictive value; PPV, positive
predictive value; ROC, receiver operating characteristic. Full-size DOI: 10.7717/peerj.18436/fig-1
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Table 1 Baseline clinical and biochemical characteristics of all patients.

Clinical characteristics Progressive cohort (N = 148) Non-progressive cohort (N = 148) p value

Age (years), median (IQR) 48 (34, 62) 49 (36, 61) 0.756

Gender

Male 99 (66.892) 100 (67.568) 0.901

Female 49 (33.108) 48 (32.432)

BMI 25.495 ± 4.407 24.976 ± 3.773 0.298

Systolic BP (mm Hg), median (IQR) 136.000 (124.000, 149.000) 130.000 (120.000, 141.000) 0.009**

Diastolic BP (mm Hg), median (IQR) 80.000 (75.000, 89.000) 80.000 (74.000, 89.000) 0.6

Diabetes 47 (31.76%) 25 (16.89%) 0.002**

Hypertension 112 (75.68%) 94 (63.51%) 0.018*

Anemia 44(29.73%) 28 (18.92%) 0.023*

Cardiovascular disease 34 (22.97%) 19 (12.84%) 0.099

Follow-up (days), median (IQR) 1,279 (958, 1,633) 1,463 (1,046, 1,714) 0.004**

Laboratory characteristics

Biochemical indexes

Cr (mmol/L), mean (±SD) 160.081 ± 30.675 145.510 ± 29.236 <0.001***

eGFR, median (IQR) 39.348 (34.137, 46.720) 47.003 (38.090, 53.609) <0.001***

24 hrUpr (g/24 h), median (IQR) 2.380 (1.040, 4.900) 0.870 (0.400, 2.160) <0.001***

Alb (g/L), median (IQR) 39.600 (35.300, 42.300) 41.500 (38.700, 43.200) <0.001***

CHE (IU/L), mean (±SD) 8,693.581 ± 1,965.322 8,474.959 ± 1,939.200 0.338

LDL (mmol/L), median (IQR) 2.850 (2.090, 3.490) 2.620 (2.090, 3.150) 0.13

HDL (mmol/L), median (IQR) 1.090 (0.930, 1.400) 1.090 (0.910, 1.410) 0.889

CO2 (mmol/L), median (IQR) 24.440 (22.900, 26.600) 24.970 (23.400, 26.800) 0.292

Ca (mmol/L), median (IQR) 2.300 (2.190, 2.370) 2.320 (2.240, 2.390) 0.074

TG (mmol/L), median (IQR) 2.150 (1.340, 3.160) 1.850 (1.340, 2.400) 0.066

GGT (IU/L), median (IQR) 25.000 (18.000, 40.000) 22.000 (16.000, 29.000) 0.14

ALT (IU/L), median (IQR) 15.000 (12.000, 22.000) 16.000 (12.000, 22.000) 0.277

AST (IU/L), median (IQR) 17.000 (14.000, 20.000) 18.000 (14.000, 21.000) 0.425

ALP (IU/L), median (IQR) 66.000 (54.000, 79.000) 62.000 (50.000, 74.000) 0.062

K (mmol/L), median (IQR) 4.300 (4.000, 4.800) 4.200 (3.900, 4.430) 0.016*

P (mmol/L), median (IQR) 1.140 (1.050, 1.300) 1.100 (0.990, 1.230) 0.005**

CL (mmol/L), median (IQR) 107.000 (105.000, 109.000) 107.000 (105.000, 108.000) 0.038*

Mg (mmol/L), median (IQR) 0.900 (0.840, 0.950) 0.900 (0.850, 0.960) 0.799

Na (mmol/L), median (IQR) 141.410 (139.070, 144.000) 142.000 (140.000, 143.000) 0.318

Urea(mmol/L), median (IQR) 10.700 (8.600, 12.950) 8.700 (7.280, 10.790) <0.001***

UA (mmol/L), median (IQR) 437.568 ± 102.594 412.649 ± 85.198 0.024*

GLU (mmol/L), median (IQR) 5.430 (4.880, 6.430) 5.250 (4.840, 5.720) 0.041*

PA (mg/L), mean (±SD) 313.331 ± 73.787 315.601 ± 65.434 0.78

TBIL (mmol/L), median (IQR) 8.000 (5.800, 10.400) 9.300 (6.700, 13.500) 0.002**

DBIL (mmol/L), median (IQR) 0.600 (0.300, 1.320) 0.910 (0.350, 2.100) <0.001***

IBIL (mmol/L), median (IQR) 7.450 (5.330, 9.400) 8.210 (5.900, 11.730) 0.005**

TCHO (mmol/L), median (IQR) 5.240 (4.050, 6.090) 4.790 (4.000, 5.660) 0.022*

(Continued)
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assessment. Based on the two different λ optimization criteria outlined in the “Methods”
section (λ-1SE = 0.103, λ-min = 0.054), three and six out of 46 potential predictors yield
the λ-min and λ-1SE models, respectively. The coefficient profile and the cross-validated
error plot of the LASSO regression model are shown in Fig. 2. The derived laboratory
variables included 24hrUpr, GLU, and urea. The second variable combination, derived
from six laboratory variables, comprises potassium, prealbumin (PA), and TP, in addition
to the aforementioned three laboratory variables.

In the test set, the AUC for predicting CKD progression ranged from 0.806 to 0.896
when different learning methods and combinations of laboratory variables were used.
Numerically, the stacking meta-classifier logistic regression with six variables achieved the
best prediction performance, with an overall mean AUC of 0.896. Figures 3 and 4 show the
ROC curves of each ML model. The accuracy, sensitivity, specificity, PPV, NPV, and F1
scores for this model in cross-validation were 0.824, 0.941, 0.765, 0.789, 0.867, and 0.859,
respectively (Table 2). The results of the confusion matrices are summarized in Tables S2

Table 1 (continued)

Clinical characteristics Progressive cohort (N = 148) Non-progressive cohort (N = 148) p value

TBA (mmol/L), median (IQR) 2.200 (1.250, 3.160) 2.420 (1.400, 4.200) 0.03*

TP (g/L), median (IQR) 70.800 (64.700, 74.400) 73.200 (68.600, 77.200) 0.001**

Hematologic indexes

WBC (109/L), median (IQR) 7.430 (6.080, 9.450) 7.040[5.870, 8.780) 0.233

Monocyte count (109/L), median (IQR) 0.500 (0.400, 0.700) 0.500 (0.400, 0.700) 0.566

Lymphocyte count (109/L), median (IQR) 1.900 (1.500, 2.300) 1.900 (1.500, 2.200) 0.639

RBC (109/L), mean (±SD) 4.247 ± 0.717 4.357 ± 0.648 0.215

RDW (%), median (IQR) 13.400 (12.900, 14.000) 13.200 (12.700, 13.700) 0.041*

Neutrophil count (109/L), median (IQR) 4.800 (3.600, 6.200) 4.500 (3.600, 5.700) 0.162

MCH (pg), median (IQR) 30.100 (29.000, 31.600) 30.600 (29.400, 31.800) 0.148

MCHC (g/L), median (IQR) 332.755 ± 8.001 333.514 ± 8.681 0.481

MCV (fl), median (IQR) 90.400 (88.400, 94.100) 91.900 (88.800, 94.500) 0.219

MPV (fl), median (IQR) 8.500 (7.800, 9.270) 8.430 (7.800, 9.100) 0.568

HGB (g/L), mean (±SD) 128.325 ± 20.164 132.624 ± 18.943 0.09

HCT (%), mean (±SD) 38.570 ± 6.074 39.796 ± 5.742 0.109

PLT (109/L), median (IQR) 225.000 (182.000, 262.000) 212.000 (179.000, 249.000) 0.265

PCT (%), median (IQR) 0.190 (0.160, 0.220) 0.180 (0.160, 0.210) 0.147

PDW (%), median (IQR) 17.000 (16.600, 17.300) 16.800 16.600, 17.200) 0.074

Notes:
Values are presented as median (IQR) for continuous variables or n (%) for binary variables.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
BMI, body mass index; estimated glomerular filtration rate (eGFR); 24hrUpr, 24-hour urine protein; Alb, albumin; ChE, cholinesterase; LDL, low density lipoprotein;
HDL, high-density lipoprotein; TG, triglyceride; GGT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate amino transferase; Ca, calcium;
ALP, alkaline phosphatase; K, potassium; P, phosphorus; CL, chlorine; Mg, magnesium; Na, sodium; UA, Uric Acid; GLU, glucose; PA, prealbumin; TBIL, total bilirubin;
DBIL, direct bilirubin; IBIL, indirect bilirubin; TCHO, total cholesterol; TBA, total bile acid; TP, total protein; WBC, white blood cell; RBC, red blood cell; RDW, red blood
cell distribution width; MCH, Mean corpuscular hemoglobin content; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MPC,
mean platelet volume; HGB, hemoglobin; HCT, hematocrit; PCT, platelet hematocrit; PLT, blood platelet count; SD, standard deviation; IQR, interquartile range.
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and S3. In addition, the DCA curve showed that the model had high clinical benefits in the
approximately 30% to 70% risk range, as shown in Figs. 3C and 4C. We finally chose those
six laboratory variables to construct a prediction model of CKD progression.

SHAP values were applied to determine the impact of the risk factors to detect the
positive and negative relationships of the indicators with CKD progression. The
importance of the features in the ensemble models, XGBoost, LightGBM and Random
Forest are shown in Fig. S1. The attributions of all patients to the results are plotted with
red dots indicating that the value of the feature is larger and blue dots indicating that the
value of the feature is smaller. Compared with the nonprogressive cohort, increased
24hrUpr, GLU, urea and potassium, and decreased PA and TP contributed to the
prediction of the risk of renal failure. The rankings of the six features were evaluated by the
average absolute SHAP value.

Performance of the model with different follow-up periods
The prediction model based on the six laboratory variables yielded high ESRD AUCs of
0.773, 0.798, 0.841, and 0.87 for years 1, 2, 3, and 4 after the baseline visit, respectively
(Table 3). The calibration curve showed good model prediction in terms of Brier scores
evaluated on the test sets across all time points (Fig. 5). This demonstrated that the
stacking model constructed in this study can predict the CKD status of patients across
different periods. The visualization of the predictive model is implemented as an online
web service tool available at http://www.xsmartanalysis.com/model/list/predict/model/
html?mid=10255&symbol=817bW025614Bs59zK1sJ.

Figure 2 Lasso regressions for candidate variables. A total of 10-fold cross-validation was used to draw
vertical lines and three variables were selected when the lambda with the standard error of the minimum
distance (λ-1SE) = 0.103 and six variables were selected when the lambda with minimum mean square
error de (λ-min) = 0.054. Full-size DOI: 10.7717/peerj.18436/fig-2
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External validation study
We collected another 71 cases as an external test dataset to further evaluate the
performance of the predictive model for CKD progression; 36 patients had CKD
progression, and 35 patients had nonprogressive CKD. An overview of the baseline
descriptive statistics is provided in Table S4. The performance was similar when evaluated
in the external validation cohort, with an AUC of 0.771, a sensitivity of 0.639 and a
specificity of 0.829 (Table 4). These results indicate that the constructed ML predictive
model based on six laboratory variables had comparable predictive utility.

Figure 3 Evaluation of the predictive models. (A and B) ROC curve analysis of ML models based on three laboratory variables in training and
internal validation cohort. (C) Decision curve analysis of the internal validation set. Full-size DOI: 10.7717/peerj.18436/fig-3

Figure 4 Evaluation of the predictive models. (A and B) ROC curve analysis of ML models based on six laboratory variables in training and
internal validation cohort. (C) Decision curve analysis of the internal validation set. Full-size DOI: 10.7717/peerj.18436/fig-4
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DISCUSSION
Worldwide, experience indicates that the contribution of CKD to kidney dialysis, kidney
transplantation and mortality is rapidly increasing (Ruiz-Ortega et al., 2020). Therefore,
identifying risk factors for progression and obtaining accurate, individualized risk
estimates to assist in clinical decisions on further management are important. Several
studies have developed predictive scores for CKD, but these scores vary in terms of the
target population’s ethnicity and the complexity of the scores, which are determined by the
number and classification of factors involved. There is a need for a distinct Chinese
predictive model for CKD progression to identify high-risk patients within the Chinese
population. In this retrospective cohort study, we investigated possible predictive factors
associated with the progression of CKD in a cohort of the Chinese population. The
proposed stacking ensemble model that combines multiple base models achieves better
performance in all respects and takes full advantage of different classes of ML algorithms.
Furthermore, we developed an online risk prediction model based on only six easily
available predictors for the occurrence of ESRD with good accuracy and satisfactory

Table 2 Comparative analysis of the model performance.

ML model AUC Accuracy Sensitivity Specificity PPV NPV F1 score

Three Laboratory variables Training cohort XGBoost 1 0.994 1 1 1 0.988 1

LightGBM 0.97 0.918 0.916 0.933 0.933 0.906 0.924

RandomForest 1 0.987 0.995 0.999 1 0.974 0.998

Internal validation cohort XGBoost 0.814 0.712 0.865 0.759 0.769 0.676 0.812

LightGBM 0.814 0.759 0.829 0.753 0.749 0.772 0.784

RandomForest 0.806 0.735 0.812 0.747 0.761 0.719 0.78

Logistic (stacking) 0.862 0.794 0.882 0.765 0.778 0.813 0.827

Six Laboratory variables Training cohort XGBoost 1 0.993 1 1 1 0.987 1

LightGBM 0.993 0.963 0.951 0.989 0.989 0.94 0.969

RandomForest 1 0.983 1 1 1 0.967 1

Internal validation cohort XGBoost 0.847 0.712 0.847 0.788 0.865 0.651 0.855

LightGBM 0.864 0.759 0.871 0.8 0.836 0.711 0.853

RandomForest 0.855 0.718 0.847 0.765 0.822 0.669 0.83

Logistic (stacking) 0.896 0.824 0.941 0.765 0.789 0.867 0.859

Note:
AUC, area under curve; ML, machine learning; NPV, negative predictive value; PPV, positive predictive value.

Table 3 Results of the six laboratory variables model in the internal tesing cohort for prediction of
ESRD in 1, 2, 3, 4 years after the baseline visit.

Time frame, year AUC Sensitivity Specificity

1 0.773 1 0.574

2 0.798 0.867 0.706

3 0.841 0.971 0.685

4 0.87 0.947 0.76

Note:
AUC, area under curve.
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calibration that covers most patients in areas where there are only limited healthcare
resources in China. The form of an online calculator should facilitate the long-term
management of chronic diseases and the selection of patients most likely to benefit from

Figure 5 Calibration for the six laboratory variables logistic (stacking) model for prediction of kidney failure. At (A) 1 year, (B) 2 years, (C) 3
years and (D) 4 years. Full-size DOI: 10.7717/peerj.18436/fig-5
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innovative strategies to halt the progression of chronic kidney disease. In actual clinical
practice, it can be easily and quickly applied in decision-making for treatment and lifestyle
improvement and reduces the costs related to treatment.

Previous investigators have reported risk prediction models for predicting future renal
dysfunction. Owens et al. (2020) developed a model for predicting progressive CKD based
on a panel of biomarkers representing the pathophysiological processes of CKD and had
an accuracy of 84.3%; however, deficiencies in the study included separate small sample
sizes, and the included biomarkers, such as osteopontin and tryptase, are uncommon in
clinical practice. Isaza-Ruget et al. (2024) studied a cohort from Colombia and developed a
machine learning-based model for predicting the need for renal replacement therapy
(RRT) and disease progression in patients with stage 3–5 CKD. However, the limitations of
this study include its limited characteristics and uncertain data quality, which were
extracted from private health insurers (Isaza-Ruget et al., 2024). Ventrella et al. (2021)
applied machine learning to assess the advancement of CKD, but as many as 27 features
were included in the model, which may have a high risk for overfitting and is not
convenient for clinical application. Zhu et al. (2023) constructed recurrent neural network
models to predict CKD progression from stages 2–3 to stages 4–5 based on time series
records extracted from the EHR. However, the model was not validated in an external
validation set.

As described above, appropriate adequate risk prediction models have shown high
predictive power in predicting CKD risk, but they are not easy to calculate and do not
translate into routine clinical practice to assist in clinical decision-making. Therefore,
online calculators or others should be considered for practical application. The kidney
failure risk equations proposed by Tangri et al. (2011) have shown good performance and
are used to guide patient management. The model was established based on routinely
obtained laboratory tests, and simple operation steps have driven its adoption (Tangri
et al., 2011). It would be valuable to apply the prior risk model. However, the risk model
could not be applied in this study because it requires an albumin-to-creatinine ratio, which
was not used in our study, and the eGFR was used to determine outcomes. Furthermore,
most studies based on a nationwide cohort of patients and risk prediction models have
been constructed in various ethnic groups in different countries. For a predictive model of
the progression of CKD, few studies have been conducted in the Chinese population. Since
the prevalence of CKD and its risk factors vary among ethnic groups (Hsu et al., 2021), it is
preferable to use Chinese data to predict CKD risk in the Chinese population.

The online prediction ML model we built showed high predictive ability for CKD
progression and good discriminative ability in predicting patients with CKD in both the
internal validation and external validation cohorts. Based on the LIS and EHR systems of

Table 4 The performance of the model in the external validation cohort.

ML model (six laboratory variables) AUC Sensitivity Specificity

External validation cohort 0.771 0.639 0.829

Note:
AUC, area under curve; ML, machine learning.
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Peking University First Hospital, our model includes various types of kidney diseases, such
as IgA, membranous nephropathy, and focal segmental glomerulosclerosis, which can be
widely used in clinical practice. Ensemble learning is a technique that trains to combine
predictions from the base learner and has been widely used across multiple medical fields
to improve predictive performance (Mahajan et al., 2023). Several diagnosis and
prediction ensemble learning techniques have already been proposed for CKD. Chhabra,
Juneja & Chutani (2023) used an ensemble learning approach based on the top three
best-performing classifiers in terms of cross-validation results to identify patients at risk of
CKD with an accuracy of 99.5%, but this high predictive power may be due to overfitting
caused by the small dataset. Napa, Tulasi & Dhamodaran (2019) proposed an ensemble
learning technique for predicting the occurrence of kidney disease by analyzing various
medical factors that comprise a support vector machine, decision tree, C4.5, and particle
swarm optimized multilayer perceptron, attaining an accuracy of 92.76%. Hasan & Hasan
(2019) developed an ensemble method-based machine learning algorithm to improve the
performance of classifiers for kidney disease. Five machine learning classifiers, namely,
adaptive boosting, bootstrap aggregating, extra trees, gradient boosting, and random forest
classifiers, were used to design the computer-aided diagnosis system, and the classification
accuracy reached 99% (Hasan & Hasan, 2019). Ganie et al. (2023) used boosting
techniques based on clinical parameters to predict the risk of developing CKD in at-risk
populations with 98.47% accuracy in testing sets. However, most studies have focused on
the detection and prediction of the incidence of CKD. Ensemble learning is less commonly
used to predict the progression of renal function in CKD patients. Lu et al. (2023)
developed an integrated algorithm (LR+XGBoost) to achieve good prediction performance
on the CKD dataset, with AUCs of 0.856 and 17 features included in the model, whereas
proteinuria was used as a standard for CKD in this study. As an extension of this work, we
used ensemble learning techniques to take advantage of different classes of the ML
algorithm (XGBoost, LightGBM and Random Forest) and improve the model’s overall
performance. Compared with the single classifier-based model, the stacking model
performs better. The model based on only six routine laboratory parameters performed
well, with AUC values of 0.896 and 0.771 in the internal and external validation sets,
respectively. Our risk prediction models have important implications for clinical practice,
public health policy, and mechanism research. The models can be easily integrated into
LISs and EHRs to aid clinical decisions. For community hospitals and healthcare centers in
China, the testing equipment is limited, and clinicians are inexperienced. In daily clinical
practice, our model can help physicians predict the progression of renal function based on
accessibility and objective laboratory indicators and can contribute to guiding clinical
treatment and patient lifestyle. For example, lower-risk CKD patients could be managed by
healthcare centers and community hospitals without excessive medical treatment or
testing, whereas higher-risk CKD patients could be managed by nephrologists and receive
timely intervention and correct medication guidance. This method will decrease national
healthcare costs, benefiting China, a developing country with a large population. In
addition, developing an application that can calculate the risk prediction equation via
portable laptops or mobile devices would be more convenient and clinically useful for
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assessing risk. CKD is a condition that requires long-term management and monitoring.
Patients can use the online model to enhance their self-management capabilities, helping
them better understand the progression of the disease and develop more effective
management plans, thereby improving their adherence to treatment regimens. This model
can also accurately predict the progression of renal function in patients with varying
follow-up periods after their initial assessment. The poor performance of the calibration
curve at 1 year may be because CKD is a chronic progressive disease, and fewer patients
progress to ESRD within 1 year in our study, which needs to be verified in the future with a
larger population. Furthermore, it needs to be aware that the developed model could serve
as an initial decision-support tool for physicians, with further clinical examination needed
to make more informed decisions.

By using the LASSO regularization method, six laboratory variables were selected that
best identified patients at high risk for ESRD, namely, 24hrUpr, GLU, urea, potassium, PA
and TP. Based on the feature importance of the ensemble models, 24hrUpr, GLU and urea
were the top three indicators. Albuminuria has been studied extensively in the context of
CKD and its progression. Albuminuria is a major risk factor for renal disease, and
albuminuria testing is crucial for guiding evidence-based treatments to mitigate chronic
kidney disease progression (Chu et al., 2023; Levey, Grams & Inker, 2022). The 24hrUpr
was included in our MLmodel, thus confirming its importance as an independent factor in
the progression of CKD.Makino et al. (2019) used big data machine learning to predict the
progression of diabetic kidney disease (DKD), and blood glucose and HbA1c were selected
in the model to reveal time series patterns related to 6-month DKD aggravation. Chen,
Chen & Jiang (2022) reported that DKD patients have a greater risk of developing a 50%
decrease in the eGFR and kidney transplantation replacement than non-DKD patients.
Our study model also identified blood glucose as a risk factor for the progression of CKD.
The modeling population included in this study was 38 patients with comorbid diabetes or
DKD. Several studies have shown that urea is a marker of uremic retention in CKD
patients and that elevated urea concentrations induce disintegration of the gut epithelial
barrier and promote microhemorrhages. Urea toxicity leads to systemic inflammation and
endothelial dysfunction, thus directly contributing to disorders of tubular function and the
progression of kidney disease (Hobby et al., 2019; Lau et al., 2020; Rosner et al., 2022). In
summary, urea is a key factor in CKD pathophysiology, and our study emphasized that
minimizing urea accumulation is clinically beneficial for slowing the progression of CKD.
Patients with chronic kidney disease often have abnormal serum potassium caused by a
lower GFR and the administration of angiotensin-converting enzyme inhibitors,
angiotensin-receptor blockers and other demographic factors (Clase et al., 2020; Kim,
Valerio & Knobloch, 2023). Previous studies have suggested that hypokalemia is related to
the accelerated progression of CKD. The possible reasons could be increased renal
ammonia production and impaired renal angiogenesis (Gilligan & Raphael, 2017). For
PAs, studies have shown that protein-energy wasting, which manifests as low serum levels
of PAs, is one of the strongest predictors of mortality in patients with CKD (Barril et al.,
2022). Studies have shown that higher intake of TP was associated with lower mortality in
participants with CKD (Carballo-Casla et al., 2024). The reduced TP levels in our study
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contributed to an increased risk of CKD progression. Our study also emphasized that
paying attention to the levels of PA and TP and proper nutritional support are essential for
the prognosis and quality of life of patients with CKD. Although the laboratory markers
mentioned above have also previously been associated with the progression of CKD and
individual indicators inadequately explain the variability in the decrease in the glomerular
filtration rate, our work integrates them into an online risk equation to predict the progress
of kidney function and assist in clinical diagnosis and treatment.

The present study has several limitations. First, the retrospective study was restricted to
Chinese patients from a single center with a relatively small sample size. Further studies
including larger and multiple centers, are needed to improve and validate the risk
prediction models. Second, model development was based on a retrospective cohort, which
reduced the availability of complete data related to clinical characteristics,
treatment-related information and laboratory indicators of interest for the final analysis.
Therefore, prospective research based on full clinical information is needed to identify a
better method for predicting CKD progression. Third, although we applied PSM designs to
construct a balanced cohort, there may be potential bias in unmeasured or unknown
factors. Fourth, the outcome of CKD progression can be subdivided, and monitoring the
dynamic changes in clinical indicators during follow-up can be considered to improve the
accuracy and timeliness of predicting the risk of kidney failure.

CONCLUSIONS
Overall, we applied the ML method to present an online portable model for accurately
predicting the occurrence of ESRD in patients with CKD stages 3 to 5. The predictive
ability of the model was confirmed through external validation. This model also accurately
predicted the progression of renal function in patients with varying follow-up periods after
their initial assessment. Only six easily accessible laboratory tests, which are easy to
popularize in primary hospitals in China, were included in the model. The form of online
calculators could be an easy and quick tool for detecting and recognizing high-risk CKD
patients and for providing appropriate counseling and treatment. Moreover, the laboratory
indices screened by the ML model provide a new idea and reference for managing CKD.
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AUC Area under the curve

Alb Albumin

BMI Body mass index
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IQR Interquartile range

KFREs Kidney failure risk equations

LIS Laboratory information systems

LASSO Least absolute shrinkage and selection operator

ML Machine learning

NPV Negative prediction value

PSM Propensity score matching

PPV Positive prediction value

PA Prealbumin

SD Standard deviation

TP Total protein

UA Uric acid

XGBoost The extreme gradient boosting
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