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Introduction

Cancer incidence and mortality increase rapidly world-
wide, making cancer the leading cause of death in many 
countries. The International Agency for Research on Cancer 
predicts that new cancer cases and cancer deaths in 2018 will 
be 18.1 million and 9.6 million, respectively [1]. One in five 
persons will develop cancer before the age of 75 years and 
on average half of the cancer patient will not survival beyond 
five years from diagnosis [2]. Thus, the finding novel targets 
to improve current cancer treatment is an urgent global need.

Among the six hallmarks of cancers expertly summarized 
by Douglas Hanahan and Robert Weinberg in 2011, it is argu-

ably the ability to proliferate in an uncontrolled manner as the 
most fundamental trait of all cancer cells [3]. Targeting a spe-
cific crucial component of the cell cycle pathway is a strategy 
that may potentially benefit the treatment of many cancers.  
NUF2 component of NDC80 kinetochore complex (NUF2) is 
a component of a conserved protein complex associated with 
the centromere [4]. Our group has recently demonstrated 
that high NUF2 transcript expression is a good prognostic 
biomarker to predict early tumor recurrence post-surgical 
resection in hepatocellular carcinoma (HCC) [5]. Similarly, 
Xu et al. [6] reported NUF2 transcript as a prognostic bio-
marker of breast cancer. NUF2 inhibition has been reported to  
result in reduced tumor cell growth in cancers of the brain [7], 
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colon [8], liver [9], and pancreas [10,11]. The fact that NUF2 
has been implicated in multiple cancers suggests NUF2 plays 
an important role in cell proliferation. However, NUF2 has 
not been comprehensively analyzed in a pan-cancer context 
to reveal its expression patterns and correlation with clinical 
parameters in various cancers.

Large collaborative projects such as the Cancer Genome 
Atlas (TCGA) and the International Cancer Genome Consor-
tium (ICGC) provide a standardized platform to analyze a 
large number of cancer samples across various cancer types 
[12-14]. In this study, we primarily employed TCGA pan-can-
cer data to examine the NUF2 transcript expression in a total 
of 31 cancer types and correlate NUF2 transcript status with 
clinical parameters such as tumor stage and patient survival 
data. We found NUF2 overexpression is a common feature 
of 23 cancer types which are largely confirmed by independ-
ent datasets from various independent single cancer studies. 
High NUF2 transcript level is significantly associated with 
poorer patient overall survival (OS) and disease-free survival 
(DFS) in a subset of cancer types. We proceeded to further 
validate NUF2 overexpression at the protein level in human 
HCC and revealed the functional impact of silencing NUF2 
in HCC cells.

Materials and Methods
 
1. Patient samples and cell lines 

Formalin-fixed paraffin-embedded (FFPE) tissue sections 
of 40 HCC patients were collected from Zhejiang Shangyu 
People’s Hospital, Shaoxing, PR China. All samples were 
clinically confirmed HCC by histopathology.

The HepG2 cells were purchased from ATCC (HB-8065) 
with proof of authenticity. Huh7 cells were bought from 
The Japanese Collection of Research Bioresources (JCRB) 
Cell Bank (Osaka, Tokyo, Japan) and has been validated by  
Genetica DNA Laboratories (Cincinnati, OH).  All cells were 
grown in Dulbecco’s modified Eagle’s medium (DMEM) 
with 4.5 g/L high glucose, 15 mM HEPES buffer and 10% 
fetal calf serum in a humidified incubator at 37℃ with 5% 
CO2. HepG2 cells were grown on collagen-coated surfaces to 
enable monolayer growth.

 
2. NUF2 analysis in TCGA, ICGC, and Gene Expression 
Omnibus datasets

Normalized NUF2 transcript expression in 9,498 tumor 
samples and 5,540 non-tumor samples from 31 distinct  
tumor types from TCGA and the Genotype-Tissue Expres-
sion (GTEx) datasets were extracted using the GEPIA2 web 
resource [15]. Normalized NUF2 transcript expression were 
manually extracted from GSE40355, GSE42568, GSE27678, 

GSE26566, GSE110225, GSE107591, GSE16011, GSE30219, 
GSE28735, and GSE15605 datasets from Gene Expression 
Omnibus (GEO) database. Normalized NUF2 transcript  
expression was manually extracted from LINC-JP dataset 
from the ICGC data portal. Normalized NUF2 transcript 
expression was extracted from 48 cell lines representing 24 
cancer types from the Broad Institute Cancer Cell Line Ency-
clopedia (CCLE).

 
3. Reverse transcription quantitative polymerase chain  
reaction

Reverse transcription quantitative polymerase chain reac-
tion was performed as previously described [16]. Briefly, 
cDNA was synthesized from 200 ng of total RNA using a 
high capacity cDNA archive kit (Applied Biosystems, Fos-
ter City, CA) according to the manufacturer’s instructions.  
Real-time PCR was performed in an Applied Biosystems 
9700 real-time PCR system using the KAPA SYBR FAST 
Universal kit (Kapa Biosystems, Boston, MA). Amplification 
reactions included cDNA template (25 ng), gene-specific pri-
mers (0.25 pmol/μL), and 2× PCR Master Mix (5 μL; Kapa 
Biosystems) in a total volume of 10 μL. Amplification condi-
tions include an initial denaturation at 95°C for 15 minutes, 
followed by 40 cycles at 95°C for 30 seconds, 55°C for 30 sec-
onds, and 72°C for 30 seconds. SYBR Green fluorescence was 
measured after each extension step. The primers used in this  
study were NUF2-F-TATCCAAATCCAAAGCCTGAAGTC; 
NUF2-R-GCAGTCTCAAAGTCATTCACCC; NCAPG-F-AA-
GAAAGAACTCAAGATGGCTG; NCAPG-R-AGCATCAT- 
TCTTCTCTATGTGG; GAPDH-F-CATTTCCTGGTATGACA- 
ACGA; GAPDH-R-CTTCCTCTTGTGCTCTTGCT.

 
4. Immunohistochemistry

Reagents used for immunohistochemistry (IHC) staining 
were obtained from Dako A/S (Glostrup, Denmark) and 
were used according to the manufacturer’s instructions. 
Paraffin sections (5 μm) were dewaxed with xylene and  
rehydrated through ethanol/water dilutions. Antigen retri-
eval was performed with heat-induced epitope retrieval 
using 10 mM citrate buffer, pH 6. Endogenous peroxidase 
activity in the sections was quenched by immersion in 3% 
hydrogen peroxide (Dako #S2023) for 5 minutes. Sections 
were incubated with rabbit polyclonal primary antibody 
against NUF2 (HPA076604, Sigma, St. Louis, MO) and  
diluted in antibody diluent (Dako #S3022) for 30 minutes 
at room temperature. MAbs were detected with mouse/
rabbit Envision+ (Dako #K5007), and the reactions were 
visualized by incubating the sections with DAB+ (Dako 
#K5007) for two periods of 3 minutes. Washes between 
incubations were carried out with TBS containing 0.05% 
Tween 20, pH 7.6 (Dako #S3006). Sections were counter-
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stained with hematoxylin. Evaluation of NUF2 protein  
expression was performed using a 0 to 3+ scale according 
to the intensity of staining from two IHC slides per patient.

5. Measurement of cell growth, migration, and invasion in 
vitro

Cell growth in vitro was measured between HCC cells sta-
bly expressing shRNA against NUF2 or non-targeting con-

Fig. 1.  NUF2 expression in tumor versus non-tumor samples in 31 cancer types. (A) Boxplots showing significant overexpression of NUF2 
in tumor samples compared to non-tumor samples in 23 cancer types. (Continued to the next page)
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Fig. 1.  (Continued from the previous page) (B) Boxplots showing significant under-expression of NUF2 in tumor samples compared to non-
tumor samples in LAML and TGCT. (C) Boxplots showing NUF2 expression is not statistically significantly different between tumor sam-
ples and non-tumor samples in six cancer types. Each dot indicates a sample. The red box on the left represents tumor samples (T) while 
the grey box on the right represents non-tumor (N) samples. The asterisks indicate statistically significant NUF2 differential expression 
between T and N samples with unpaired Student’s t test p < 0.05. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; 
BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarci-
noma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, 
glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell 
carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver 
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum  
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; 
THCA, thyroid carcinoma; THYM, thymoma; TPM, transcripts per milion; UCEC, uterine corpus endometrial carcinoma; UCS, uterine 
carcinosarcoma.
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Fig. 2.  High NUF2 level is consistently observed in multiple cancer patient datasets and cell lines. (A) Overexpression of NUF2 transcript 
in tumors versus non-tumor tissues is validated in BLCA (GSE40355), BRCA (GSE42568), CESC (GSE27678), CHOL (GSE26566), COAD 
(GSE110225), HNSC (GSE107591), LGG & GBM (GSE16011), LUAD & LUSC (GSE30219), PAAD (GSE28735), and SKCM (GSE15605). Rela-
tive NUF2 expression is expressed as normalized probe intensity in Log2 scale for microarray data or RPKM for RNA-sequencing data. 
(Continued to the next page)
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trol, using the IncuCyte Zoom Continuous Live-cell Imaging 
& Analysis System (Essen BioScience, Ann Arbor, MI). Five 
thousand cells were seeded in one well of a 96-well plate and 
cell growth measurements were recorded as relative conflu-
ence over time. Relative cell growth was normalized ratio 
against cell confluence at the start of the assay.

Cell migration in vitro was measured using the scratch 
wound assay. HCC cells were seeded into 96 well image lock 
plates. A fixed width wound was made to 100% confluent 
cells using the semi-manual WoundMaker tool (Essen Bio-
science). The plates were imaged hourly for 48 hours. The 
wound healing was measured as relative cell confluency  
inside the wound region over time using the Incucyte soft-
ware.

Cell invasion in vitro was measured using trans-well cham-
bers coated with 1:30 diluted Matrigel Basement Membrane 
Matrix (Corning Life Sciences, Corning, NY). 1×105 cells 
were seeded into upper chambers (8 μm pore size, Corning 
Life Sciences) in serum-free DMEM media while the lower 
chamber was filled with DMEM supplemented with 20% 
FBS. After incubation for 48 hours at 37℃, the cells in the 
upper chamber that did not invade through the pores were 
wiped out with cotton wool. The cells in the lower chamber 
were fixed with methanol and stained with 0.5% crystal vio-
let. Cells are then counted and imaged at ×40 magnification.

 
6. Xenograft tumor growth in vivo

All mice experiments were performed in accordance to 
ARRIVE standards and approved by the SingHealth Insti-
tutional Animal Care and Use Committee (IACUC). NCr-
Foxn1nu nude mice were purchased from InVivos. Huh7 
cells stably expressing shRNA against NUF2 (shNUF2-1 & 
-2) or non-targeting controls (shControl-1 & -2) were trans-
planted subcutaneously with 3 million cells in 10% Matrigel 
per mouse, bilaterally, four mice per group. Tumor weight 
was measured when mice were euthanized 50 days after  

tumor cell implantation.
 

7. Bioinformatic analysis
Students’ t test was used for comparing means between 

two groups. One-way ANOVA was used for comparing 
means between three groups. Fisher exact test in examining 
associations between categorical variables. Ingenuity Path-
way Analysis (IPA) software was used to construct interac-
tion networks among the top 100 NUF2-correlated genes 
(S1 Table). The gene expression data were divided into 
NUF2 high and low expression using median cut-off and 
gene set enrichment analysis (GSEA) was performed using 
GSEA software ver. 4.0.1 with MsigDB database using c2.cp.
kegg.v7.0 gene sets [17,18]. Significantly enriched gene sets 
were chosen with the cutoff of false discovery rate < 0.05. 
Kaplan-Meier survival analysis was used to analyze the  
association of NUF2 status with patient OS and DFS. Kaplan-
Meier survival analysis on TCGA dataset was performed on  
GEPIA2 [15]. Kaplan-Meier survival analysis on independ-
ent datasets from GEO, ICGC, and local IHC datasets were 
performed on SPSS Inc. (Chicago, IL). Multivariate analyses 
of prognostic factors, Cox proportional hazards regression 
was applied. Statistical significance is attained when p < 0.05.

Results

1. NUF2 overexpression in many cancers
We examined NUF2 transcript expression in 9,498 tumor  

samples and 5,540 non-tumor samples from 31 distinct  
tumor types from the TCGA and the GTEx datasets. NUF2 
transcript variants 1 and 2, both encoding the same protein, 
are the most predominant forms seen in all cancers (S2 Fig.). 
NUF2 transcript was found to be significantly overexpressed 
in tumor versus non-tumor samples in 23 cancer types (p < 
0.05) (Fig. 1A). In contrast, NUF2 was significantly under- 

Fig. 2.  (Continued from the previous page) (Continued to the next page)
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Fig. 3.  NUF2 expression is associated with tumor stages in eight cancer types. Violin plots showing higher NUF2 expression in more  
advanced stages (III and IV) in adrenocortical carcinoma (ACC) (A), kidney chromophobe (KICH) (B), kidney renal clear cell carcinoma 
(KIRC) (C), kidney renal papillary cell carcinoma (KIRP) (D), liver hepatocellular carcinoma (LIHC) (E), lung adenocarcinoma (LUAD) (F), 
lung squamous cell carcinoma (LUSC) (G), and  thyroid carcinoma (THCA) (H). 
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Fig. 4.  High NUF2 level is significantly associated with poorer patient survival in multiple cancer types. (A) Top: Overall survival map 
showing log10 (HR) between NUF2 high and NUF2 low tumors based on median NUF2 expression in 31 cancer types. The red box indi-
cates a significant difference at p < 0.05. Bottom: Kaplan-Meier survival curve analysis showing high NUF2 level is significantly associated 
with poorer overall survival in nine cancer types including adrenocortical carcinoma (ACC), kidney renal clear cell carcinoma (KIRC), kid-
ney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), pancreatic adenocarcinoma (PAAD), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), 
testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), and 
uterine carcinosarcoma (UCS).  HR, hazard ratio; TPM, transcripts per milion. (Continued to the next page)
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expressed in tumor versus non-tumor samples in two can-
cers, acute myeloid leukemia (LAML) and testicular germ cell  
tumors (TGCT) (p < 0.05) (Fig. 1B). In the remaining six can-
cer types, NUF2 expression was comparable between tumor 
and non-tumor samples in kidney chromophobe (KICH) 
(Fig. 1C). NUF2 expression was observed to be generally 
higher in tumor versus non-tumor samples in kidney renal  
clear cell carcinoma (KIRC), kidney renal papillary cell car-
cinoma (KIRP), pheochromocytoma and paraganglioma 
(PCPG), prostate adenocarcinoma (PRAD), and thyroid car-
cinoma (THCA), although the differences were not statisti-
cally significant (Fig. 1C). In 11 independent datasets from 
the GEO and ICGA databases, we successfully validated sig-
nificant NUF2 transcript overexpression in 13 cancer types 
(Fig. 2A). NUF2 transcript expression was the highest in nor-
mal testis tissue, followed by the fetal liver and bone mar-
row tissue. In contrast, NUF2 expression was very low for 
most adult tissues such as the brain, liver, kidney, and colon  
(Fig. 2B, left panel). Furthermore, NUF2 transcript expression 
in 48 cancer cell lines representing 24 cancer types was found 
to be significantly higher than the respective normal tissues 
except testis (Fig. 2B, right panel). This is consistent with the 
previous observation that NUF2 expression was lower in 
TGCT compared to normal testis tissues. In summary, NUF2 
expression is up-regulated in tumor samples compared to 
non-tumor samples in the majority of cancer types, suggest-
ing NUF2 may play an important role in the generic tumori-
genesis process which is common among multiple cancers.

 
2. Association of NUF2 with tumor stage and patient sur-
vival

To evaluate the clinical significance of NUF2 overexpres-
sion in multiple cancers, we correlated NUF2 expression 
with tumor stages as classified according to the American 
Joint Committee on Cancer staging system. As shown in Fig. 

3, high NUF2 transcript expression was significantly corre-
lated with advanced tumor stages (stage III or IV) in cancers 
of the adrenal gland (ACC), kidney (KICH, KIRC, and KIRP), 
liver (LIHC), lung (LUAD and LUSC), and thyroid (THCA).

Moreover, high tumor NUF2 level was significantly asso-
ciated poorer patient OS in ACC, KIRC, KIRP, LGG, LIHC, 
LUAD, PAAD, and SARC with hazard ratios ranging from 
1.6 in LUAD to 8.9 in ACC (Fig. 4A). High NUF2 level was 
also significantly associated with poorer patient DFS in ACC, 
KIRP, LGG, LIHC, PRAD, and SARC with hazard ratios 
ranging from 1.6 in LIHC to 4.3 in ACC (Fig. 4B). The most 
significant difference was observed in ACC dataset. ACC  
patients with high NUF2 transcript expression had a me-
dian OS of approximately 40 months and a median DFS of  
approximately 20 months while ACC patients with low 
NUF2 had median OS and DFS of more than 150 months 
(Fig. 4A and B).

 
3. High NUF2 expression in human HCC

We proceeded to examine NUF2 overexpression in human 
HCC further.  In an independent 337 Japanese patient cohort 
in the ICGC LINC-JP dataset, NUF2 transcript expression 
was significantly higher in tumor compared to non-tumor 
samples (Fig. 5A). High NUF2 transcript level was also  
associated with significantly poorer patient OS in this LINC-
JP cohort (Fig. 5B), consistent with our previous observation 
in the TCGA-LIHC dataset (Figs. 1A and 4A). As both HCC 
datasets only examined NUF2 transcript expression, we per-
formed IHC staining to quantitate NUF2 protein expression 
in FFPE samples from 40 HCC patients. As shown in Fig. 
5C, NUF2 protein expression was consistently found to be 
higher in tumor versus paired adjacent non-tumor of HCC 
patients. High NUF2 protein was associated with significant-
ly poorer patient OS (Fig. 5D). We subsequently correlated 
NUF2 protein levels with clinic-pathological parameters of 

Fig. 4.  (Continued from the previous page) (Continued to the next page)
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these 40 HCC patients (Table 1). High NUF2 protein level 
was significantly associated with tumor recurrence (p < 0.01). 
NUF2 and tumor size are independent prognostic predictors 

of HCC patient OS (Table 2).

Fig. 4.  (Continued from the previous page) (B) Top: Disease-free survival map showing log10 (HR) between NUF2 high and NUF2 low tumors 
based on median NUF2 expression in 31 cancer types. The red box indicates a significant difference at p < 0.05. Bottom: Kaplan-Meier 
survival curve analysis showing high NUF2 level is significantly associated with poorer disease-free survival in six caner types including 
ACC, KIRP, LGG, LIHC, PRAD, and SARC.
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Table 1.  Correlation of NUF2 expression with clinicopathologic parameters of HCC patients

Clinicopathological parameter Total cases (n=40)
                                  NUF2 expression  Fisher exact

  High NUF2 (n=20) Low NUF2 (n=20) p-value

Sex
    Male 40 20 (50.0) 20 (50.0) -
    Female 0 0 ( 0 (
Age (yr)
    ≤ 50 17 7 (41.1) 10 (58.8) 0.52
    > 50 23 13 (56.5) 10 (43.5)
HBsAg
    Positive 35 16 (45.7) 19 (54.3) 0.34
    Negative 5 4 (80.0) 1 (20.0)
Serum AFP (ng/mL)
    ≤ 20 17 8 (47.1) 9 (52.9) > 0.99
    > 20 23 12 (52.2) 11 (47.8)
Tumor multifocality
    Single 31 15 (48.4) 16 (51.6) > 0.99
    Multiple 9 5 (56.6) 4 (44.4)
Tumor size (cm)
    ≤ 5 20 7 (35.0) 13 (65.0) 0.11
    > 5 20 13 (65.0) 7 (35.0)
Tumor stage
    I 30 14 (46.7) 16 (53.3) 0.72
    II and III 10 6 (60.0) 4 (40.0)
BCLC staging
    0 and A 34 15 (44.1) 19 (55.9) 0.18
    B, C and D 6 5 (83.3) 1 (16.7)
Tumor recurrence
    Yes 21 18 (85.7) 3 (14.3) 0.01
    No 19 8 (42.1) 11 (57.9)
 Values are presented as number (%). High and low NUF2 level are determined immunohistochemistry staining. p-value is calculated from 
the Fisher exact test. AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; HBsAg, hepatitis B virus surface antigen; HCC, hepatocel-
lular carcinoma.

Table 2.  Univariate and multivariate analysis on overall survival of independent prognostic factors in HCC patients using Cox regression

Parameter
  Univariate analysis    Multivariate analysis

 HR 95% CI p-value  HR 95% CI p-value

Age (> 55 yr/< 55 yr) 0.50 0.21-1.20 0.12 0.53 0.23-1.22 0.13
Sex (male:female) 3.71   0.89-15.49 0.07 3.89   0.88-17.23 0.07
HBV (yes/no) 2.30 0.81-6.50 0.12 1.17 0.37-3.73 0.80
Tumor size (> 5 cm/< 5 cm) 2.87 1.11-7.41 0.02 3.03 1.12-8.25 0.03
AFP (> 20 ng/mL /< 20 ng/mL) 2.41 1.22-4.75 0.01 2.07 0.89-4.82 0.09
Multifocality (multi/single) 1.03 0.37-2.93 0.95 0.72 0.23-2.24 0.57
Vascular invasion (yes/no) 1.90 0.99-3.66 0.06 1.63 0.76-3.48 0.21
NUF2 (high/low) 3.03 2.04-4.96 0.02 2.92 1.99-4.57 0.02
AFP, α-fetoprotein; CI, confidence interval; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HR, hazard ratio.
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4. NUF2 on HCC growth in vitro and in vivo
To understand the molecular function of NUF2 overexpres-

sion in HCC, we generated modified HCC cells with stable 
inhibition of NUF2 via NUF2-targeting shRNAs (shNUF2-1 
& -2) in two HCC cell lines (HepG2 and Huh7) and com-
pared NUF2 expression, cell growth, migration/invasion 
and in vivo tumor formation between NUF2 knockdown cells 
and mock knockdown cells (shControl-1 & -2). NUF2 expres-
sion was significantly inhibited in HCC cells stably express-
ing shRNAs targeting NUF2 (shControl-1 & -2) compared to 
non-targeting controls (shControl-1 & -2). We also examined 
the expression of NCAPG (non-SMC condensin I complex 
subunit G) which is a gene reported to be related to cell  
cycle but not related to NUF2, to demonstrate the specificity 

of the shRNAs against NUF2. NUF2-targeting shRNAs did 
not significantly perturb the expression of a non-targeting 
gene NCAPG (Fig. 6A). Compared to the non-targeting con-
trols, NUF2 knockdown cells showed significantly reduced 
ability to grow, migrate into a scratch wound and invade 
the 8 μm porous membrane in vitro (Fig. 6B-D). Moreover, 
NUF2 knockdown cells also formed significantly smaller 
tumors than control cells in mouse xenograft assays in vivo 
(Fig. 6E). To gain some insights into the molecular pathways  
associated with NUF2, we performed IPA on the top 100 most 
correlated genes with NUF2 in the TCGA-LIHC datasets. As 
shown in Fig. 6F, NUF2 correlated genes formed a tightly  
interconnected network containing multiple centromere pro-
teins and were predicted to be regulated by FOXM1. NUF2 

Fig. 5.  NUF2 overexpression in HCC. (A) Box dot plot showing significant higher NUF2 transcript in tumor versus non-tumor tissues from 
LINC-JP dataset in ICGC. (B) Kaplan-Meier survival curve analysis showing high NUF2 transcript level is associated with significantly 
poorer overall survival in the same LINC-JP dataset. (C) Immunohistochemistry staining using NUF2 specific antibody in a representative 
HCC patient section from a local cohort of 40 patients. NUF2 protein is found to be significantly higher expressed, compared to the paired 
adjacent non-tumor section. Scale bars=100 μm. (D) Kaplan-Meier survival curve analysis showing high NUF2 transcript level is associated 
with significantly poorer overall survival in this cohort of 40 HCC patients. HCC, hepatocellular carcinoma; ICGC, International Cancer 
Genome Consortium.
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Fig. 6.  NUF2 inhibition significantly reduced HCC cell growth in vitro and in vivo. (A) Significant inhibition of NUF2 transcript level in 
HepG2 (left) and Huh7 (right) cells stably expressing shRNAs against NUF2 (shNUF2-1 & -2) compared with that of shRNA controls 
(shControl-1 & -2), measured using quantitative reverse transcription polymerase chain reaction and normalized against endogenous 
GAPDH. (B) Significant inhibition of in vitro cell growth in HepG2 (left) and Huh7 (right) cells stably expressing shRNAs against NUF2 
(shNUF2-1 & -2) compared with that of shRNA controls (shControl-1 & -2), measured using live-cell imaging with Incucyte Zoom. (C) 
Significant inhibition of in vitro cell migration in Huh7 cells stably expressing shRNAs against NUF2 (shNUF2-1 & -2) compared with that 
of shRNA controls (shControl-1 & -2), measured using scratch wound healing assay. (Continued to the next page)
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Fig. 6.  (Continued from the previous page) (D) Significant inhibition of in vitro cell invasion in HepG2 (top) and Huh7 (bottom) cells stably 
expressing shRNAs against NUF2 (shNUF2-1 & -2) compared with that of shRNA controls (shControl-1 & -2), measured using inva-
sion chamber assay. (E) Significant inhibition of in vivo xenograft tumor growth in Huh7 cells stably expressing shRNAs against NUF2 
(shNUF2-1 & -2) compared with that of shRNA controls (shControl-1 & -2), measured using mouse xenograft assay. Data were expressed as 
wet tumor weight. *p < 0.05. (F) Ingenuity pathway analysis showing the interconnected network formed by the top 100 NUF2-correlated 
genes in TCGA-LIHC dataset. (Continued to the next page)
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associated genes were highly enriched in the cell cycle, DNA 
replication, and p53 signaling pathways (Fig. 6G).

Discussion

The completion of the TCGA project and the availability of 
analysis tools such as GEPIA2 provide a platform for the rap-
id examination of genetic and epigenetic aberrations across 
many cancer types [13-15,19]. Here we reported statistically 
significant NUF2 transcript overexpression in 23 out of the 31 

cancer types in the TCGA datasets while NUF2 overexpres-
sion was observable but not reaching statistical significance 
in an additional five cancer types. A closer examination of 
these five datasets revealed a high proportion of early-stage 
tumors in the overall cohort, e.g., stage I and II samples  
accounts for over 70% of KICH cases, contributing to a  
cohort-specific bias to the observation of NUF2 expression. 
We successfully validated NUF2 transcript overexpression in 
13 cancer types from 11 datasets of primary tumor samples 
and 24 cancer types represented by 48 cell lines from CCLE 
database [20,21]. Taken together, NUF2 overexpression is a 

Fig. 6.  (Continued from the previous page) (G) Gene set enrichment analysis showing cell cycle, DNA replication and p53 signaling pathways 
as the most enriched pathways associated with NUF2. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HCC, hepatocellular carci-
noma; TCGA, The Cancer Genome Atlas.
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common feature for the majority of cancers. Our data were 
consistent with the previously reported NUF2 transcript 
overexpression in cancers of the brain [7], breast [6], colon 
[8], liver [5,9], and pancreas [10,11]. More importantly, this 
is the first study to report NUF2 transcript was also up-reg-
ulated in cancers of the bladder, cervix, esophagus, head and 
neck, lung, ovary, stomach, and skin, as well as some rare 
cancers such as ACC, DLBC, THYM, and UCS (Figs. 1A and 
2A), warranting further characterization of NUF2 in these 
cancer types.

NUF2 overexpression is clinically important as high 
NUF2 correlated with clinical features of many cancers. We  
recently reported that high NUF2 transcript level could  
accurately predict early tumor recurrence post-surgical  
resection in HCC [5]. High NUF2 transcript level was shown 
to be a prognostic biomarker for breast cancer in certain 
datasets in a systematic meta-analysis [6]. In this study, we 
further demonstrated that high NUF2 at the protein level 
was also significantly associated with tumor recurrence and 
negatively associated with patient OS in an independent  
cohort of 40 HCC patient samples (Table 1, Fig. 5C and D). 
Also we reported the novel findings that high NUF2 tran-
script expression was associated with tumor stages in can-
cers of the kidney (KICH, KIRC, and KIRP), liver (LIHC), 
lung (LUAD and LUSC), ACC, and THCA. More important-
ly, high NUF2 transcript expression was shown to be signifi-
cantly associated with poorer patient survival (both OS and 
DFS) in ACC, KIRP, LGG, and SARC, in addition to LIHC 
(Fig. 4). It is of particular interest to further evaluate the prog-
nostic potential of NUF2 in rare cancers such as ACC. NUF2 
up-regulation correlated closely with each tumor stage in 
ACC (Fig. 3A). ACC patients with high NUF2 transcript  
expression had a median OS of approximately 40 months 
and a median DFS of approximately 20 months, compared 
to the median OS and DFS of more than 150 months in 
ACC patients with low NUF2 (Fig. 4A and B). Importantly,  
inhibition of NUF2 in HAC15 cells, an ACC cell line, signifi-
cantly reduced cell proliferation (S3 Fig.), demonstrating that 
NUF2 overexpression is functionally important in ACC too.  
Unfortunately, we could not find suitable datasets to vali-
date these associations at the moment. This very significant  
observation in the relatively small cohort of 75 patients in the 
TCGA datasets should be validated using a larger cohort to 
provide important prognostic biomarkers for ACC which is 
under-studied.

NUF2 overexpression is functionally important in many 
cancers. Silencing of NUF2 in vitro has been reported to  
inhibit tumor cell growths in cell lines of osteosarcoma and 
pancreatic cancers. In this study, we demonstrated that con-
stitutive inhibition of NUF2 via shRNAs reduced the abil-
ity of HCC cells to proliferate, migrate, and invade in vitro. 

NUF2 inhibition also resulted in smaller tumor formation 
in vivo. NUF2 correlated genes include many centromere 
proteins such as CENP-A, CENPF, and CENPH which are  
enriched in the cell cycle, DNA replication, and p53 signaling 
pathways (Fig. 6). This is consistent with NUF2’s reported 
role to mediate kinetochore-microtubule attachment during 
cell division [22-24]. NUF2 expression correlates with the 
number of cell divisions in the tissues. In most adult tissues, 
there are few cell divisions and NUF2 expression is low. In 
tumors arising from these tissues, there is an increase in cell 
divisions and NUF2 expression is found to be significantly 
higher in tumors versus non-tumor samples for most of these 
cancers. In contrast, NUF2 expression is extremely high in 
normal testis tissues where cell divisions are high too while 
NUF2 expression was lower in TGCT where seminomas are 
the most predominant form of testicular cancers and very 
slow-growing tumors [25].

In summary, we reported significant NUF2 transcript over-
expression in 23 TCGA cancer types. High NUF2 was signifi-
cantly associated with poorer patient OS and DFS in selected 
cancer types. We further validated the prognostic potential 
and functional impact of NUF2 overexpression in HCC. 
More international efforts are needed to evaluate NUF2 over-
expression in other relevant cancers such as ACC.
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