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Abstract

Although noisy gene expression is widely accepted, its mechanisms are subjects of debate, stimulated largely by single-
molecule experiments. This work is concerned with one such study, in which Choi et al., 2008, obtained real-time data and
distributions of Lac permease in E. coli. They observed small and large protein bursts in strains with and without auxiliary
operators. They also estimated the size and frequency of these bursts, but these were based on a stochastic model of a
constitutive promoter. Here, we formulate and solve a stochastic model accounting for the existence of auxiliary operators
and DNA loops. We find that DNA loop formation is so fast that small bursts are averaged out, making it impossible to
extract their size and frequency from the data. In contrast, we can extract not only the size and frequency of the large bursts,
but also the fraction of proteins derived from them. Finally, the proteins follow not the negative binomial distribution, but a
mixture of two distributions, which reflect the existence of proteins derived from small and large bursts.
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Introduction

Data from many independent experiments show that the

abundance of any given protein varies among individual cells of

isogenic populations growing under identical conditions [1–3].

Early experiments with fluorescent reporters showed that such

non-uniformity in protein abundance was due to the inherent

stochasticity of gene expression (intrinsic noise) and various forms

of cell-to-cell variation (extrinsic noise) [4,5]. The subsequent

development of single-molecule techniques has led to deeper

insights into the molecular mechanisms generating the noise [6,7].

By measuring the number of mRNAs in single cells, Golding et al.

showed that transcription was too bursty to be modeled as a

Poisson process [8]. Cai et al. [9] and Yu et al. [10] developed two

different methods for measuring the number of proteins in

single cells. The real-time data of both studies showed that

protein synthesis was bursty, and the burst size was exponen-

tially distributed. Under this condition, the steady state

protein distribution follows the Gamma distribution,

pn~na{1e{n=b=baC(a), where a and b denote the mean burst

frequency and burst size [11]. Cai et al. and Yu et al. showed that

the Gamma distribution could fit their steady state data, and the

values of the mean burst frequency and size derived from the

steady state data agreed well with those obtained from real-time

measurements.

Armed with these results, Choi et al. [12] attacked a long-

standing problem. When non-induced cells of E. coli are exposed

to small concentrations of the gratuitous inducer TMG, the lac
operon is induced by stochastic switching of individual cells from

the non-induced to the induced state [13]. Choi et al. sought the

molecular mechanism of this stochastic switching. To this end,

they first quantified the minimum number of LacY molecules

required to switch a cell to the induced state, and found this

threshold to be 375 molecules. They then suggested a molecular

mechanism capable of yielding this threshold by appealing to the

known mechanisms of repression and transcription of the lac
operon. Repression is mediated by the stable DNA loops formed

when the Lac repressor is simultaneously bound to the main and

auxiliary operators (Fig. 1). Transcription can take place either due

to partial dissociations, which occur when a repressor trapped in a

DNA loop dissociates from the main operator, but not the

auxiliary operator; or complete dissociations, which occur when the

repressor dissociates completely from the DNA. Choi et al.

hypothesized that since a partially dissociated repressor remains

attached to the DNA, it rapidly rebinds to the main operator, thus

limiting the number of transcription events. Although the evidence

suggests that no more than one mRNA is made during a partial

dissociation, it is conceivable that multiple transcripts are made

during a partial dissociation despite its short lifetime, thus leading

to a small transcriptional burst. In contrast, a completely

dissociated repressor takes a relatively long time to find an

operator, which results in a large transcriptional burst. These large

transcriptional bursts can provide enough proteins to cross the

threshold for stochastic switching.
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Choi et al. tested the foregoing hypotheses as follows. The

statistics of small transcriptional bursts were obtained with strain

SX701, a lacY{ strain that exhibits mostly small bursts. To

capture the statistics of large bursts, they deleted the auxiliary

operators of their lacY{ cells, thus creating strain SX703 which

yields only large bursts. The statistics of the small and large bursts

were quantified by measuring the steady-state protein distributions

for both strains at various inducer concentrations. They then

concluded, based on the model of Friedman et al. [11], that if m,s2

denote the mean and variance of a protein distribution obtained

with strain SX701, then the Fano factor, F:s2=m, and the

reciprocal of the noise, g{2: m=sð Þ2, represent the size and

frequency of the small bursts. Likewise, if �mm,�ss2 denote the mean

and variance for SX703, then �FF:�ss2=�mm, �gg{2: �mm=�ssð Þ2 represent

the size and frequency of the large bursts. Analysis of the data for

SX703 with this method showed that �gg{2 did not change with

inducer levels, but �FF increased dramatically (Fig. 2a), thus

confirming their hypothesis that large bursts can generate enough

proteins to trigger stochastic switching. Surprisingly, analysis of the

data for SX701 also yielded similar trends (Fig. 2b), but this was

attributed to the distortions created by the few cells exhibiting

large bursts. Indeed, if the data were filtered by removing the

contribution of large bursts, g{2 and F did not change much with

the inducer concentration (Fig. 2c), leading the authors to

conclude that the small burst frequency and size were independent

of the inducer level.

Choi et al. also explained these results by appealing to the

known states of the lac operon (Fig. 1). However, the mathematical

model of Friedman et al., which forms the basis of their data

analysis, does not account for these complexities — it only

considers a constitutive (unregulated) promoter. Consequently,

there is no strong support for the assumption that the proteins

follow the Gamma distribution; F ,�FF represent the size of small

and large bursts; and g{2,�gg{2 represent the frequency of small

and large bursts. The goal of this study is to verify the validity of

these assumptions by formulating a stochastic model accounting

for the known states of the operon, and deriving analytical

expressions for the steady state protein distribution, Fano factor,

and noise.

There are stochastic models accounting for the details shown in

Fig. 1 [14–16], but these studies do not give analytical expressions

for the steady state protein distribution. The literature also

contains several stochastic models of gene regulation for which

analytical solutions were obtained [11,17–24], but they do not

account for the presence of multiple auxiliary operators and DNA

Figure 1. Structure and states of the lac operon. The repressor R can bind to any of the three operators, namely the main operator O1, and the
two auxiliary operators O2 , O3 . The repressor-free state is enclosed by the lower dashed box. The repressor-bound states, enclosed by the upper
dashed box, consist of the following 5 states (clockwise from the left): the O3 -bound state O3

:R, the looped state O3
:R:O1 , the O1 -bound state

O1
:R, the looped state, O1

:R:O2 , and the O2-bound state O2
:R. Transcription occurs only if the operon is in the repressor-free state or the repressor-

bound state O2
:R. Small bursts occur whenever the repressor dissociates from the looped state O1

:R:O2 to form the O2 -bound state O2
:R. Large

bursts occur whenever the repressor dissociates from the DNA to form the repressor-free state. Transitions between repressor-free and repressor-
bound states occur with propensities k0 and k1 .
doi:10.1371/journal.pone.0102580.g001
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looping. Our model fills this gap in the theoretical literature, and

its analysis yields deeper insights into the experimental data.

Specifically, we show that the size and frequency of small bursts

cannot be extracted from the data for strain SX701 because they

are averaged out. However, we can extract not only the size and

frequency of the large bursts, but also their contribution to total

protein synthesis, provided the data is not filtered (Fig. 2d). This

result also yields tests for the consistency of the model by providing

relationships between the size and frequency of large bursts in

strains SX701 and SX703. Finally, we show that neither one of the

two strains follow the negative binomial (or Gamma) distribution.

The paper is organized as follows. In the Analysis section, we

describe the model, derive the master equation, and explain the

key approximations used to obtain the steady state protein

distribution. In the Results section, we perform simulations to

check the validity of the analytical expression for the protein

distribution, and we derive the expressions for mean and the

variance of the distribution. We also show that the mean, variance,

and hence, the Fano factor and the reciprocal of the noise, can be

expressed in terms of the size and frequency of the transcriptional

and translational bursts. In the Discussion section, the latter are

compared with the assumptions of Choi et al. We also show that

negative binomial distributions are obtained only if the size of the

large transcriptional bursts is relatively small.

Analysis

The model scheme, shown in Figure 1, is based on the following

facts enunciated by Oehler et al. [25,26]. The lac operon of E. coli
contains three operators, namely the main operator O1, and the

two auxiliary operators O2,O3, lying downstream and upstream of

O1. The lac operon rarely entertains more than one Lac repressor,

and this single repressor R can bind to any one of the operators,

thus forming the operon states, O1
:R, O2

:R, and O3
:R. Since the

tetrameric repressor is a "dimer of dimers,’’ it has a free dimer

even after it is bound to one of the operators. This free dimer can

bind to one of the remaining two free operators, thus forming a

DNA loop. In principle, three looped states are feasible, namely,

O1
:R:O2, O1

:R:O3, and O2
:R:O3, but the last one is very unlikely

to form. We are therefore led to consider only six feasible states of

the operon — the repressor-free state, and the five repressor-

bound states, O1
:R, O2

:R, O3
:R, O1

:R:O2, and O1
:R:O3. Only

three of these six states permit transcriptional activity, namely, the

repressor-free state and the repressor-bound states, O2
:R and

Figure 2. The variation of the Fano factor and the reciprocal of the noise with the inducer level [12]. (a) Derived from data for strain
SX703, which exhibits only large transcriptional bursts, since it lacks both auxiliary operators. Choi et al. proposed that �FF and 1=�gg2 represent the size
and frequency of large transcriptional bursts. (b) Derived from raw data for strain SX701, which exhibits mostly small transcriptional bursts, since it
has both auxiliary operators. Choi et al. did not consider this data on the grounds that the occurrence of large bursts in a few cells distorted the
statistics of the small transcriptional bursts. (c) Derived from data for strain SX701 that was filtered by rejecting the data corresponding to the few
cells exhibiting large bursts. Choi et al. proposed that this F and 1=g2 represent the size and frequency of small transcriptional bursts. (d) Mean size of
large transcriptional bursts in strain SX701, bcb, (full red curve) and fraction of proteins derived from such bursts, fc, (full blue curve) estimated from
the data in (b). The ordinate of the dashed red line is one-third of the ordinate of the �FF vs. [TMG] line shown in (a), and therefore represents one-third
of the (large) transcriptional burst size in strain SX703. The proximity of the full and dashed red lines implies that the mean size of large transcriptional
bursts in strain SX701 is approximately one-third of the transcriptional burst size in strain SX703, which is consistent with our model predictions.
doi:10.1371/journal.pone.0102580.g002
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O3
:R. The first two states permit full transcriptional activity. The

last state can be neglected since it permits only 3–5% of the full

transcriptional activity.

The model kinetics are based on the following assumptions. All

cells have the same number of repressors, N, which is tantamount

to neglecting extrinsic noise [4]. Since association of a cytosolic

repressor to an operator is diffusion-limited, we assume that a

cytosolic repressor has the same propensity, kaN , for association

with each of the operators. In contrast, the propensity for

dissociation of operator-bound repressor does depend on the

identity of the operator, and we denote the propensity for

dissociation of Oi -bound repressor by kOi
. Next, we consider the

kinetics of looping. The looped state O1
:R:O2 can be formed from

either O1
:R or O2

:R, but both pathways have the same propensity

because they are driven by the same local concentration effect

[26]. Thus, we denote the propensity for formation of O1
:R:O2

from O1
:R or O2

:R by the same symbol, kO1O2
. Similarly, we

denote the propensity for formation of O1
:R:O3 from O1

:R or

O3
:R by the same symbol, kO1O3

. Finally, we let v0,d0 denote the

propensities for mRNA synthesis and degradation, and v1,d1

denote the propensities for protein synthesis and dilution.

Equations
We take a master equation approach to describe the system, our

state variables being the number of mRNAs, m, the number of

proteins, n, and the six states of the operon shown in Figure 1. We

let ps
m,n denote the probability of m mRNAs and n proteins when

the operon is in state s. Here, s~f when the operon is free, and

s~i or s~ij when the operon is repressor-bound, where i,j are

integers identifying the operator(s) to which the repressor is bound

(e.g., s~1 denotes the state O1
:R and s~12 denotes the state

O1
:R:O2). Then the master equations for the kinetic scheme in

Figure 1 are

dpf
m,n

dt
~ kO1

p1
m,nzkO2

p2
m,nzkO3

p3
m,n{3kaNpf

m,n

h i
zv0 p

f
m{1,n{pf

m,n

� �
zv1m p

f
m,n{1{pf

m,n

� �
zd0 mz1ð Þpf

mz1,n{mpf
m,n

h i
zd1 nz1ð Þpf

m,nz1{npf
m,n

h i
,

ð1Þ

dp1
m,n

dt
~

kO2
p12

m,nzkO3
p13

m,nzkaNpf
m,n{ kO1

zkO1O2
zkO1O3

� �
p1

m,n

h i
zv1m p1

m,n{1{p1
m,n

� �
zd0 mz1ð Þp1

mz1,n{mp1
m,n

h i
zd1 nz1ð Þp1

m,nz1{np1
m,n

h i
,

ð2Þ

dp2
m,n

dt
~ kO1

p12
m,nzkaNpf

m,n{ kO2
zkO1O2

� �
p2

m,n

h i
zv0 p2

m{1,n{p2
m,n

� �
zv1m p2

m,n{1{p2
m,n

� �
zd0 mz1ð Þp2

mz1,n{mp2
m,n

h i
zd1 nz1ð Þp2

m,nz1{np2
m,n

h i
,

ð3Þ

dp3
m,n

dt
~ kO1

p13
m,nzkaNpf

m,n{ kO3
zkO1O3

� �
p3

m,n

h i
zv1m p3

m,n{1{p3
m,n

� �
zd0 mz1ð Þp3

mz1,n{mp3
m,n

h i
zd1 nz1ð Þp3

m,nz1{np3
m,n

h i
,

ð4Þ

dp12
m,n

dt
~ kO1O2

p1
m,nzp2

m,n

� �
{ kO1

zkO2

� �
p12

m,n

h i
zv1m p12

m,n{1{p12
m,n

� �
zd0 mz1ð Þp12

mz1,n{mp12
m,n

h i
zd1 nz1ð Þp12

m,nz1{np12
m,n

h i
,

ð5Þ

dp13
m,n

dt
~ kO1O3

p1
m,nzp3

m,n

� �
{(kO1

zkO3
)p13

m,n

h i
zv1m p13

m,n{1{p13
m,n

� �
zd0 mz1ð Þp13

mz1,n{mp13
m,n

h i
zd1 nz1ð Þp13

m,nz1{np13
m,n

h i
:

ð6Þ

Our goal is to derive the steady state protein distribution

corresponding to these equations.

Parameter values
Table 1 shows the parameter values in the absence of the

inducer. The parameters d0 and d1 reflect the experimental values

measured by Yu et al. [10]. The parameter v1 was chosen such

that the the mean burst size, b:v1=d0, agreed with the measured

value b~4, reported by Yu et al. The parameter v0 was estimated

by assuming that the mean burst frequency of fully induced cells,

a:v0=d1, is 600. The rationale for this assumption is as follows.

An uninduced cell contains, on average, 0.5 molecules of the

tetrameric LacZ [9], and hence, is expected to contain 2 molecules

of the monomeric LacY. Since the number of LacY and LacZ

molecules increases *1200-fold in fully induced cells [25], there

are 2400 LacY molecules in such cells, i.e., ab~2400, which

implies that a~600. All other parameter values were estimated

using the method of Vilar & Leibler [15]. They estimated all the

equilibrium constants using the repression data of Oehler et al.

[26]. Then, given an experimental estimate of any one parameter,
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they could find all other parameter values. They took that one

parameter to be the dissociation rate constant, kO1
, and assigned

to it the value obtained from in vitro data [27]. Based on this

procedure, the association rate, kaN, was found to be 0.73 s{1.

However, recent in vivo measurement show that the association

rate for a dimeric repressor is 0.014 s{1 [28]. If the dimeric and

tetrameric repressor associate at the same rate, and each cell

contains 10 repressors [29], the estimated value of kaN from these

measurements is 0.14 s{1. We assumed kaN~0:07 s{1, and

chose kO1
, kO2

, kO3
, kO1O2

, kO1O3
to ensure consistency with the

repression data. As we show later, these parameter values yield

good fits of the experimental data.

Since we are also concerned with protein distributions in the

presence of the inducer, it is necessary to identify the parameters

that change under these conditions. We assume that v0, d0, v1, and

d1 are independent of the inducer level. The propensities for

looping, kO1O2
,kO1O3

, are also unlikely to change in the presence of

small inducer concentrations because a partially dissociated

repressor has too little time to interact with the inducer: In the

presence of 10 mM IPTG (considered equivalent to 100 mM

TMG), the pseudo-first-order rate constant for repressor-inducer

binding is 0.1 s{1 [30], which is negligible compared to the

looping rate constant of 4 s{1. Thus, the only parameters that can

change with the inducer concentration are the association rate,

kaN , and the dissociation rates, kOi
. Based on the analysis of their

experimental protein distributions, Choi et al. concluded that the

dissociation rates are independent of the inducer concentration,

while the association rate decreases with the inducer concentra-

tion. We shall also assume that this is the case. This assumption

holds only if the concentration of TMG is significantly below

1 mM [31,32], a condition satisfied by all the concentrations used

by Choi et al., except possibly the highest concentration of

200 mM.

Model reduction
The determination of the steady state protein distribution

corresponding to eqs. (1)–(6) is facilitated by the fact that loop

formation and mRNA degradation are relatively fast.

Rapid loop formation. Table 1 shows that in the absence of

the inducer, kO1O2
,kO1O3

are much greater than all other

propensities, and as explained above, this persists even in the

presence of low inducer concentrations. It follows that the

repressor-bound states rapidly equilibrate on the fast time scale

max k{1
O1O2

,k{1
O1O3

n o
, after which there are relatively infrequent

transitions between the repressor-free and repressor-bound states.

To capture this physical fact, we replace eq. (2) with the equation

for the slow variable

pb
m,n:p1

m,nzp2
m,nzp3

m,nzp12
m,nzp13

m,n, ð7Þ

which represents the probability of m mRNAs and n proteins

when the operon is repressor-bound. We then apply the quasi-

steady state approximation to the fast variables, p2
m,n, p3

m,n, p12
m,n,

p13
m,n, and find that the probabilities of the equilibrated bound

states are given by the relations

p12
m,n&

kO1O2
=kO2

kO1O2
=kO2

zkO1O3
=kO3

 !
pb

m,n, ð8Þ

p13
m,n&

kO1O3
=kO3

kO1O2
=kO2

zkO1O3
=kO3

 !
pb

m,n, ð9Þ

p1
m,n&

kO2

kO1O2

 !
p12

m,n&
1

kO1O2
=kO2

zkO1O3
=kO3

 !
pb

m,n, ð10Þ

p2
m,n&

kO1

kO1O2

 !
p12

m,n&
kO1

=kO2

kO1O2
=kO2

zkO1O3
=kO3

 !
pb

m,n, ð11Þ

p3
m,n&

kO1

kO1O3

 !
p13

m,n&
kO1

=kO3

kO1O2
=kO2

zkO1O3
=kO3

 !
pb

m,n, ð12Þ

which express the physical fact that after the bound states reach

quasi-equilibrium, they obey the principle of detailed balance and

are almost always in one of the looped states (Table 2). Moreover,

the slow variables follow the equations

Table 1. Parameter values in the absence of inducer.

Parameter Value (in s{1) Parameter Value (in s{1)

d0 0.011 kO1
0.0016

d1 0.0002 kO2
0.019

v0 0.12 kO3
0.73

v1 0.044 kO1O2
4

kaN 0.07 kO1O3
24

doi:10.1371/journal.pone.0102580.t001
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dpf
m,n

dt
~ k0pb

m,n{k1pf
m,n

� �
zv0 p

f
m{1,n{pf

m,n

� �
zv1m p

f
m,n{1{pf

m,n

� �
zd0 mz1ð Þpf

mz1,n{mpf
m,n

h i
zd1 nz1ð Þpf

m,nz1{npf
m,n

h i
,

ð13Þ

dpb
m,n

dt
~ k1pf

m,n{k0pb
m,n

� �
zv0l pb

m{1,n{pb
m,n

� �
zv1m pb

m,n{1{pb
m,n

� �
zd0 mz1ð Þpb

mz1,n{mpb
m,n

h i
zd1 nz1ð Þpb

m,nz1{npb
m,n

h i
,

ð14Þ

where

l:
p2

m,n

pb
m,n

&
kO1

=kO2

kO1O2
=kO2

zkO1O3
=kO3

, ð15Þ

k0:kO1

p1
m,n

pb
m,n

 !
zkO2

p2
m,n

pb
m,n

 !
zkO3

p3
m,n

pb
m,n

 !

&3kO1

p1
m,n

pb
m,n

 !
&3kO2

l,

ð16Þ

k1:3kaN: ð17Þ

Equations (13)–(14) describe the evolution of the reduced model

containing only two operon states — the free and the equilibrated

bound states — between which are transitions with propensities,

k0, k1, which are slow compared to the propensities for looping

(Table 2). This is highlighted in Figure 1 by enclosing the free and

bound states in dashed boxes, and drawing dashed arrows with

labels, k0 and k1, to denote the transitions between them. The

reduced model is similar to Shahrezaei & Swain’s three-stage

model for a regulated promoter [22], but there is an important

difference. Both operon states are transcriptionally active: The

transcription rates in the free and bound states are v0 and v0l,

respectively, where l is the probability of the O2
:R state. Even

though l%1 (Table 2), we cannot neglect the transcription from

the bound state, since it captures the effect of the small

transcriptional bursts, which can account, as we show later, for

almost 80% of the mRNAs synthesized per cell cycle.

Table 2 shows that in the absence of the inducer, k0%k1, so

that the free state occurs infrequently and lasts for very short

periods of time, i.e., pb
m,n&1. We shall show later that this persists

in the presence of the low inducer concentrations (ƒ 200 mM

TMG) used by Choi et al. Hence, under the experimental

conditions of interest, the conditional probabilities in (8)–(12) are

essentially equal to the absolute probabilities.

Rapid mRNA degradation. The second approximation

appeals to the fact that mRNA degradation is rapid compared

to protein dilution, i.e., d0&d1. To apply this approximation, we

follow Shahrezaei & Swain [22]. Thus, we begin by rescaling time

with respect to the time scale for protein degradation. Letting

t~d1t transforms the reduced equations to the form

dpf
m,n

dt
~ k0pb

m,n{k1pf
m,n

� �
za p

f
m{1,n{pf

m,n

� �
zcbm p

f
m,n{1{pf

m,n

� �
zc mz1ð Þpf

mz1,n{mpf
m,n

h i
z nz1ð Þpf

m,nz1{npf
m,n

h i
,

ð18Þ

dpb
m,n

dt
~ k1pf

m,n{k0pb
m,n

� �
zal pb

m{1,n{pb
m,n

� �
zcbm pb

m,n{1{pb
m,n

� �
zc mz1ð Þpb

mz1,n{mpb
m,n

h i
z nz1ð Þpb

m,nz1{npb
m,n

h i
,

ð19Þ

where k0:k0=d1 and k1:k1=d1 are the frequencies of transitions

between the free and bound operator states, a:v0=d1 is the

frequency of unregulated transcription (in the absence of the

repressor), b:v1=d0 is the translational burst size, i.e., the average

number of proteins produced per mRNA, and c:d0=d1&1 is the

ratio of protein and mRNA lifetimes. Next, we define the

generating functions, f f (z,z’,t)~
P

m,n z’mznpf
m,n and

Table 2. Magnitudes of important derived parameters in the absence of the inducer.

Parameter Value Parameter Value

p12
m,n=pb

m,n
0.86 k0 2|10{5 s{1

p13
m,n=pb

m,n
0.14 k1 0.22 s{1

p1
m,n=pb

m,n 4|10{3 l 3|10{4

p2
m,n=pb

m,n 3|10{4 a 600

p3
m,n=pb

m,n 9|10{6 b 4

doi:10.1371/journal.pone.0102580.t002
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f b(z,z’,t)~
P

m,n z’mznpb
m,n, to obtain the partial differential

equations

Lf f

Lt
{c bv(1zu){u½ � Lf f

Lu
zv

Lf f

Lv
~ k0f b{k1f f
� �

zauf f , ð20Þ

Lf b

Lt
{c bv(1zu){u½ � Lf b

Lu
zv

Lf b

Lv
~ k1f f {k0f b
� �

zaluf b, ð21Þ

where u~z’{1 and v~z{1. Since c&1, we have the quasi-

steady state approximation, bv(1zu){u&0. The steady state

protein distribution is therefore given by the equations

v
df f

dv
~ k0f b{k1f f
� �

za
bv

1{bv
f f , ð22Þ

v
df b

dv
~ k1f f {k0f b
� �

zal
bv

1{bv
f b: ð23Þ

Since we are interested in the generating function,

f (v):f f (v)zf b(v), it is convenient to rewrite these equations as

v
df f

dv
~ a

bv

1{bv
{ k0zk1ð Þ

� �
f f {k0f , ð24Þ

v
df

dv
~a 1{lð Þ bv

1{bv
f f zal

bv

1{bv
f , ð25Þ

which reduce to the second-order differential equation

d2f

dv2
z

k0zk1

v
z

1zazal

v{1=b

� 	
df

dv

z
a

v{1=b

k0zk1l

v
z

al

v{1=b

� 	
f ~0:

ð26Þ

We solve this equation with the initial condition, f (0)~1, and

revert to z as the independent variable, to obtain the following

generating function for the steady state protein distribution

f (z)~ 1{b(z{1)½ �{al:
2F1 a,b,k0zk1; b(z{1)½ �, ð27Þ

where 2F1 denotes the Gaussian hypergeometric function and

a,b:

1

2
a(1{l)z k0zk1ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(1{l)z k0zk1ð Þf g2

{4a(1{l)k0

q� �
:
ð28Þ

As expected, if l~0, (27) reduces to the generating function of the

negative hypergeometric distribution [22]. In general, however,

(27) is the generating function for a mixture of the negative

binomial and negative hypergeometric distributions, which

reflects, as we show below, the existence of two sub-populations

of proteins, namely those derived from small and large transcrip-

tional bursts.

Results

Analytical expressions for the statistics of the protein
distributions

Strain with auxiliary operators. The generating function

(27) yields the following expressions for the mean, m, and variance,

s2, of the protein distribution

m~arb, ar:a lz
k0

k0zk1

� 	
, ð29Þ

s2~m(1zb)z ab(1{l)½ �2 k0k1

k0zk1ð Þ2(k0zk1z1)
: ð30Þ

Since b represents the mean number of proteins synthesized per

mRNA, (29) implies that ar is the mean frequency of regulated
transcription. The two terms of ar also have simple physical

interpretations: Since l and k0= k0zk1ð Þ are the probabilities of

the O2
:R and free states, al and ak0= k0zk1ð Þ represent the mean

number of mRNAs produced per cell cycle due to small and large

transcriptional bursts.

Expanding f (z) about z~0 yields the steady state protein

distribution

pn~

bn(1zb){al

n!

Xn

j~0

n

j

 !
1

(1zb)n{j

C(alzn{j)

C(al)

C(azj{1)

C(a{1)

C(bzj{1)

C(b{1)

C(k0zk1)

C(k0zk1zj)
:2F1 azj{1,bzj{1,k0zk1zj; {bð Þ:

ð31Þ

Figure 3 shows that the protein distributions obtained from this

expression agree well with those obtained by simulating the full

model with the Optimized Direct Method implementation of

Gillespie’s Stochastic Simulation Algorithm [33] provided in the

simulation package StochKit2 [34]. The protein distribution in the

absence of the inducer, shown in Fig. 3a, was obtained with the

parameter values in Table 1. The distributions in the presence of

the inducer were obtained by decreasing the association rate, kaN,

10-fold (Fig. 3b) and 20-fold (Fig. 3c). Evidently, (31) is a good

approximation to the exact solutions in all three cases. We

conclude that our approximate solution is accurate down to a 20-

fold reduction of the association rate.

Table 2 shows that in the absence of the inducer, l,k0=k1%1.

These relations remain valid at the relatively low inducer levels

studied by Choi et al. (ƒ200 mM TMG). Indeed, under these

conditions, the operon is expressed to no more than 1% of the fully

induced level [12], i.e.,

ar

a
~lz

k0

k0zk1
ƒ0:01[l,

k0

k0zk1
ƒ0:01[l,

k0

k1
%1, ð32Þ

and (29)–(30) can be rewritten as
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m~arb, ar&a lz
k0

k1

� 	
, ð33Þ

s2&m(1zb)z
a2b2k0

k2
1

: ð34Þ

It is worth noting that due to rapid loop formation, small

transcriptional bursts are very bursty (pulsatile). Moreover, under

the weakly inducing conditions used in the experiments

(ƒ 200 mM TMG), kaN is relatively large, and hence, the large

transcriptional bursts are also quite bursty. It follows that under

these conditions, (33)–(34) should be expressible in terms of the size

and frequency of the small and large transcriptional bursts. We

shall show below that this is indeed the case.

Strain without auxiliary operators. In the absence of

auxiliary operators, the operon fluctuates between the free and the

O1-bound state, and only the former allows transcription. This is

identical to Shahrezaei & Swain’s 3-stage model of a regulated

promoter [22], and corresponds to the special case, l~0,

k0~kO1
, k1~kaN of our model. It follows that the generating

function for the steady state protein distribution is the Gaussian

hypergeometric function

�ff (z)~2F1½�aa,�bb,�kk0z�kk1; b(z{1)� ð35Þ

where

�kk0:
kO1

d1
, �kk1:

kaN

d1
, ð36Þ

and

�aa,�bb:
1

2
az�kk0z�kk1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
az�kk0z�kk1ð Þ2{4a�kk0

q� �
: ð37Þ

Moreover, the protein distribution is given by the expression

�ppn~
C(�aazn)C(�bbzn)C(�kk0z�kk1)

C(nz1)C(�aa)C(�bb)C(�kk0z�kk1zn)

b

1zb

� 	n

1{
b

1zb

� 	�aa

|2F1 �aazn,�kk0z�kk1{�bb,�kk0z�kk1zn;
b

1zb

� 	
,

ð38Þ

and the mean and variance are

�mm~�aarb, �aar~a
�kk0

�kk0z�kk1
, ð39Þ

�ss2~m(1zb)za2b2 �kk0�kk1

�kk0z�kk1ð Þ2 �kk0z�kk1z1ð Þ
: ð40Þ

At TMG concentrations of ƒ 100 mM, which are equivalent to

an IPTG concentration of ƒ 10 mM, the operon is expressed to

no more than 5% of the fully induced level [35]. It follows that

under the experimental conditions of interest

�kk0

�kk0z�kk1
ƒ0:05[

�kk0

�kk1
ƒ

0:05

0:95
&0:05, ð41Þ

and �mm,�ss2 can be approximated by the expressions

�mm~�aarb, �aar&a
�kk0

�kk1

, ð42Þ

Figure 3. Despite a 20-fold change in the repressor association
rate, kaN, the protein distributions derived from the analytical
expression (31) (grey squares) are in good agreement with
those obtained from stochastic simulations of the model (black
disks). (a) Parameter values in Table 1. (b) kaN is 1/10th of the value in
Table 1; other parameter values as in Table 1. (c) kaN is 1/20th of the
value in Table 1; other parameter values as in Table 1.
doi:10.1371/journal.pone.0102580.g003
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�ss2&m(1zb)z
a2b2�kk0

�kk2
1

: ð43Þ

Expressing the statistics in terms of the burst size and
frequency

Choi et al. assumed that the quantities F:s2=m and

g{2: s=mð Þ{2
represent the size and frequency of small

transcriptional bursts, and �FF:�ss2=�mm and �gg{2: �ss=�mmð Þ{2
represent

the size and frequency of large transcriptional bursts. To check the

validity of these assumptions, we shall express (33)–(34) and (42)–

(43) in terms of the size and frequency of the transcriptional bursts.

Given these expressions, we can immediately infer the dependence

of F ,g{2,�FF ,�gg{2 on the size and frequency of the transcriptional

bursts, and then compare them to the assumptions made by Choi

et al.

Strain with auxiliary operators. To express m~arb in

terms of the size and frequency of the transcriptional bursts, we

begin by recalling that ar consists of two terms, al and ak0=k,

which represent the mean frequency of transcription due to partial

and complete dissociations of the repressor, respectively. Since

partial dissociations occur when a repressor trapped in the O1O2 -

loop dissociates from O1, we define the number of the partial

dissociations per cell cycle as

ap:
p12

m,nkO1

d1
~

p2
m,nkO1O2

d1
&

lkO1O2

d1
, ð44Þ

where we have appealed to the detailed balance between the

operon states O2
:R and O1

:R:O2. We also define the number of

mRNAs synthesized per partial dissociation as

bp:
v0

kO1O2

, ð45Þ

since the time for rebinding of a partially dissociated repressor to

O1 is on the order of k{1
O1O2

. It follows from these definitions that

apbp&al, ð46Þ

i.e., we have successfully expressed the first term of ar in terms of

frequency and mRNA burst size due to partial dissociations. We

now proceed to express the second term of ar in terms of the

frequency and mRNA burst size due to complete dissociations.

Since complete dissociations occur whenever the operon becomes

repressor-free, it is natural to define the number of complete

dissociations per cell cycle as

ac:
k0

d1

&
3lkO2

d1

: ð47Þ

We also define the number of mRNAs synthesized per complete

dissociation as

bc:
v0

k1
&

v0

3kaN
, ð48Þ

because the time for rebinding of a completely dissociated

repressor to an operator is on the order of k{1
1 . Evidently

acbc&a
k0

k1
&al

kO2

kaN
, ð49Þ

and we conclude that

ar&a lz
k0

k1

� 	
~apbpzacbc: ð50Þ

Hence, (33)–(34) can be rewritten as

m~arb& apbpzacbc

� �
b, ð51Þ

s2&m(1zb)zac bcbð Þ2, ð52Þ

which imply that

F:
s2

m
&1zbzfc bcbð Þ, ð53Þ

g{2:
m

s

� �2

~
m

F
~

apbpzacbc

� �
b

1zbzfcbcb
~

acbc=fcð Þb
1zbzfcbcb

, ð54Þ

where

fc:
acbc

apbpzacbc

~
kO2

=kaN

1zkO2
=kaN

, ð55Þ

is the fraction of proteins derived from complete dissociations. It

follows from (53) that the total burstiness, F , is entirely due to

translational and large transcriptional bursts. Moreover, the

burstiness of large transcriptional bursts depends on their intrinsic

burstiness, bcb, suitably weighted by fc, the fraction of proteins

derived from such bursts. Importantly, fc is completely determined

by kO2
=kaN , the equilibrium constant for dissociation of the

repressor from O2. In the absence of the inducer, this equilibrium

constant is 0.25 [25,26], and hence, fc~0:2, i.e., 20% of the

proteins are derived from large transcriptional bursts. As the

inducer concentration increases, fc increases because kaN

decreases.

Strain without auxiliary operators. In this case, if we

define the number of complete dissociations per cell cycle as

�aac:
kO1

d1
, ð56Þ

and the number of mRNAs synthesized per complete dissociation

as

�bbc:
v0

kaN
, ð57Þ

the mean frequency of regulated transcription can be rewritten as
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�aar&a
�kk0

�kk1
~�aac

�bbc: ð58Þ

It follows that (42)–(43) can be rewritten as

�mm~�aarb&�aac
�bbcb, ð59Þ

�ss2~�mm(1zb)z�aac
�bb2

cb2, ð60Þ

which imply that

�FF:
�ss2

�mm
~1zbz�bbcb, ð61Þ

�gg{2~
�mm
�FF

~
�aarb

1zbz�bbcb
&

�aac
�bbcb

1zbz�bbcb
: ð62Þ

We are now ready to address questions concerning the physical

meaning of the parameters of the distribution and their variation

with inducer concentration [12].

Discussion

Interpretation of the protein distribution data
Strain with auxiliary operators. Interpretation of F and

g{2 derived from filtered data. Choi et al. assumed that F

and g{2 derived from the filtered data (Fig. 2c) represent the size

and frequency of small transcriptional bursts. In terms of our

model, these assumptions have the form

F&bpb, ð63Þ

g{2&ap: ð64Þ

However, (53)–(54) imply that this F and g{2, obtained by

eliminating the contribution of the large transcriptional bursts,

have a different physical meaning. Indeed, (53) implies that the

Fano factor obtained from the filtered data has the form,

F~1zb, which represents the size of the translational, rather

than small transcriptional, bursts. Similarly, (54) implies that the

reciprocal of the noise derived from the filtered data has the form,

g{2~apbpb=(1zb), which is proportional to apbp, the average

number of mRNAs derived from small bursts, rather than the

frequency of the small bursts. Since g{2&1 (Fig. 2c) and b&4, our

interpretation of the filtered data implies that apbp&1:25, which is

close to the estimate obtained from the model (Table 3).

Evidently, there is a discrepancy between the assumptions of

Choi et al. and the implications of our model. To understand its

origin, observe that their assumptions are equivalent to the

relations
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m~Fg{2&apbpb, ð65Þ

s2~Fm&ap bpb
� �2

, ð66Þ

i.e., they assumed, in effect, that both the mean and the variance

are dominated by contributions from small transcriptional bursts.

In contrast, (51)–(52) show that small bursts contribute to the

mean, but not to the variance. This difference arises because we

assumed that looping is so fast that the rapid fluctuations due to

partial dissociations are averaged out on the slow time scale of the

other processes. This averaging process preserves the contribution

of small transcriptional bursts to the mean, but eliminates their

contribution to the variance.

The assumption F&bpb appears to be implausible. Indeed, (53)

implies that translational bursts contribute the term b to the Fano

factor. For the small bursts to make a significant, let alone

dominant, contribution to the Fano factor, it is clear that bp*1,

i.e., on average, approximately one mRNA must be synthesized

per partial dissociation. However, looping is so fast compared to

transcription that bp:v0=kO1O2
&0:03 in the absence of the

inducer (Table 3). Moreover, bp is unlikely to change even in the

presence of the inducer since v0 and kO1O2
are constant over the

range of inducer concentrations used in the experiments. We

conclude that the bursts due to partial dissociations are so small

that they cannot be the dominant source of burstiness.

Interpretation of F and g{2 derived from raw
data. Choi et al. rejected the raw data shown in Fig. 2b since

the occurrence of large bursts in a few cells distorted the statistics

of the small bursts. We show below that these data are a valuable

source of information about the statistics of large bursts.

Specifically, (53)–(54) predict the observed variation of F and

g{2 derived from the raw data, and thus provide a method for

estimating not only the size and frequency of the large

transcriptional bursts, but also the fraction of proteins derived

from them. This method is particularly useful because, as we show

below, there are simple relationships between the size and

frequency of the large bursts in strains SX701 and SX703, but

they are not identical.

The analysis of the raw data shows that the total burstiness, F ,

increases with inducer concentration (Fig. 2b). Eq. (53) implies that

this is due to the growing burstiness of the large transcriptional

bursts: Since both bc and fc increase with inducer level, so does

fcbcb. This increase occurs so rapidly that at 100 mM TMG, large

trancriptional bursts become the dominant source of burstiness,

i.e, F&fcbcb. Indeed, assuming b&4, (53) implies F&fcbcb

whenever F&5. Inspection of Fig. 2b shows that at 100 mM

TMG, F&25, and hence, F&fcbcb. We shall show below that at

such inducer levels, fc&1 and F&bcb.

In contrast to the total burstiness, F , the reciprocal of the total

noise, g{2~m=F , decreases with inducer concentration until it

reaches a constant value (Fig. 2b). The model suggests that this is

because both m and F increase with inducer level, but F increases

faster than m: Indeed, both bc and fc increase with inducer level,

and Eq. (54) shows that m is proportional to the ratio bc=fc,

whereas F increases with the product fcbc. The decreasing trend of

g{2 continues until the inducer levels become so high that large

bursts account for all the proteins (fc&1) and burstiness (F&bcb).

Under these conditions g{2 approaches ac, the frequency of large

bursts, which is independent of inducer concentration. Compar-

ison with the data in Fig. 2b then implies that ac&0:2.

Given ac&0:2 and b&4, (53)–(54) provide a method for

estimating the variation of bcb and fc with inducer levels from the

raw data for SX701. To see this, it is convenient to rewrite (53)–

(54) in the form

fc bcbð Þ~F{ 1zbð Þ, ð67Þ

bcb

fc

~
1

ac

Fg{2: ð68Þ

Since the variation of F and g{2 with the inducer concentration

is known (Fig. 2b), we can solve the above equations to obtain bcb
and fc as a function of the inducer concentration. These calculated

profiles, shown in Fig. 2d, agree with the claims above: Both bcb
and fc increase with the inducer level, and the latter approaches 1

at 100 mM TMG.

Strain without auxiliary operators. Interpretation of �FF

and �gg{2. Choi et al. assumed that the �FF and �gg{2 shown in

Fig. 2a represent the size and frequency of large transcriptional

bursts, i.e.,

�FF&�bbcb, ð69Þ

�gg{2&�aac: ð70Þ

Our model implies that these relations are valid at all non-zero

inducer concentrations used in the experiments. Indeed, since

b&4, (61)–(62) imply that the above relations are valid whenever
�FF&5, which is satisfied (�FF *

> 25) at all the non-zero inducer

concentrations used in the experiments (Fig. 2a). In particular,

comparison with the data in Fig. 2a implies that �aac&3.

Relationships between the statistics of large bursts in the

strains with and without auxiliary operators. The model

predicts simple relationships between the size and frequency of the

large transcriptional bursts in strains SX701 and SX703, which

provide tests for checking the consistency of the model. Indeed, it

follows from (48) and (57) that bc=�bbc~1=3, a relationship that is

also mirrored by the data (compare full and dashed lines in Fig. 2d).

Similarly, (47) and (56) imply that

ac

�aac

~3p1
m,n&

3

kO1O2
=kO2

zkO1O3
=kO3

, ð71Þ

a ratio estimated to be 1/80 based on the values in Table 1, which

is of the same order of magnitude as the value 1/15, obtained from

the experimentally determined values of ac&0:2 and �aac&3.

Condition for the negative binomial distribution
Choi et al. assumed that the protein distributions of both strains

follow the Gamma distribution, the continuous analog of the

negative binomial distribution. We have shown above that neither

one of the strains follows the negative binomial distribution. Here,
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we demonstrate that the distributions can reduce to the negative

binomial distribution, but only only if the large burst size is

negligibly small, i.e., the association rate kaN, is much larger than

the transcription rate v0. Under this condition, even the large

bursts are averaged out, and they contribute to the mean, but not

the variance or the burstiness.

We begin by considering the strain without auxiliary operators.

Under the weakly induced conditions used in the experiments,

�kk0%�kk1, and the generating function for the protein distribution is

the negative hypergeometric function

�ff (z)&2F1 �aa,�bb,�kk1,b(z{1)
� �

:
X?
k~0

�aað Þk �bb
� �

k

�kk1ð Þk
b(z{1)f gk, ð72Þ

which reduces to the generating function for the negative binomial

distribution precisely when �aa~�kk1 or �bb~�kk1. Now (37) implies that

�aa&az�kk1&�kk1
�bbcz1
� �

, ð73Þ

�bb&
a�kk0

az�kk1
&

�aar

�bbcz1
, �aar~a

�kk0

�kk1
~�aac

�bbc: ð74Þ

The condition �bb~�kk1 can never be satisfied since �kk1=�kk0&1.

However, �aa&�kk1 precisely when �bbc%1, in which case �bb&�aar and

�ff (z)&
X?
k~0

�aarð Þk b(z{1)f gk
~ 1{b(z{1)½ �{�aar , ð75Þ

which is the generating function for the negative binomial

distribution

�ppn~
C(�aarzn)

C(nz1)C(�aar)

b

1zb

� 	n

1{
b

1zb

� 	�aar

: ð76Þ

It is worth noting that under this condition

�mm~�aarb, �ss2~�mm 1zbð Þ[�FF~1zb, g{2~�aar
b

1zb
, ð77Þ

i.e., large transcriptional bursts make no contribution to the

burstiness.

A similar argument shows that the generating function for the

strain with auxiliary operators reduces to

f (z)~ 1{b(z{1)½ �{ar , ar~a lz
k0

k1

� 	
, ð78Þ

precisely when bc%1. Under this condition, the proteins follow the

negative binomial distribution

pn~
C(arzn)

C(nz1)C(ar)

b

1zb

� 	n

1{
b

1zb

� 	ar

, ð79Þ

and

m~arb, s2~m(1zb)[F~1zb&b, g{2~ar
b

1zb
, ð80Þ

i.e., even the large transcriptional bursts do not contribute to the

burstiness.

We have shown above that the proteins follow the negative

binomial distribution only if the large bursts are, in fact, rather

small, and hence, do not contribute to the burstiness. But it follows

from the data in Figs. 2a,b that these bursts do contribute

significantly to the burstiness of strains SX701 and SX703 — if

Figure 4. Protein distribution data for strain SX703 (full circles)
at various TMG concentrations fitted with the Gamma
distribution by Choi et al. (dashed curve) and the negative
hypergeometric distribution (full curve). The negative hypergeo-
metric distribution was fitted with the parameter values in Table 1,
except kaN , which was decreased with increasing inducer concentra-
tion. (a) Data obtained at 50 mM TMG fitted with kaN~0:028 s{1 . (b)
Data obtained at 100 mM TMG fitted with kaN~0:018 s{1 . (c) Data
obtained at 200 mM TMG fitted with kaN~0:0054 s{1.
doi:10.1371/journal.pone.0102580.g004
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this was not true, (77) and (80) imply that the burstiness would be

independent of inducer concentration, which contradicts the data.

The negative binomial distribution is therefore unlikely to provide

good fits to the raw data for both strains, but will fit the filtered

data well, since the contribution of large bursts has been

eliminated from it. The fits in Choi et al. are consistent with this

conclusion. The Gamma distribution fits the filtered data for strain

SX701 rather well. However, this is less so for the protein

distributions obtained with strain SX703, which exhibits only large

bursts. Figure 4 shows that better fits are obtained with the

negative hypergeometric distribution (38).

Conclusions

We formulated and solved a stochastic model of lac expression

accounting for auxiliary operators and DNA looping. Based on a

comparison of our expressions for the Fano factor, noise, and

protein distribution of strains SX701 (with auxiliary operators) and

SX703 (without auxiliary operators) with those proposed by Choi

et al., we arrive at the following conclusions:

1. The physical interpretations of the Fano factor �FF and

reciprocal noise �gg{2 for strain SX703 are identical to those

proposed by Choi et al., namely �FF and �gg{2 represent the size

and frequency of (large) transcriptional bursts.

2. The physical interpretations of the Fano factor F and

reciprocal noise g{2 derived from the filtered data for

SX701 differ from those given by Choi et al., namely F and

g{2 represent the size and frequency of small transcriptional

bursts. Instead, we find that F represents the size of

translational bursts, and g{2 is proportional to the mean

number of mRNAs derived from small transcriptional bursts.

Our interpretation is different because we assume that looping

is so fast that fluctuations due to small transcriptional bursts are

averaged out — small bursts therefore contribute to the mean,

but not the burstiness, of the protein distribution. This has two

consequences:

(a) The information lost due to the averaging implies that the

small burst size and frequency cannot be separately

extracted from the data. At best, we can only determine

the product of the small burst size and frequency, which

represents the mean number of mRNAs derived from small

bursts.

(b) The burstiness is entirely due to translational and large

transcriptional bursts. In particular, the burst size derived

from the filtered data for strain SX701, from which the

contribution of the large bursts has been deliberately

eliminated, yields the size of translational, rather than small

transcriptional, bursts.

3. Choi et al. did not consider the raw data for SX701 because

large bursts, although rare, contributed significantly to protein

synthesis. This is consistent with our model: Even in uninduced

cells, 20% of the proteins are derived from large bursts. We

find that the raw data contains valuable information about the

statistics of large bursts. By analyzing this data with our model,

we isolate not only the size and frequency of large bursts, but

also the fraction of proteins derived from them. The large burst

size obtained in this manner is consistent with another

prediction of the model, namely, it is one-third of the (large)

burst size in strain SX703. The model also predicts that the

fraction of proteins derived from large bursts is completely

determined by a measurable quantity, namely the dissociation

constant for binding of the repressor to the auxiliary operator

O2.

4. The protein distributions for both strains are not negative

binomial: SX703 follows a negative hypergeometric distribu-

tion, and SX701 follows a mixture of the negative binomial and

negative hypergeometric distributions that reflects the existence

of two sub-populations of proteins, namely, those derived from

small and large bursts. Negative binomial distributions are

attained only if large bursts are insignificant, a condition that

holds only if the data are filtered by eliminating the

contribution of such bursts.

These results imply that interpretation of the steady state

protein distributions depends crucially on the details of the

regulatory mechanisms.
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