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Arthropods comprise the largest group of living animals, including thousands of
species that inhabit marine and terrestrial niches in the biosphere. Among the major groups
of terrestrial arthropods, several classes contain venomous species, such as arachnids
(scorpions and spiders), hymenopterans (ants, bees, and wasps), and chilopods (centipedes).
Many have well-developed venom apparatus and rich blends of toxins in their venoms
used successfully for self-defense and prey capture [1]. Some of them are harmful to
humans, and even today, they cause many poisoning incidents worldwide [2–4]. Today, the
arthropod venoms are recognized sources of bioactive compounds’ chemical diversity and
structural richness and, consequently, possess an unlimited potential for drug discovery and
pharmacological application of their components. Arthropod venoms contain peptides and
proteins as principal components and small organic molecules (e.g., biogenic amines and
polyamines), which may synergistically disrupt the physiological circuit of victims or prey.
Thus, the chemical and pharmacological investigation of arthropod venoms has been one of
the significant aspects of Toxinology that have made it possible for a prospective molecular
pharmaceutical intervention to treat, for example, chronic pain [5], immunological [6,7] and
neurological disorders [8,9], and infections caused by multi-drug-resistant microbes [10,11].

Additionally, an exciting application of arthropod venom peptides as environmentally
friendly insecticides has been introduced [12,13]. In recent years, the remarkable progress
of analytical methods by mass spectroscopy combined with transcriptomic and proteomic
approaches and other “omics” methodologies, such as metabolomics, made it possible to
reveal the diversity and usefulness of the venom components from some tiny arthropod
species [14–19]. However, given the vast number of species of arthropods, there are
still many understudied venoms that demand more detailed investigation regarding the
pharmacological mode of action and structure-activity relationships, aiming at the medical
application of native venom components and derivatives.

The present Special Issue continues the previously published Special Issue “Arthropod
Venom Components and their Potential Usage” [20] that brings together several articles
and original research on this matter. Herein, studies on biological activities, toxicological
and pharmacological aspects of isolated venom components or complex crude venoms
from various species of arthropods are reported. For instance, in a detailed structural
and biological characterization of GTx1-15, an ICK-like peptide from the tarantula spider
Grammostola rosea venom that inhibits specific subtypes of calcium and potassium ion
channels, Kimura [21] demonstrated that GTx1-15 possesses an excellent scaffold amenable
for in vitro evolution. GTx1-15 is highly stable to heat and blood serum, and it is an excel-
lent prototype to be converted into non-cytotoxic and non-immunogenic pharmacological
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agents to modulate ion-channel activity selectively. In another article, Krämer and col-
leagues [22] investigated linear peptides’ selective antimicrobial, insecticidal and cytotoxic
activity from the venom of the pseudoscorpion Chelifer cancroides. They demonstrated
that the predominant venom peptide checacin1 and three of its less abundant truncated
forms are active against aphidians with variable efficacy, but all have the potential to be
developed into natural pesticides. Additionally, checacin1 displayed antimicrobial activity
against methicillin-resistant Staphylococcus aureus with the MIC in the micromolar range
despite its cytotoxicity compared to the less bactericide and cytotoxic truncated peptides.
Thus, it is argued that tuning the desired effects with low cytotoxicity is possible with these
linear peptides from the pseudoscorpion venom.

In a paper by Lopes and coworkers [23], they characterized a sphingomyelinase D
(SMase D) from the venom of the spider Sicarius tropicus. They showed that the intrinsic
features of this venom enzyme differ mechanistically from its counterpart in the venom
of the spider Loxosceles laeta. The Sicarius venom SMase D shares structural and func-
tional features with bacterial sphingomyelinase D rather than with Loxoscele SMase D.
Moreover, the authors discussed the distinct toxin profile of venom contents in male and
female S. tropicus spiders, and other Sicarius and Loxosceles species, indicating that venom
variability in spider venom may have been linked to the level of envenomation.

To identify peptides from the venom of the Scoliid Wasp Campsomeriella annulata
annulatathat, which paralyzes the prey and nourishes their larvae, Alberto-Silva et al. [14]
conducted a comprehensive proteomic analysis using high-resolution liquid chromatogra-
phy coupled to mass spectrometry and peptide mass fingerprinting of the crude venom.
The venom peptides disclosed correspond to two classes: bradykinin-related peptides
(e.g., α- and β-campsomerin) and linear α-helical peptides (e.g., annulatin). These peptides
showed differential effects on cell viability and histamine-releasing in vitro with negligible
hemolytic or cytotoxic effects.

Considering the investigation and characterization of components from crude venom of
solitary hymenopterans, an article written by Correia et al. [24] reports the initial toxinologic
study of the crude venom from the solitary foraging predatory ant Ectatomma opaciventre. This
predatory ant species is endemic to the Brazilian Cerrado. The crude venom interferes
with the coagulation cascade and hemostasis in vitro, and it is also cytotoxic to lung tumor
cells and deleterious to Leishmania viability. These findings shed light on the venom of
E. opaciventre as an exciting source of bioactivities to be pharmacologically tackled. The
importance of the toxinologic studies of crude venoms and toxic extracts of arthropods
is also exemplified by an article by Moraes and colleagues [25]. They demonstrated the
effects of Lonomia obliqua caterpillar bristle extract on the human polymorphonuclear neu-
trophil (PMN) fates. The L. obliqua bristle extract induces PMN-mediated pro-inflammatory
responses at different molecular levels involving free-radical oxygen species.

Last but not least, Diáz-Navarro and coworkers [26] investigated the antiparasitic
activity of extracts prepared from toxic beetles (Tenebrionidae and Meloidae) from Steppe
Zones (the inhabiting region of the Great Bustard, Otis tarda). Using gas chromatography
coupled to mass spectrometry, antharidin and ethyl oleate were the components in the
beetle extracts responsible for the biological activity in Mylabris quadripunctata meloid and
Tentyria peiroleri, respectively.

Altogether, these articles make the present Special Issue an additional source of in-
formation that illustrates the potential to discover target-specific bioactive molecules and
peptides from arthropod venoms, which comprise excellent sources of peptide structures
and organics with exclusive intrinsic biological activities. The investigation of isolated
venom components and complex mixtures in crude venom and extracts allows the deci-
phering of biological processes and the conversion of these into prototypes and products
for medical and pharmaceutical biotechnology applications now and in the future.
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