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Abstract

Regulating the balance between self-renewal (proliferation) and differentiation is key to the

long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the pri-

mary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-func-

tion mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal,

resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations

activate the receptor, even in the presence of little or no ligand, and have been associated

with many human diseases, including cancers. We demonstrate that reduction in CUP-2

and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-

associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phe-

notype associated with glp-1(gain-of-function) mutations. We further demonstrate that their

reduction does not suppress other mutations that cause over-proliferation, suggesting that

over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-

of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-

out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin

loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch

(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the

Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression,

and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result

of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-prolif-

eration but not other mutations that cause over-proliferation. Therefore, ER stress and acti-

vation of the UPR may help correct for increased GLP-1/Notch signaling levels, and

associated over-proliferation, in the C. elegans germline.
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Author summary

Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate

decisions in many organisms. In the C. elegans germline, Notch signaling is the primary

signal that regulates the balance between stem cell proliferation and differentiation. Notch

gain-of-function mutations cause the receptor to be active, even when a signal that is nor-

mally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-func-

tion mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells

and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity,

which is a conserved family of proteins involved in endoplasmic reticulum-associated

degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function

mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells

to monitor and react to proteins that are not folded properly (Unfolded Protein

Response-UPR) must be functioning well in order for the loss of Derlin activity to supress

over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that

activation of the UPR may be the mechanism at work for suppressing this type of over-

proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may

be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-

of-function mutations.

Introduction

Stem cell populations provide the source material for future tissue generation and play an

important role in the development and maintenance of many tissues. A defining feature of

stem cells, their ability to both self-renew and differentiate, is key to their function. Stem cells

must maintain a balance between self-renewal and differentiation as excessive self-renewal can

lead to tumour formation while too much differentiation leads to a depleted stem cell pool.

The decision to self-renew or differentiate is essential for the proper development of their tis-

sues. Critical systems like this require many layers of redundancy in order to have a high level

of robustness[1,2]. This way, if pressure is applied to one layer, other layers are able to ensure

proper decision-making. These layers of redundancy can also allow external inputs to impinge

on the system, giving it the ability to adapt. Understanding these layers of redundancy will aid

in research in stem cell-related diseases and in using stem cells as therapeutic agents.

An indirect mechanism to modulate stem cell systems is through the regulation of protein

folding and protein quality control. For example, recently it has been shown that increasing

the genesis of misfolded proteins in hematopoietic stem cells (HSCs) impairs self-renewal of

HSCs [3]. In the case of muscle stem cells, impairment of autophagy, the lysosomal degrada-

tion of long-lived proteins and damaged organelles, leads to senescence and stem cell exhaus-

tion [4]. As another example, the transcription factor NRF3 is significantly mutated across

twelve cancer cell lines and promotes cancer cell proliferation [5,6]. NRF3 is regulated by ER

retention and endoplasmic-reticulum-associated degradation (ERAD), two cellular mecha-

nisms responsible for surveillance of protein folding [7,8]. ERAD is a multi-step process in

which misfolded proteins are recognized, retrotranslocated into the cytoplasm and targeted

for degradation by the proteasome [8–11]. Recognition of misfolded proteins involves lectins

and chaperone proteins in the ER [8]. Retrotranslocation occurs in protein complexes contain-

ing E3 ubiquitin ligases that also ubiquitinate the misfolded protein. In yeast, the Doa10/Ubc7

complex retrotranslocates and ubiquitinates proteins with misfolded cytosolic domains

(ERAD-C pathway), while the Hrd1/Hrd3/Der1 complex acts on proteins with misfolded ER

luminal domains (ERAD-L pathway) [12,13]. This distinction between different ERAD

PLOS GENETICS Reduction of Derlin suppresses Notch-dependent tumours in C. elegans

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009687 September 23, 2021 2 / 38

Funding: This work was supported by the Natural

Sciences Research Council of Canada (06647-

2015) and Canadian Institute of Health Research

(PJT-155999) to DH. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

https://www.nserc-crsng.gc.ca/index_eng.asp

https://cihr-irsc.gc.ca/e/193.html.

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.pgen.1009687
https://www.nserc-crsng.gc.ca/index_eng.asp
https://cihr-irsc.gc.ca/e/193.html


pathways is less clear in mammalian systems [9,14]. In both yeast and mammals, a p97

(Cdc48)/Npl4/Ufd1 complex extracts many of the targeted proteins in an ATPase-dependent

manner allowing them to be degraded by the proteasome [12,15].

The housekeeping function of ERAD has important physiological implications for protein

homeostasis. For example, as much as 75% of the wild type cystic fibrosis transmembrane con-

ductance regulator (CFTR) protein is targeted for degradation through ERAD [16–20]. Single

amino acid mutations in the 140 kDa, twelve transmembrane domain CFTR protein disrupt

its proper folding such that all CFTR protein is degraded by ERAD leading to cystic fibrosis

[17][21]. Dysregulation of ERAD can lead to the accumulation of misfolded proteins in the

ER, which induces ER stress [14]. In response to ER stress, a series of protective cellular events

are triggered to deal with the accumulation of misfolded proteins. Translation is attenuated to

limit protein folding burden, the ER expands and becomes more elaborate to increase protein

folding capacity, expression of chaperone proteins is increased and expression of ERAD com-

ponents are increased to assist in protein folding. Collectively this response is called the

Unfolded Protein Response (UPR)[14,22]. If the UPR fails, apoptosis can be triggered to elimi-

nate the stressed cell in both animal models and human disease[14,23]. The increased levels of

protein synthesis required for overproliferation in cancer cells is thought to increase basal lev-

els of ER stress and the UPR [24]. This increase in ER stress is thought to either make cancer

cells more resilient, or more susceptible to artificially inducing ER stress [25,26]. Understand-

ing how cancer cells (and all stem cells) regulate and respond to ER stress is crucial in order to

be able to understand how therapeutics act on them [27].

The adult C. elegans germline harbours stem cells whose self-renewal is regulated by the

GLP-1/Notch signalling pathway. The gonads of the C. elegans hermaphrodite comprise of

two U-shaped tubes that meet at a common uterus [28,29]. Germ cells are born at the distal

end of each arm and mature as they move proximally towards the vulva. The most distal popu-

lation of germ cells are mitotically dividing stem cells [29]. As cells move proximally, they

enter into meiosis and mature in an assembly line like manner to produce gametes. The pool

of distal stem cells is maintained by GLP-1/Notch signalling and loss of GLP-1/Notch signal-

ling results in a loss of the stem cell population, while increased GLP-1/Notch signalling leads

to tumour formation [30–32] (S1A and S1B Fig). Two redundant pathways comprising of

GLD-1 and GLD-2 function downstream of GLP-1/Notch signaling to promote differentia-

tion. If the activities of both these pathways is reduced or eliminated a germline tumour

results, similar to that due to increased GLP-1/Notch signaling [33–35] (S1C Fig). Many other

regulatory controls ranging from factors controlling cell division such as CYE-1/CDK-2, sub-

units of the DNA polymerase alpha-primase complex, or proteasomal activity to signalling

pathways such as MPK-1 ERK, Insulin, TGF- β, and TOR have been identified that modulate

the balance between self-renewal vs differentiation to provide robust control [36–42]. They

also add a layer of modulatory control necessary for the germline to adapt. Disruption of any

one of these modulatory controls have weak effects on the balance between self-renewal and

differentiation in an otherwise wildtype genetic background under ideal conditions; however,

the redundancy of these pathways combine to create a robust system necessary for the balance

between germline stem cell self-renewal and differentiation.

CUP-2 is a member of the Derlin (degradation in the ER) family of proteins, that function

in ERAD [14,43–45]. Derlins were initially discovered in yeast with Der1 and Dfm1 [45,46].

Mammals have three Derlin family members, Derlin-1, Derlin-2 and Derlin-3 [47]. CUP-2 is

most similar to human Derlin-1 and a second C. elegans Derlin, DER-2, is most similar to

human Derlin-2 and Derlin-3 [43,47,48]. As expected for proteins functioning in ERAD, loss

of cup-2 and der-2 result in activation of the UPR [43,44]. Further support for cup-2 and der-
2’s role in ERAD is provided by the fact that as is the case with yeast der1, cup-2 is also
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synthetically lethal with ire-1, a sensor for the UPR and overexpression of der-2 in Δder1 Δire1
yeast strains partially suppresses the conditional lethality associated with the strain [43,46,49].

CUP-2 (coelomocyte uptake defective) was first identified in C. elegans as being required

for endocytosis by the scavenger-like cells, the coelomocytes [50]. Later, CUP-2 was found to

bind SNX-1 (sorting nexin), a component of the retromer complex in early endosomes

[51,52]. This interaction was also observed with human Derlins and Sorting Nexins [52]. Simi-

lar to its role in ERAD, in endocytosis CUP-2 is thought to aid in recognition of misfolded

plasma membrane proteins and their transportation to the ER for degradation [52].

As part of another study to identify potential mRNA targets of PUF-8 (to be published else-

where), we found that loss of cup-2 activity strongly suppressed the overproliferation pheno-

type observed in puf-8(0); glp-1(gf) animals (see below). PUF-8 is a pumilio homolog that is

known to play a role in the proliferation vs differentiation balance in the C. elegans germline

and loss of puf-8 strongly enhances the stem cell overproliferation phenotype of glp-1(gf)
mutants [53–55]. Although cup-2 does not appear to be a direct target of PUF-8 (S2 Fig), the

loss of cup-2 suppressing overproliferation provides an inroad into studying the role of ERAD

in affecting GLP-1/Notch signaling and the proliferation vs. differentiation decision. Previous

studies have shown that worms mutant for the ERAD component CUP-2, have increased

expression of HSP-4::GFP, a hallmark of ER stress, as well as activation of the Unfolded Pro-

tein Response (UPR) [43,44]. These studies have also shown that der-2, the other worm Derlin,

is partially redundant with cup-2 in the activation of the UPR. Here we investigate the effect

that these Derlin mutants and ER stress have on the balance between stem cell proliferation

and differentiation in the C. elegans germ line.

Recently, studies have highlighted an emerging link between Notch signalling, ER stress

and the UPR. Disruptions to ER zinc homeostasis affect Notch trafficking and activity in

human cancer cell lines and Drosophila imaginal wing discs [56,57]. Mutations in p97, a key

ERAD component, also disrupt Notch signalling in Drosophila wing development [58]. Induc-

ing ER stress in human cell culture induces expression of the Notch ligand DLL4 [59].

Whether ERAD plays a role in physiological Notch signalling, or whether Notch signalling is

modulated only in response to ER stress is unclear from these latest studies.

Here we describe the effect that ERAD and the UPR have on the Notch-dependent control

of stem cell proliferation in the C. elegans germline. We show that germline tumour formation

resulting from increased GLP-1/Notch signalling is suppressed by mutations in cup-2 and der-
2, encoding Derlin proteins which are components of ERAD. We also show that ectopically

induced ER stress suppresses germline stem cell over-proliferation caused by increased GLP-

1/Notch signaling and that this suppression requires the UPR. Both loss of cup-2 and induced

ER stress can only suppress GLP-1/Notch-dependent tumours, suggesting they act directly on

the Notch pathway, in a context-specific manner that suppresses excess overproliferation. We

propose that ER stress and the UPR have a protective role, correcting for aberrant over-prolif-

eration caused by increased GLP-1/Notch signaling levels in the C. elegans germline and

restoring proper balance between stem cell proliferation and differentiation. Therefore, this

study contributes to our understanding of how affecting protein folding capacity by modulat-

ing ER stress, can regulate the balance between stem cell self-renewal and differentiation.

Results

Loss of cup-2 suppress glp-1(gf) tumours in correlation with the strength of

GLP-1/Notch signalling

We analyzed cup-2’s relationship with key glp-1 alleles (S1 Table). As mentioned above, our

initial observation leading us to investigate the role of ERAD in the proliferation vs.
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differentiation decision was the partial suppression of overproliferation in puf-8(0); glp-1(gf)
animals through the loss of cup-2 activity. As we have previously reported, loss of puf-8
strongly enhances the overproliferation phenotype of glp-1(gf) alleles [54]. To distinguish pro-

liferating stem cells from differentiating cells, we analyzed germline phenotypes using antibod-

ies against REC-8 (marker for proliferating cells in mitosis) and HIM-3 (marker for

differentiating cells entering meiosis)[35,60,61] (Fig 1A). We found that while 95% of puf-8
(q725); glp-1(oz264gf) gonads were completely tumourous, with no evidence of cells entering

meiosis as measured by α-REC-8 and α-HIM-3 staining, only 14% of gonads were completely

tumourous when cup-2 activity was also removed (Fig 1B and Table 1). Indeed, while no phe-

notypically wild-type puf-8(q725); glp-1(oz264gf) gonads were observed, 22% of cup-2
(tm2838); puf-8(q725); glp-1(oz264) were wild-type with no evidence of overproliferation.

Therefore, the loss of cup-2 activity strongly suppresses the overproliferation observed in puf-8
(q725); glp-1(oz264gf) animals.

We first more fully characterized the suppression of puf-8(0); glp-1(gf) and asked whether the

suppression by loss of cup-2 activity correlated with the strength of the glp-1 gain-of-function

allele used. Loss of puf-8 in glp-1(gf) mutants results in overproliferation, with the degree of over-

proliferation appearing to be dependent on the strength of the glp-1 gain-of-function allele [54].

We analyzed three different glp-1(gf) alleles, ar202, oz264 and ar224, which in a puf-8(0) mutant

background results in 100%, 95% and 86% gonads being fully tumourous at 20˚C, respectively

(Fig 1B and Table 1). When cup-2 activity was also removed in these backgrounds the percentage

of fully tumourous gonads was reduced to 92%, 14% and 41%, respectively. Therefore, the ability

of cup-2(0) to suppress overproliferation is not glp-1(gf) allele-specific, and the degree of suppres-

sion is at least somewhat correlated with the relative strength of the glp-1(gf) allele.

To determine if the suppression by cup-2(0) is dependent on loss of puf-8 activity, we tested

whether cup-2(0) could suppress other overproliferation mutants that are due to increased

GLP-1/Notch signaling, but wild-type for puf-8. We found that cup-2(0) partially suppresses

overproliferation observed in an rfp-1(ok572); glp-1(oz264gf) double mutant background.

RFP-1 is an E3 ligase that promotes proteasomal degradation of proliferation promoting pro-

teins in order to allow germ cells to differentiate [62]. In rfp-1(ok572); glp-1(oz264gf) 61% of

gonads contain an incomplete tumour, while 39% of the gonads appear wild-type for prolifera-

tion (Fig 1B and Table 1). Loss of cup-2 strongly suppresses this overproliferation phenotype,

with 93% of the gonads appearing wild-type and only 7% having an incomplete tumour when

cup-2 activity is also removed (Fig 1B and Table 1). cup-2(0) also suppresses overproliferation

in glp-1(gf) single mutants. For this analysis we counted the number of cells in the distal prolif-

erative zone at 20˚C (Fig 2A). Wild-type gonads contain ~221 cells in this region, while glp-1
(ar202gf) and glp-1(oz264gf) gonads contain ~610 and ~384 cells respectively (Fig 2A and 2B

and Table 2), demonstrating significant overproliferation. The cup-2(tm2838) single mutant

contains ~193 cells, slightly fewer than in wild-type gonads (Table 2). Removal of cup-2
strongly suppressed glp-1(ar202gf) and glp-1(oz264gf) overproliferation, with only ~195 and

~226 cells in the respective double mutants (Table 2). We noticed that although glp-1(ar224gf)
single mutants do not show an overtly large proliferative zone size at 20˚C, removal of cup-2,

was also able to slightly suppress the proliferative zone size in this genetic background. There-

fore, cup-2(0)’s suppression of germline overproliferation is not dependent on the loss of puf-8.

We have demonstrated that loss of cup-2 activity suppresses glp-1(gf) mediated overproli-

feration. We reasoned that if cup-2 interacts with the GLP-1/Notch signaling pathway then its

loss may also enhance the temperature sensitive partial loss-of-function glp-1(bn18) allele [63].

We found that at 20˚C, cup-2(0); glp-1(bn18) gonads have ~95 cells in the proliferative zone,

while cup-2(0) and glp-1(bn18) have ~195 and ~138, respectively (Fig 2B) (Table 2). While it

does appear that cup-2(0) enhances the smaller proliferative zone phenotype of glp-1(bn18), we
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Fig 1. Derlin mutants suppress Notch-dependent tumours in correlation with the strength of GLP-1/Notch signalling. A.

Representative images of wild-type (WT), protumourous (Pro) and completely tumourous (Tum) phenotypes as visualized by

α-REC-8(green) and α-HIM-3(red) immunostaining. DAPI staining was used to visualize nuclei. Wild-type (WT) is defined as

a gonad arm with distal α-REC-8(+) cells followed by α-HIM-3(+) cells and presence of both sperm and oocytes in the proximal

arm of the gonad. A protumour is defined as a gonad arm containing both α-REC-8(+) and α-HIM-3(+) cells, but not

differentiated sperm and oocytes. Proximal tumourous gonad arms with only sperm but no oocytes were counted as

protumours. Gonad arms with mostly only α-REC-8(+) and a few α-HIM-3(+) positive cells were also counted as

protumourous. Complete tumour is defined as a gonad arm that contains only α-REC-8(+) cells and no α-HIM-3(+) cells. Both

tumourous phenotypes are of the cup-2(tm2838); puf-8(q725); der-2(tm6098) glp-1(ar202) genetic background. Asterisk, distal

tip. Scale bar = 20μm. B. Quantification of phenotypic analysis of the dissected gonads of the indicated genotypes analyzed by α-

REC-8(green) and α-HIM-3(red) immunostaining. In this and all other bar graphs, numbers on the top of the bars indicate the

number of gonads analyzed. Chi-square test; ���� = p� 0.0001.

https://doi.org/10.1371/journal.pgen.1009687.g001

PLOS GENETICS Reduction of Derlin suppresses Notch-dependent tumours in C. elegans

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009687 September 23, 2021 6 / 38

https://doi.org/10.1371/journal.pgen.1009687.g001
https://doi.org/10.1371/journal.pgen.1009687


do not consider this to be a strong enhancement because enhancement is not to the point of

causing a Glp (germ line proliferation defective) phenotype in which no proliferative cells are

present [30], which is observed with other enhancers of glp-1(bn18) [64]. Even at 22.5˚C we do

not observe enhancement resulting in Glp animals (S2 Table). This suggests that loss of cup-2
has a stronger effect on gain-of-function alleles of glp-1 than loss-of-function alleles.

Loss of the cup-2 paralog, der-2, also suppress glp-1(gf) mediated

overproliferation

cup-2 encodes a Derlin protein that has previously been shown to be involved in ERAD

[43,44], functioning partially redundantly with DER-2, the other C. elegans Derlin protein

(Schaheen et al. 2009). DER-2 is thought to be the functional ortholog of yeast Der1p since

overexpression of C. elegans DER-2 in yeast Δder1 Δire1 strains partially restores degradation

of an Der1p associated ERAD substrate and partially suppresses the conditional lethality phe-

notype of the double mutant [46]. If disruption of ERAD is responsible for cup-2(0)’s ability to

suppress germline overproliferation, then we would expect loss of der-2 to likewise suppress

overproliferation. We found that loss of der-2 does decrease the size of the distal proliferative

zone in glp-1(ar202gf) animals from ~610 cells in glp-1(ar202gf) to ~405 in der-2(tm6098) glp-1
(ar202gf) double mutants (Fig 2A and 2C and Table 2). Importantly, the size of the distal pro-

liferative zone in der-2(tm6098) single mutants is similar to that in wild-type animals (~227

and ~221 respectively), suggesting that the suppression of glp-1(ar202gf) is not simply due to

Table 1. Loss of Derlin activity supresses glp-1(gf) overproliferation.

Genotype WT1 Protumour2 Complete Tumour3 n4

Wild-type5 100% 0% 0% > 50

cup-2(0)6 100% 0% 0% > 50

der-2(0)7 100% 0% 0% 96

rfp-1(0)8 glp-1(oz264gf) 39% 61% 0% 163

cup-2(0); rfp-1(0) glp-1(oz264gf) 93% 7% 0% 252

puf-8(0)9; glp-1(ar224gf) 0% 14% 86% 303

cup-2(0); puf-8(0); glp-1(ar224gf) 0% 59% 41% 305

puf-8(0); glp-1(oz264gf) 0% 5% 95% 127

cup-2(0); puf-8(0); glp-1(oz264gf) 22% 64% 14% 182

puf-8(0); glp-1(ar202gf) 0% 0% 100% 105

cup-2(0); puf-8(0); glp-1(ar202gf) 0% 8% 92% 204

puf-8(0); der-2(0) glp-1(ar202gf) 0% 3% 97% 259

cup-2(0); puf-8(0); der-2(0) glp-1(ar202gf) 0% 33% 67% 234

1Wild-type (WT) is defined as a gonad arm with distal α-REC-8(+) cells followed by α-HIM-3(+) cells and presence of both sperm and oocytes in the proximal arm of

the gonad
2A protumour is defined as a gonad arm containing both α-REC-8(+) and α-HIM-3(+) cells, but not differentiated sperm and oocytes. Proximal tumourous gonad arms

with only sperm but no oocytes were counted as protumours. Gonad arms with mostly only α-REC-8(+) and a few α-HIM-3(+) positive cells were also counted as

protumourous.
3Complete tumour is defined as a gonad arm that contains only α-REC-8(+) cells and no α-HIM-3(+) cells
4Number of gonad arms
5N2
6cup-2(tm2838)
7der-2(tm6098)
8rfp-1(ok572)
9puf-8(q725)

https://doi.org/10.1371/journal.pgen.1009687.t001
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an overall reduced rate of proliferation. The suppression of glp-1(ar202gf) is most pronounced

when the activities of both cup-2 and der-2 are removed (Fig 2A and 2C and Table 2), reducing

the size of the proliferative zone from ~610 to ~122. This suggests that cup-2 and der-2 may

have some redundant function. We also noticed that genotypes mutant for both cup-2 and der-
2 tend to have slightly narrower and smaller gonads, overall (Fig 2A). Indeed, the size of the

distal proliferative zone in the cup-2(tm2838); der-2(tm6098) double mutant (~142) is smaller

than either single mutant (~195 for cup-2 and ~227 for der-2), or the wild-type proliferative

zone (~221)(Fig 2C and Table 2). Moreover, while loss of cup-2 suppresses the complete

Fig 2. Derlin mutants have smaller proliferative zone sizes. A. Representative images of distal germlines of wildtype(WT), cup-2(tm2838); der-2
(tm6098), glp-1(ar202) and cup-2(tm2838); der-2(tm6098) glp-1(ar202) worms stained by DAPI to visualize nuclei. Asterisk, distal tip. Dashed line,

transition zone. Scale bar = 10μm. B. cup-2(tm2838) suppresses the proliferative zone sizes of glp-1(ar202), glp-1(oz264), glp-1(bn18) and germlines. Total

number of cells in the proliferative zone of the indicated genotypes. C. Derlin mutants additively suppress the size of the proliferative zone of WT and glp-1
(ar202) germlines. Total number of cells in the proliferative zone of the indicated genotypes. In this and subsequent scatter plots, thick line = mean; error

bars = standard deviation; t-test independent samples with Bonferroni correction; ns = 0.05< p� 1; � = 0.01< p� 0.05, �� = 0.001< p� 0.01, ��� =

0.0001< p� 0.001, ���� = p� 0.0001.

https://doi.org/10.1371/journal.pgen.1009687.g002
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tumour phenotype from 100% tumourous gonads in puf-8(q725); glp-1(ar202gf) double

mutants to 92% tumourous animals in cup-2(tm2838); puf-8(q725); glp-1(ar202) triple

mutants, also eliminating der-2 function in cup-2(tm2838); puf-8(q725); der-2(tm6098) glp-1
(ar202) quadruple mutants significantly reduces the percentage of completely tumourous ani-

mals to 67% (Fig 1B and Table 1). Therefore, the suppression of glp-1(ar202gf) (proliferative

zone counts), and the suppression of puf-8(0); glp-1(ar202gf) by loss of cup-2 and der-2 sug-

gests that cup-2 and der-2 function redundantly in promoting robust germline proliferation.

Derlin loss-of-function mutants have smaller proliferative zone sizes

In order to ascertain whether Derlin mutants affect cell proliferation, we first asked whether

the size of the proliferative zone is altered in Derlin mutants, cup-2 and der-2. As noted above,

we found that cup-2 mutant worms have a slightly smaller proliferative zone than wild-type,

whereas der-2 single mutants do not significantly alter the proliferative zone size (Fig 2C and

Table 2). Moreover, cup-2; der-2 double mutants have a statistically significantly smaller prolif-

erative zone size than wild-type (p = 2.182 X 10−5, t-test independent samples with Bonferroni

correction) and cup-2 single mutants (p = 2.014 X 10−4, t-test independent samples with Bon-

ferroni correction) (Fig 2C and Table 2). This implies that cup-2 and der-2 may have overlap-

ping but partially redundant roles in regulating cell proliferation.

Of the two Derlins, cup-2’s interaction with glp-1 gain-of-function alleles is stronger; how-

ever, cup-2 and der-2 additively have the strongest effect. We conclude that Derlin’s interaction

with the GLP-1/Notch signalling pathway could be proportional to the strength of excessive

GLP-1/Notch signalling and is most pronounced with strong glp-1 gain-of-function alleles.

Derlin loss-of-function mutants do not suppress Notch-independent tumours

We have demonstrated that loss of both cup-2 and der-2 suppress germline overproliferation

due to increased GLP-1/Notch signaling. This suppression could be achieved by lowering

Table 2. Loss of Derlin activity suppress glp-1(gf) overproliferation in the proliferative zone.

Genotype Average no. of cells in the proliferative zone10 S.D. min max n11

Wild-type12 221 21 186 253 10

cup-2(0)13 195 13 175 215 12

der-2(0)14 227 19 194 255 10

cup-2(0); der-2(0) 142 30 92 184 10

glp-1(ar202gf) 610 106 394 731 10

cup-2(0); glp-1(ar202gf) 196 24 163 237 10

der-2(0) glp-1(ar202gf) 405 69 246 505 10

cup-2(0); der-2(0) glp-1(ar202gf) 122 28 80 166 10

glp-1(bn18ts) 138 16 114 171 10

cup-2(0); glp-1(bn18ts) 95 16 77 113 10

glp-1(ar224gf) 202 48 126 261 10

cup-2(0); glp-1(ar224gf) 143 18 125 176 10

glp-1(oz264gf) 384 26 336 430 10

cup-2(0); glp-1(oz264gf) 226 49 172 312 10

10Proliferative cells defined as cells distal to the transition zone as identified by crescent-shaped nuclei stained by DAPI
11Number of gonad arms for which the total number of cells in the proliferative zone were counted
12N2
13cup-2(tm2838)
14der-2(tm6098)

https://doi.org/10.1371/journal.pgen.1009687.t002
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GLP-1/Notch signaling levels; alternatively, it could be achieved by affecting signaling down-

stream or parallel to GLP-1/Notch signaling, or by directly inhibiting proliferation. To differ-

entiate between these possibilities, we tested whether Derlin mutants could suppress germline

overproliferation mutants that do not increase GLP-1/Notch signalling. The GLD-1 and GLD-

2 pathways function downstream of GLP-1/Notch signaling. If the activity of just one of these

two pathways is eliminated germ cells proliferate and enter meiosis similar to wild-type

[33,35,65]. However, if the activities of both pathways are reduced or eliminated a germline

tumour results, similar to the tumour due to increased GLP-1/Notch signaling [33–35,66]. We

tested overproliferation mutants that have reduced or no GLD-1 and GLD-2 pathway activities

to see if loss of Derlin activity could suppress the overproliferation.

We first tested the gld-3(0) nos-3(0) animals, with gld-3(0) reducing GLD-2 pathway activity

and nos-3(0) reducing GLD-1 pathway activity, which form a robust GLP-1/Notch signaling

independent tumour [34]. We found that no gld-3(q730) nos-3(q650) (n = 102) or cup-2
(tm2838); gld-3(q730) nos-3(q650) (n = 111) gonads showed evidence of meiotic cells, as mea-

sured by the presence of REC-8(-) HIM-3(+) cells, suggesting that loss of cup-2 does not sup-

press this overproliferation (Fig 3A and 3B).

Since our analyses of Notch-dependent tumours suggest that loss of cup-2 only weakly sup-

presses more robust tumourous backgrounds, we were concerned that the gld-3(0) nos-3(0)
tumour was perhaps too strong for cup-2(0) to suppress. Therefore, we also analyzed gld-2(0)
gld-1(0) animals. In these double mutants all gonads are over-proliferative [33]; however, α-

REC-8 and α-HIM-3 staining reveals that many cells in the distal arm of the gonad and/or

around the loop region enter meiosis (REC-8(-) HIM-3(+)), while all cells in the proximal arm

appear proliferative in most gonads (Fig 3C and 3D and Table 3)[35]. We reasoned that since

many cells enter meiosis in gld-2(0) gld-1(0) animals, this genetic background would be more

sensitized for suppression of overproliferation. We found that neither loss of cup-2 nor der-2
suppressed gld-2(0) gld-1(0) tumours, as measured by an expansion of REC-8(-) HIM-3(+)

cells into the proximal arm (Fig 3D and Table 3). Even simultaneous loss of cup-2 and der-2
did not suppress overproliferation in gld-2(0) gld-1(0) double mutants (Fig 3C and 3D and

Table 3). The morphology of (REC-8(-) HIM-3(+)) staining in the distal arms of the quadruple

mutant did not appear to be different from that of gld-2(0) gld-1(0) double mutants (S3 Fig).

Taken together, we conclude that loss of Derlin activity is unable to suppress overproliferation

that is due to loss of GLD-1 and GLD-2 pathway genes. This suggests that Derlin mutants do

not suppress proliferation in general, but rather, specifically suppress GLP-1/Notch signalling.

cup-2 loss-of-function mutant reduces the expression of SYGL-1, a readout

of GLP-1/Notch signalling, in glp-1(gf) gonads

We have demonstrated that loss of Derlin activity suppresses overproliferation due to

increased GLP-1/Notch signalling, but not overproliferation in GLD-1/GLD-2 pathway

mutants. This raises the possibility that loss of Derlin activity reduces the amount of GLP-1/

Notch signalling in glp-1(gf) mutants. sygl-1 is a downstream transcriptional target of GLP-1/

Notch signalling in the germline, functioning redundantly with lst-1, and is expressed in the

distal proliferating cells in the germline [67–71]. To determine the effect of loss of Derlin activ-

ity on GLP-1/Notch signalling, we analyzed SYGL-1 expression in the relevant mutants

(Fig 4A).

Consistent with previous reports of SYGL-1 expression levels in glp-1(gf) mutants, we

found that the zone of SYGL-1 expression expanded proximally in glp-1(ar202gf) gonads as

compared to wild-type (S4B Fig)[67,68]. In wild-type gonads, SYGL-1 expression peaks

around five cell diameters from the distal end, then decreases gradually until plateauing
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Fig 3. Derlin mutants do not suppress Notch-independent tumours. A. Representative images of germlines of

indicated genotypes visualized by α-REC-8(green) andα-HIM-3(red) immunostaining. DAPI staining was used to

visualize nuclei. No nuclei stained with meiotic entry marker HIM-3, were detected in both genotypes. Asterisk, distal

tip. Scale bar = 20μm. B. Quantification of phenotypic analysis of the indicated genotypes analyzed by α-REC-8 and α-

HIM-3 immunostaining. C. Representative images of germlines of indicated genotypes visualized by α-REC-8(green)

and α-HIM-3(red) immunostaining. DAPI staining was used to visualize nuclei. Nuclei stained with meiotic entry

marker HIM-3, were detected in in the distal arm in both genotypes but not in the proximal arm of the gonad.

Asterisk, distal tip. Scale bar = 20μm. D. Quantification of phenotypic analysis of the indicated genotypes analyzed by

α-REC-8 and α-HIM-3 immunostaining.

https://doi.org/10.1371/journal.pgen.1009687.g003
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around 20 cell diameters from the distal end (Fig 4B). In glp-1(ar202gf) gonads the peak is

around seven cell diameters and the plateau is around 24 cell diameters (Fig 4B). In cup-2
(tm2838); glp-1(ar202gf) double mutants the expansion of SYGL-1 expression is suppressed,

with the pattern of SYGL-1 expression being very similar to wild-type (Figs 4B and S4C). Inter-

estingly, the SYGL-1 pattern in cup-2 single mutants is also shifted ~two cell diameters distally

as compared to wild-type (Figs 4B and S4A). Since the data shown in Fig 4B was generated by

comparing genotypes imaged on different slides and normalizing against SYGL-1 intensity of

a wild-type background as an internal control (see Materials and Methods) we wanted to more

directly compare the effect of loss of cup-2 activity on SYGL-1 expression in glp-1(ar202gf) ani-

mals, without normalization. Therefore, we compared SYGL-1 expression in glp-1(ar202gf)
animals with cup-2(tm2838); glp-1(ar202gf) animals on the same slide (S4D Fig). This experi-

ment yielded similar results to those obtained with normalization; the loss of cup-2 activity

supresses the expansion of SYGL-1 expression along the distal-proximal axis in glp-1(ar202gf)
animals. The distal movement of the SYGL-1 expression pattern in cup-2(0) as compared to

wild-type, and in cup-2(tm2838); glp-1(ar202gf) as compared to glp-1(ar202gf), suggests that

reduction of Derlin activity results in a decrease in GLP-1/Notch signaling, and that this reduc-

tion in GLP-1/Notch signaling is the likely cause of the suppression of the glp-1(gf) overproli-

feration by the loss/reduction of Derlin activity.

CUP-2 functions in the germline to affect proliferation

Our genetic results suggest that loss of Derlin protein function, particularly CUP-2, results in

reduction of excessive GLP-1/Notch signalling levels in the germline. To gain more insight

into how CUP-2 may interact with GLP-1/Notch signaling we sought to determine its expres-

sion pattern. For this we tagged the endogenous cup-2 locus with a C-terminal v5::2xflag epi-

tope tag using CRISPR/Cas9 editing [72–76]. We created three independent cup-2::v5::2Xflag
alleles (cup-2(ug1), cup-2(ug2) and cup-2(ug3)), all expressing CUP-2::V5::2XFLAG as detected

by an α-FLAG western blot [77]. We found that CUP-2 is expressed throughout the germline

(Fig 5A). The expression levels of CUP-2 are lower in the distal end of the gonad and increase

proximally. Although CUP-2 levels are low in the distal region of the gonad, where GLP-1/

Notch signalling is known to be active, it is above background (Fig 5B and 5C).

Derlin proteins are known components of the ERAD protein quality control mechanism

[44–47,78,79]. Therefore, if CUP-2 is involved in ERAD in the germline, we would expect to

find CUP-2 localized to the endoplasmic reticulum (ER). We found that CUP-2 expression

within the germline partially co-localizes with SP12, a signal peptidase that is a commonly

used ER marker (Fig 5C)[80]. The expression of CUP-2 in the ER is consistent with previous

Table 3. Loss of Derlin activity does not supress gld-2 gld-1 Notch-independent tumours.

Genotype HIM-3(-) in proximal germline HIM-3(+) in proximal germline n15

gld-2(0) gld-1(0)16 96% 4% 45

gld-2(0) gld-1(0) cup-2(0)17 94% 6% 53

gld-2(0) gld-1(0); der-2(0)18 96% 4% 51

gld-2(0) gld-1(0) cup-2(0); der-2(0)e 98% 2% 51

15Number of gonad arms
16Complete genotype gld-2(q497) gld-1(q485)
17Complete genotype gld-2(q497) gld-1(q485) cup-2(tm2838)
18Complete genotype gld-2(q497) gld-1(q485); der-2(tm6098)
e Complete genotype gld-2(q497) gld-1(q485) cup-2(tm2838); der-2(tm6098)

https://doi.org/10.1371/journal.pgen.1009687.t003
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studies of CUP-2 expression in coelomocytes using transgenes [43,52]. We conclude that a

proportion of CUP-2 is localized to the ER in germ cells.

To better understand the mechanism by which cup-2 participates in regulating stem cell

proliferation, we asked whether cup-2 activity is required within the germline or the somatic

gonad for robust proliferation in glp-1(gf) animals. In rrf-1(pk1417) mutants RNAi is not effi-

ciently processed in the somatic gonad but is efficiently processed in the germline [81,82]. We

found that when cup-2 was knocked down by RNAi in rrf-1(pk1417); puf-8(q725); glp-1
(oz264gf) animals, 63% of animals contained complete tumours as compared to 97% in the gfp
(RNAi) negative control animals (Fig 6A and Table 4). Moreover, 16% of the gonads were

wild-type (no overproliferation) as compared to no wild-type gonads in the negative control

(Fig 6A and Table 4). Therefore, the overproliferation suppression by cup-2 RNAi in a rrf-1
mutant background suggests that cup-2’s role in stem cell proliferation takes place in the germ-

line and not the somatic gonad. Although the level of suppression observed with cup-2 RNAi

Fig 4. Loss of cup-2 decreases SYGL-1 protein levels in glp-1(ar202) germlines. A. Representative images of SYGL-1

protein expression observed in sygl-1(am307); glp-1(ar202) and cup-2(tm2838) sygl-1(am307); glp-1(ar202) genetic

backgrounds by α-FLAG immunostaining. The sygl-1(am307) allele represents a 3XFLAG tagged version of

endogenous SYGL-1. Asterisk, distal tip. Scale bar = 10μm. B. Normalized, fitted average SYGL-1 intensities measured

by α-FLAG immunostaining of the indicated genotypes, each harbouring the sygl-1(am307) allele. Shaded areas

indicate unscaled fitted standard deviation of the intensity measurements for each genotype. Standard deviation for

average sygl-1(am307) has not been shown for ease of visualization but can be seen in S4 Fig. Average normalized

intensities and standard deviations were fit to a sixth order polynomial. Fifteen gonads were analyzed for intensity

measurements. Arrowheads point to the average location of the transition zone measured in at least seven gonads of

each genotype. Distances from distal end (DE) were measured in microns and converted to germ cell diameters (g.c.d)

as a reference, by assuming 1 g.c.d. = 2.833 microns. WT intensity measurement shown is the average sygl-1(am307)
intensity across the three experiments used for scaling.

https://doi.org/10.1371/journal.pgen.1009687.g004
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was less as compared to when using cup-2 mutants, this is likely due to RNAi only partially

reducing CUP-2 activity (Fig 6A and Table 4).

cup-2’s role in retrograde transport may partially contribute to its function

in promoting germ cell proliferation

Apart from functioning in ERAD, Derlins also function with SNX-1, a sorting nexin, in the

retrograde transport of integral membrane proteins from the endosomes to the Golgi appara-

tus [43,52]. Our analysis of CUP-2’s expression pattern revealed that some CUP-2 was present

outside the ER, in the cytoplasm of germ cells (Fig 5C). It is possible that some of this cyto-

plasmic CUP-2 associates with the endosomal compartments for retrograde transport and

may be responsible for cup-2’s role in promoting stem cell proliferation. Therefore, we asked

whether CUP-2’s role in retrograde transport could account for its function in promoting

germ cell proliferation. We found that snx-1(tm847) suppresses the tumourous phenotype in

some puf-8(q725); glp-1(oz264gf) animals. While 95% of the gonads of puf-8(q725); glp-1
(oz264gf) were completely tumourous, 74% of puf-8(q725); glp-1(oz264); snx-1(tm847) were

completely tumourous, although none were wild-type (Fig 6B and Table 5). This level of sup-

pression was much weaker than that observed when cup-2 activity is absent, in which only

14% of the germlines are completely tumourous and 22% were wild-type (Fig 6B and Table 5).

Therefore, we conclude that although retrograde transport may partially contribute to the loss

of cup-2 suppressing glp-1(gf) mediated overproliferation, it is unlikely to be the main mecha-

nism by which cup-2 acts in this role. There is an emerging link being established between the

retromer complex and Notch signalling in other developmental contexts and the slight tumour

suppression that we see in snx-1 mutants could be due to the retromer complex directly affect-

ing the trafficking of the Notch receptor [83–85].

Chemical induction of ER stress suppresses GLP-1/Notch

overproliferation, and the ability of cup-2(0) to suppress over-proliferation,

requires xbp-1, a key player in the Unfolded Protein Response

We have demonstrated that loss of Derlin activity suppresses glp-1(gf) mediated overprolifera-

tion in the C. elegans germ line. Derlin proteins are known to have important functions in

mediating ERAD [44,45,47,78,79,86,87]. In the absence of CUP-2 activity misfolded proteins

accumulate, resulting in UPR induction [43,44]. Previous studies have demonstrated that cup-
2 mutants express high levels of hsp-4::gfp, a reporter for XBP-1-dependent UPR activation

[43,44]. We hypothesized that the induction of ER stress and the UPR could be responsible for

the tumour suppression seen in cup-2 mutants. Therefore, we first asked whether inducing ER

stress by another means (chemical induction) is sufficient to suppress Notch-dependent over-

proliferation in a manner similar to when Derlin function is reduced/eliminated.

Fig 5. CUP-2 is expressed in the proliferative zone of the germline and co-localizes with SP12, an ER marker. A.

CUP-2 expression visualized by α-V5 mouse immunostaining in the germline of cup-2(ug1), a V5::2XFLAG tagged

version of cup-2. DAPI staining was used to visualize nuclei. Asterisk, distal tip. Scale bar = 20μm. B. CUP-2 expression

in the distal region of germline of cup-2(ug1) visualized by α-V5 mouse immunostaining in comparison to wild type

untagged worms. Both genotypes were processed together and imaged on the same slide at the same intensity to enable

comparison, except that cup-2(ug1) were preincubated α-HIM-3 antibodies to distinguish them from wild-type

germlines. DAPI staining was used to visualize nuclei. Asterisk, distal tip. Scale bar = 10μm. C. Confocal images of

CUP-2 expression in cup-2(ug1); ojis23[GFP::SP12] germline visualized by α-V5 rabbit immunostaining in distal and

loop regions of the germline. Expression of ER marker SP12 was visualized by α-GFP mouse immunostaining. Images

were acquired using a confocal microscope. Arrowheads point to regions of colocalization. Asterisk, distal tip. Scale

bar = 10μm.

https://doi.org/10.1371/journal.pgen.1009687.g005
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Fig 6. Retrograde transport may contribute to cup-2 activity and cup-2 is required mainly within the germline to

promote germ cell proliferation. A. Quantification of phenotypic analysis of the effect of loss of snx-1, cup-2’s partner

in retrograde transport, on suppression of puf-8(q725); glp-1(oz264) tumours. Phenotypes were analyzed by α-REC-8

and α-HIM-3 immunostaining. B. Quantification of phenotypic analysis of the effect of knockdown of cup-2 activity

within the germline by using a rrf-1(pk1417) mutant background which largely restricts RNAi efficacy to the germline.

cup-2 RNAi and gfp RNAi was performed by injection of dsRNA. puf-8(q725); glp-1(oz264) and cup-2(tm2838); puf-8
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To induce ER stress, we used two commonly used chemicals, DTT and Thapsigargin (TG),

at doses known to induce ER stress in worms [88,89]. TG is a specific inhibitor of an ER mem-

brane Ca2+-ATPase. By depleting the calcium stores of the ER, it alters the protein folding

environment thereby inducing ER stress. DTT inhibits disulfide bridge formation in proteins,

preventing proteins from folding properly and thereby inducing ER stress. We found that both

DTT and TG suppress puf-8(q725); glp-1(oz264gf) overproliferation in a dose-dependent man-

ner (Figs 7A and S5A and Tables 6 and S3). Of the two chemicals, DTT was the stronger sup-

pressor as fewer complete tumours were seen at high DTT doses and some wild-type

germlines were also observed, as compared to high TG doses where the reduction in complete

tumours was smaller and no wild-type germlines were observed (Fig 7A and Table 6).

We have demonstrated that Derlin mutants partially suppress GLP-1/Notch-dependent

tumours, such as puf-8(q725); glp-1(oz264gf), but not GLP-1/Notch-independent tumours,

such as gld-2(0) gld-1(0) tumours (Figs 2 and 3). We tested whether chemical induction of ER

stress also specifically suppressed GLP-1/Notch-dependent tumours. We found that DTT

treatment suppressed glp-1(oz264gf) and glp-1(ar202gf) in a dose-dependent manner at 25˚C

(S5B Fig and S3 Table). While 28% of the gonads of 0 mM DTT treated glp-1(oz264gf) worms

were completely tumourous, 17% of 2 mM DTT treated and only 11% of 5 mM DTT treated

were completely tumourous (S5B Fig and S3 Table). Similarly, DTT treatment of glp-1
(ar202gf) worms at 25˚C resulted in dose-dependent suppression of tumours with 0 mM DTT

treatment producing 26% completely tumourous gonads, while only 15% and 10% completely

tumourous gonads were observed for the 2 mM and 5 mM DTT treatments, respectively (S5B

Fig and S3 Table). We found that DTT treatment of worms carrying the weaker gain-of-func-

tion glp-1(oz264gf) allele resulted in more wild-type looking gonads (69%, 82% and 88% wild-

type with 0 mM, 2 mM and 5 mM DTT treatments, respectively) rather than protumourous

gonads (S5B Fig and S3 Table). The nature of the tumour suppression of the stronger gain-of-

function glp-1(ar202gf) allele with DTT treatment was more variable and favoured the produc-

tion of more wild-type gonads at the intermediate 2 mM dose (19% and 34% protumours for 0

and 2 mM DTT, respectively), but at the higher 5 mM dose more protumourous gonads were

observed (55%, 51%, 79% Protumours with 0 mM, 2 mM and 5 mM DTT treatments,

(q725); glp-1(oz264) phenotypic analysis is included for reference. Phenotypes were analyzed by α-REC-8 and α-HIM-

3 immunostaining.

https://doi.org/10.1371/journal.pgen.1009687.g006

Table 4. Loss of cup-2 activity in the germline is likely responsible for tumour suppression.

Genotype19 RNAi WT20 Protumour21 Complete Tumour22 n23

puf-8(0); glp-1(gf) none 0% 5% 95% 127

cup-2(0); puf-8(0); glp-1(gf) none 22% 64% 14% 182

rrf-1(0); puf-8(0); glp-1(gf) gfp 0% 3% 97% 190

rrf-1(0); puf-8(0); glp-1(gf) cup-2 16% 21% 63% 219

19Alleles used puf-8(q725), cup-2(tm2838), rrf-1(pk1417) and glp-1(oz264gf)
20Wild-type (WT) is defined as a gonad arm with distal α-REC-8(+) cells followed by α-HIM-3(+) cells and presence of both sperm and oocytes in the proximal arm of

the gonad
21A protumour is defined as a gonad arm containing both α-REC-8(+) and α-HIM-3(+) cells, but not differentiated sperm and oocytes. Proximal tumourous gonad

arms with only sperm but no oocytes were counted as protumours. Gonad arms with mostly only α-REC-8(+) and a few α-HIM-3(+) positive cells were also counted as

protumourous.
22Complete tumour is defined as a gonad arm that contains only α-REC-8(+) cells and no α-HIM-3(+) cells
23Number of gonad arms

https://doi.org/10.1371/journal.pgen.1009687.t004
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respectively) background, suggesting that the tumour suppression was weaker in the stronger

gain-of-function glp-1(ar202gf) DTT treated worms as compared to weaker gain-of-function

glp-1(oz264gf) DTT treated worms (S5B Fig and S3 Table). However, DTT treatment was

unable to suppress GLP-1/Notch-independent gld-2(0) gld-1(0) tumours at all (S5C Fig and S4

Table). Therefore, chemical induction of ER stress mimicked the effect of loss of Derlin activity

in suppressing overproliferation, suggesting that ER stress and the consequent induction of

the UPR may be the mechanism by which Derlin mutants are able to suppress Notch-depen-

dent tumours.

Previous studies demonstrated that cup-2 mutants are synthetically lethal with ire-1, the

sensor of the IRE-1/XBP-1 branch of the UPR [43,49], supporting the suggested role of cup-2
in ERAD. Additionally, other ERAD; ire-1 and ERAD; xbp-1 double mutants fail to induce the

UPR (Sasagawa et al. 2007), suggesting dependence on the IRE-1/XBP-1 pathway. To further

our understanding of how induction of the UPR suppresses GLP-1/Notch mediated overproli-

feration we asked if XBP-1 is necessary for the cup-2 mediated suppression of overprolifera-

tion. We found that RNAi against xbp-1 in cup-2(tm2838); puf-8(q725); glp-1(oz264) increased

the proportion of tumourous worms (Fig 7B and Table 7). Therefore, this suggests that the

suppression of GLP-1/Notch mediated overproliferation by reducing cup-2 activity requires

xbp-1 activity and UPR induction.

We have demonstrated that cup-2(0); der-2(0) double mutants suppress GLP-1/Notch

tumours more strongly than either single mutant. In addition, a previous study has demon-

strated that cup-2(0); der-2(0) mutants more strongly induce the UPR than either single

mutant [43]. Therefore, we wondered whether further activating the UPR by increasing ER

stress in a cup-2(tm2838); puf-8(q725); glp-1(oz264) background could increase the tumour

suppression even further. We found that inducing ER stress by DTT treatment in the cup-2
(tm2838); puf-8(q725); glp-1(oz264) background increased the tumour suppression to such an

extent such that no tumourous worms were observed at the highest DTT dose of 5 mM tested

(Fig 7C and Table 6). This suggests that in cup-2 mutants, although the UPR is activated and is

able to suppress GLP-1/Notch dependent tumours, increasing the level of UPR activation even

further results in stronger suppression of overproliferation. Therefore, the UPR is capable of

being induced more than that achieved through loss of cup-2 activity, and increasing UPR

induction increases the suppression of glp-1(gf) induced overproliferation (Fig 7C).

We wanted to test whether chemical induction of ER stress alone, without disturbing cup-2
activity, was sufficient to suppress GLP-1/Notch signalling levels. We therefore measured the

Table 5. Loss of snx-1 weakly suppresses tumours.

Genotype24 WT25 Protumour26 Complete Tumour27 n28

puf-8(0); glp-1(gf) 0% 5% 95% 127

puf-8(0); glp-1(gf); snx-1(0) 0% 26% 74% 543

cup-2(0); puf-8(0); glp-1(gf) 22% 64% 14% 182

24Alleles used puf-8(q725), cup-2(tm2838), snx-1(tm847)) and glp-1(oz264gf)
25Wild-type (WT) is defined as a gonad arm with distal α-REC-8(+) cells followed by α-HIM-3(+) cells and presence of both sperm and oocytes in the proximal arm of

the gonad
26A protumour is defined as a gonad arm containing both α-REC-8(+) and α-HIM-3(+) cells, but not differentiated sperm and oocytes. Proximal tumourous gonad

arms with only sperm but no oocytes were counted as protumours. Gonad arms with mostly only α-REC-8(+) and a few α-HIM-3(+) positive cells were also counted as

protumourous.
27Complete tumour is defined as a gonad arm that contains only α-REC-8(+) cells and no α-HIM-3(+) cells
28Number of gonad arms

https://doi.org/10.1371/journal.pgen.1009687.t005
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Fig 7. Chemical induction of ER stress also suppresses Notch-dependent tumours and suppression of tumours by loss of cup-2 activity requires

xbp-1, a key player in the Unfolded Protein Response. A. Quantification of phenotypic analysis of the effect of increasing doses of DTT and

Thapsigargin (TG) on suppression of puf-8(q725); glp-1(oz264) tumours. We hypothesize that if ER stress induced by abrogating cup-2 activity is

responsible for the suppression of the tumour, then inducing ER stress by chemical means should also produce a similar effect. Phenotypes were
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protein levels of the readout for GLP-1/Notch signalling, SYGL-1, in worms treated with DTT.

We found that in both wild-type and glp-1(ar202) worms, increasing doses of DTT lead to a

more distal shift of the peak of SYGL-1 expression curve in the germline, accompanied by

shortening of the average position of the transition zone (Figs 8 and S6). This distal shift of the

SYGL-1 expression curve is reminiscent of the effect of removing cup-2 activity in glp-1(ar202)
gonads (Fig 4B). Taken together, this supports the possibility that induction of ER stress by

removal of cup-2 activity and the consequent induction of the UPR may be responsible for sup-

pressing GLP-1/Notch signalling levels and Notch-dependent overproliferation. We further

found that knockdown of xbp-1 activity reverses the distal shift of the SYGL-1 expression

curve in cup-2(0); glp-1(ar202) gonads, suggesting that a functional UPR is indeed needed to

suppress excessive GLP-1/Notch signalling levels when cup-2 activity is removed (S7 Fig).

Discussion

We have shown that Derlin mutants suppress germline tumours caused by gain-of-function

mutations affecting the Negative Regulatory Region (NRR) in GLP-1/Notch’s extracellular

domain [32,90,91] and in proportion to the relative strength of the gain-of-function mutation.

The suppression of these tumourous phenotypes is strongest in animals lacking both cup-2
and der-2 function. Derlin mutants do not suppress Notch-independent tumours. Even in

mutants that have some cells that enter into meiosis, such as the gld-2(0) gld-1(0) Notch-inde-

pendent tumour, loss of both cup-2 and der-2 function fails to suppress the tumour. This

analyzed by whole mount DAPI staining. B. Quantification of phenotypic analysis of the effect of xbp-1 knockdown by RNAi on puf-8(q725); glp-1
(oz264) tumours. We hypothesize that if activation of the branch of the UPR is involved in the response to ER stress and suppression of tumours in

cup-2(tm2838) worms, then knocking down xbp-1 function in cup-2(tm2838); puf-8(q725); glp-1(oz264) would be expected to reverse the tumour

suppression seen back to more tumourous gonads. RNAi was performed by feeding. RNAi on puf-8(q725); glp-1(oz264) was performed as a control.

Phenotypes were analyzed by whole mount DAPI staining. C. Quantification of phenotypic analysis of the effect of inducing ER stress by DTT

treatment on cup-2(tm2838); puf-8(q725); glp-1(oz264) tumours. We hypothesize that if either DTT or loss of cup-2 function can induce ER stress and

suppress the tumours, then the combination of the two would enhance the suppression. Phenotypes were analyzed by whole mount DAPI staining.

https://doi.org/10.1371/journal.pgen.1009687.g007

Table 6. DTT and Thapsigargin (TG) suppress glp-1(gf) overproliferation in a dose-dependent manner.

Treatment Genotype29 WT30 Protumour31 Complete Tumour32 n33

0 mM DTT puf-8(0); glp-1(gf) 0% 1% 99% 525

2 mM DTT puf-8(0); glp-1(gf) 0% 19% 81% 186

5 mM DTT puf-8(0); glp-1(gf) 4% 62% 33% 471

10 mM DTT puf-8(0); glp-1(gf) 7% 89% 4% 350

0 μM TG puf-8(0); glp-1(gf) 0% 1% 99% 465

1 μM TG puf-8(0); glp-1(gf) 0% 9% 91% 471

5μM TG puf-8(0); glp-1(gf) 0% 26% 74% 391

10 μM TG puf-8(0); glp-1(gf) 0% 29% 71% 441

0mM DTT cup-2(0); puf-8(0); glp-1(gf) 22% 71% 7% 278

2mM DTT cup-2(0); puf-8(0); glp-1(gf) 51% 47% 2% 246

5mM DTT cup-2(0); puf-8(0); glp-1(gf) 81% 19% 0% 217

29Complete genotypes puf-8(q725); glp-1(oz264) and cup-2(tm2838); puf-8(q725); glp-1(oz264)
30Wild-type (WT) is defined as a gonad arm with presence of both sperm and oocytes in the proximal arm of the gonad as seen by whole mount DAPI staining
31A protumour is defined as a gonad arm with a mass of proliferative cells in the proximal end preceded more distally by presence of sperm and/or eggs as seen by whole

mount DAPI staining
32Complete tumour is defined as a gonad arm that contains only proliferative cells as seen by whole mount DAPI staining
33Number of gonad arms

https://doi.org/10.1371/journal.pgen.1009687.t006
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suggests that the tumour suppression is specific to Notch signaling. By measuring the expres-

sion levels and extent of SYGL-1, a readout for GLP-1/Notch signalling, we found that the

extent/region of SYGL-1 expression is compressed in cup-2; glp-1(ar202gf) germlines com-

pared to that of glp-1(ar202gf) germlines, suggesting that the suppression of overproliferation

in glp-1(gf) mutants by the reduction of Derlin function is likely achieved by reducing GLP-1/

Notch signaling levels.

We found that many of the key features of germline tumour suppression seen in Derlin

mutants are phenocopied by chemically inducing ER stress. Consistent with the suppression

observed with the reduction of Derlin activity, inducing ER stress suppresses Notch-dependent

tumours but not Notch-independent tumours, and reduces the extent of the SYGL-1 expres-

sion in glp-1(ar202gf) germlines. We further found that cup-2’s suppression of a puf-8(0); glp-1
(oz264gf) Notch-dependent tumour requires xbp-1 activity, which encodes a component of the

IRE-1/XBP-1 branch of the Unfolded Protein Response. Moreover, we found that increasing

ER stress even further by chemical treatment in cup-2(0); puf-8(0); glp-1(oz264gf) worms

results in increased tumour suppression. Our results support a model in which ER stress, in

general, counteracts the development of Notch-dependent germline tumours and suggest that

the IRE-1/XBP-1 branch of UPR may be one of the arms involved in this counterbalance.

Reduction of Derlin activity reduces Notch signaling in gain-of-function

mutants

We have demonstrated that a reduction in Derlin function reduces the amount of overproli-

feration observed in various glp-1 gain-of-function mutants, but fails to suppress overprolifera-

tion due to a loss of gld-1 and gld-2 pathway genes, even in mutants that have a number of cells

that enter meiotic prophase. Derlins function, in part, by shuttling misfolded proteins from

the ER to the cytosol for degradation, as part of ERAD [44,45,47,78,87,92–95]. Therefore, the

suppression of germline overproliferation in cup-2 and der-2 mutants is likely the result of an

accumulation of unfolded or misfolded proteins. There are likely many models as to how this

accumulation could reduce the level of GLP-1/Notch signaling and the level of overprolifera-

tion. For example, this accumulation could cause a core member of the Notch signaling path-

way, or a positive regulator of Notch signaling, to not function properly. However, if a

reduction in Derlin function were to interfere with a core member or a positive regulator of

GLP-1/Notch signaling, then we would expect to have seen a reduction in GLP-1/Notch sig-

naling, as determined by SYGL-1 accumulation, when Derlin function was reduced in an

Table 7. Reduction in xbp-1 function partially enhances glp-1(gf) overproliferation when also lacking cup-2 activity.

Genotype Treatment WT34 Protumour35 Complete Tumour36 n37

puf-8(0); glp-1(gf)38 vector(RNAi) 0% 1% 99% 398

xbp-1(RNAi) 0% 0% 100% 410

cup-2(0); puf-8(0); glp-1(gf)39 vector(RNAi) 0% 46% 54% 146

xbp-1(RNAi) 0% 13% 87% 252

34Wild-type (WT) is defined as a gonad arm with presence of both sperm and oocytes in the proximal arm of the gonad as seen by whole mount DAPI staining
35A protumour is defined as a gonad arm with a mass of proliferative cells in the proximal end preceded more distally by presence of sperm and/or eggs as seen by whole

mount DAPI staining
36Complete tumour is defined as a gonad arm that contains only proliferative cells as seen by whole mount DAPI staining
37Number of gonad arms
38Complete genotype puf-8(q725); glp-1(oz264)
39Complete genotype cup-2(tm2838); puf-8(q725); glp-1(oz264)

https://doi.org/10.1371/journal.pgen.1009687.t007
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otherwise wild-type background. However, we only see dramatic reduction of Notch signaling

in glp-1 gain-of-function mutants.

It is intriguing that proper protein folding of the Notch receptor has been shown to be

important for the function of the NRR (Negative Regulator Region), where many of the

Fig 8. Chemical induction of ER stress by DTT reduces the spread of SYGL-1, a readout for GLP-1/Notch

signalling in glp-1(ar202) germlines. A. Normalized, fitted average SYGL-1 intensities of otherwise wild type gonads

harbouring the sygl-1(am307) allele grown on DTT. Shaded areas indicate unscaled fitted standard deviation of the

intensity measurements for each genotype. Standard deviation for average 0 mM DTT treatment has not been shown

for ease of visualization but can be seen in S6 Fig. Average normalized intensities and standard deviations were fit to a

sixth order polynomial. Fifteen gonads were analyzed for intensity measurements. Arrowheads point to the average

location of the transition zone measured in at least seven gonads of each genotype. Distances from distal end (DE)

were measured in microns and converted to germ cell diameters (g.c.d) as a reference, by assuming 1 g.c.d. = 2.833

microns. B. As in (A) but including the glp-1(ar202) allele.

https://doi.org/10.1371/journal.pgen.1009687.g008
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known Notch gain-of-function mutations cluster [31,32,96–98]. Folding in this region is

thought to protect the S2 cleavage site, allowing it only to be accessed upon ligand binding

[99–101]. Improper folding caused by mutations in this region are thought to allow for ligand-

independent cleavage and activation [100,102]. Could reduction in ERAD affect the folding of

the GLP-1/Notch receptor, including the NRR region, and thereby affect the level of Notch sig-

naling? We have demonstrated that a reduction in Derlin activity reduces the increased level

of Notch signaling achieved by glp-1 gain-of-function mutants. Obviously, GLP-1/Notch pro-

teins harbouring gain-of-function mutations must not be misfolded to a degree in which all

such proteins are detected by the ERAD system and degraded, otherwise they would not be

available for ligand independent signaling. However, perhaps some proportion of the gain-of-

function proteins are misfolded to the point of being detected by the ERAD system and tar-

geted for degradation. When Derlin activity is reduced, these and other misfolded proteins

may accumulate in the ER, causing ER stress and the activation of UPR. UPR activation causes

the initiation of signaling pathways meant to reduce ER stress, including enhancing protein

folding and degradation [103]. Therefore, it is possible that activation of UPR could result in

enhanced protein folding of key factors in the Notch signaling pathway, or increased degrada-

tion of misfolded proteins, perhaps including the aberrant gain-of-function form of the GLP-

1/Notch receptor itself. Indeed, enhanced protein folding could result in the NRR region prop-

erly folding, even if harbouring a gain-of-function mutation, thereby mimicking a more wild-

type form of the protein in terms of activity. Indeed, the glp-1(ar202) gain-of-function muta-

tion that we demonstrated was suppressed most strongly by a reduction in Derlin activity does

still have some ligand-dependence [104], suggesting that either the NRR domain in these pro-

teins is not as misfolded as in other gain-of-function mutants, or that the proportion of mis-

folded proteins is lower. In either situation, enhancement of proper NRR folding would

suppress the increase in GLP-1/Notch signaling levels. Alternatively, it is possible that UPR

induction enhances the recognition of GLP-1 gain-of-function proteins as aberrantly folded,

leading to enhanced degradation of the receptor. Enhanced degradation would reduce the

overall levels of GLP-1 receptors, thereby resulting in a decrease in signalling levels. It is also

possible that the models of enhanced degradation and/or enhanced folding could apply to a

regulator of GLP-1/Notch signalling that interacts with the NRR of the GLP-1 receptor; how-

ever, we consider this less likely given our understanding of how other components of the

ERAD machinery interact with Notch signalling, as explained below.

ERAD, UPR and Notch signaling

The Derlins are not the first components of the ERAD machinery to be identified as interact-

ing with Notch signaling in C. elegans, perhaps hinting at some inherent sensitivity of this sig-

nalling pathway to ERAD-driven measures for protein quality control. SEL-11 and SEL-1,

homologs of the mammalian HRD1 and SEL1 ERAD components [105,106], were initially

identified in a screen for suppressors of the egg-laying defective phenotype (Egl) of a partial

loss-of function allele of lin-12 [107], which, like glp-1, encodes a homologue of the Notch pro-

tein [108–110]. SEL-11/HRD1/Hrd1p is an E3 ubiquitin ligase that ubiquitinates misfolded

or unfolded proteins, while SEL-1/SEL1L/Hrd3p interacts with SEL-11/HRD1/Hrd1

[13,78,94,111–114]. In C. elegans, sel-1 and sel-11 mutations were also found to suppress the

maternal effect embryonic lethality phenotype of glp-1 (e2142), a partial loss-of-function allele,

suggesting that sel-1 and sel-11 interact with Notch signaling rather than with processes regu-

lated by Notch [107,115]. Importantly, loss of sel-1 and sel-11 strongly suppresses lin-12 par-

tial-loss-of-function alleles, but do not suppress a lin-12 null, suggesting that the LIN-12/

Notch receptor must be present, even in a mutant form, in order for suppression to occur
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[106,107,115]. While sel-1 and sel-11 suppress glp-1 and lin-12 partial loss-of-function alleles,

and therefore are thought to be negative regulators of Notch signaling, we have demonstrated

that reduction in Derlin activity, through cup-2 and/or der-2 mutations, results in suppression

of glp-1 gain-of-function alleles, and has little if any effect on glp-1 partial loss-of-function

alleles, suggesting that the Derlins are positive regulators of Notch signaling.

Derlins are thought to complex with SEL-11/HRD1 and SEL-1/SEL1L to facilitate transport

of misfolded proteins from the ER to the cytosol, where they would be degraded by the protea-

some [78,116–118]. A recent study in yeast, suggests that Der1 and Hrd1 form two “half-chan-

nels” to allow ERAD substrates to move through the ER membrane [118]. Therefore, it would

be anticipated that a reduction of Derlin function would have the same overall consequence as

a reduction in SEL-1/SEL1 and SEL-11/HRD1 function in reducing the ability of unfolded or

misfolded proteins to be degraded. However, we have demonstrated that reduction of Derlin

activity has an opposite effect on Notch signalling as that described for SEL-1/SEL1 and SEL-

11/HRD1 [106,107]. This may reveal that, at least in some contexts, the SEL-11/HRD1 com-

plex and Derlins may have opposite effects on ERAD, or perhaps that removing individual

components of the complex leads to different compensatory mechanisms with opposing out-

comes on Notch as a substrate.

However, we believe this apparent contradiction may be resolved by considering the folding

properties of the mutant Notch alleles in which sel-1 and sel-11 have been characterized. Per-

haps the glp-1 and lin-12 partial loss-of-function mutants used in these studies are also recog-

nized by the ERAD machinery as misfolded. If so, then upon the loss of ERAD factors, the

UPR would be induced and these mistakenly folded receptors could be restored to wild-type

receptor activity levels through the enhanced degradation and/or enhanced folding mecha-

nisms proposed above. Such a model also accommodates the need for some mutant form of

the Notch receptor to be present for the sel-1 and sel-11 mutants to be able to exert their influ-

ence on Notch signalling [107,115]. Therefore, we speculate that loss of ERAD factors leads to

correction of aberrantly folded mutant Notch receptors, since the UPR does not differentiate

between whether a receptor is gain-of-function or loss-of-function in activity, but instead sim-

ply recognizes them as being misfolded and needing correction. Some support for such a

model in which the UPR serves as a quality control mechanism for aberrant Notch folding and

signalling, exists amongst studies using Drosophila. While ectopic induction of ER stress alone

has no effect on wildtype Notch receptor localization or levels, upregulation of the UPR or

overexpression of a Notch-specific chaperone in a Notch-deficient mutant can restore Notch

signalling levels in Drosophila [119,120].

The extracellular portion of the GLP-1/Notch receptor may be more

sensitive to ERAD defects

We recognize that the proposed model of the UPR as a quality control mechanism to correct

aberrant Notch receptors would not apply to all mutant forms of Notch receptors, as we were

unable to see strong enhancement of the glp-1(bn18) loss-of-function Glp phenotype in cup-2
mutants, and the sel-1 and sel-11 mutants similarly fail to suppress the two reduction-of-func-

tion alleles glp-1(q231) and glp-1(e2144) [107]. However, it is intriguing that glp-1(bn18), glp-1
(q231) and glp-1(e2144) mutations all affect the intracellular portion of the GLP-1 receptor

[63], while the glp-1(ar202), glp-1(ar224), glp-1(oz264) mutations, with which cup-2 interacts,

all affect the extracellular portion of the GLP-1 receptor [32,90,91]. Similarly, glp-1(e2142), the

partial loss-of-function allele with which sel-1 and sel-11 interact, also affects the extracellular

portion [63,107]. Therefore, we speculate that the extracellular portion of the GLP-1/Notch

receptor may be more sensitive to defects in components of the ERAD machinery than the

PLOS GENETICS Reduction of Derlin suppresses Notch-dependent tumours in C. elegans

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009687 September 23, 2021 24 / 38

https://doi.org/10.1371/journal.pgen.1009687


intracellular portion. This may suggest that ERAD/UPR specifically acts at the level of GLP-1/

Notch receptor activation. Therefore, it is possible that ERAD/UPR could regulate the levels or

activities of membrane-localized enzymes that process the GLP-1/Notch receptor.

Derlins as a therapeutic target

Dysregulation of Notch signaling has been implicated in the development of many diseases,

including certain cancers [121]. While some cancers are associated with loss-of-function muta-

tions in the Notch receptor, others, such as Triple-Negative Breast Cancer, correlate with gain-

of-function mutations, including those due to mutations in the NRR [121,122]. In fact, more

than 50% of cases of human T cell acute lymphoblastic leukemia (T-ALL) are associated with

activating mutations in NOTCH1, with the majority of these affecting the NRR [97]. There-

fore, inhibition of Notch signaling is being actively pursued as a possible treatment for certain

cancers [123]. However, since the Notch signaling pathway is utilized in the development and

maintenance of so many tissues throughout the body, Notch inhibitors can have detrimental

effects, such as intestinal toxicity [123]. Here we demonstrate that reduction in Derlin activity

suppresses GLP-1/Notch gain-of-function mutants, but has little effect on normal Notch sig-

naling as measured by SYGL-1 expression in cup-2 mutants. Therefore, targeting Derlin activ-

ity in individuals suffering from diseases caused by Notch gain-of-function mutations, perhaps

particularly those mutations that affect the extracellular portion of Notch, may provide a

means to specifically target the aberrant Notch gain-of-function allele without causing adverse

side effects associated with reducing systemic Notch signalling levels.

Materials and methods

Strains and genetics

All the strains used in this study were maintained at 20˚C unless otherwise indicated (S5

Table). The wildtype strain used was the N2 Bristol strain.

Worm synchronization

Gravid adults were washed off of plates with PBS and washed three times with PBS to remove

excess bacteria. Samples were then incubated with freshly prepared bleach solution (20%

sodium hypochlorite, 50mM NaOH) for 4–5 minutes with vigorous vortexing. Excess bleach

was washed off by washing the egg pellet with PBS three times. Eggs were allowed to hatch in

PBS at 20˚C for 1–2 nights to obtain a synchronized population of L1 larvae.

Dissections and immunostaining

Unless indicated otherwise in the figure legend, all phenotypes were analyzed in dissected

gonads. About 150 synchronized adults were picked for dissections and dissected as previously

described [65]. Dissected gonads were fixed in 3% paraformaldehyde for 10 minutes at room

temperature, post-fixed using 100% methanol and kept at -20˚C for at least one night. Samples

were then rehydrated by washing with PBT (PBS + 0.1% Tween-20) three times and blocked

in 3% BSA at 4˚C for at least one hour. Primary antibodies used were α-REC-8 rat (1:200)[60],

α-HIM-3 rabbit (1:750)[61], α-FLAG mouse M2 (1:1000) Sigma #F1804, α-V5 mouse (1:2000)

Invitrogen #R960-25, α-V5 rabbit (1:1000) Cell Signaling Technology #D3H8Q and α-GFP

mouse (3E6) (1:750) Molecular Probes #A11120. Primary antibodies were diluted in 3% BSA

and incubated for at least 1 hour at room temperature. Secondary antibodies used were: α-Rat

Alexa 488 (1:200) Molecular Probes #A21208, α-Rabbit Alexa 594 (1:500) Molecular Probes

#A21207 and α-mouse Alexa 488 (1:200) Molecular Probes #A21202. Secondary antibodies
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were diluted in 3% BSA and incubated for at least 2 hours at room temperature. Samples were

washed three times with PBT with 5 min incubations, after primary and secondary antibody

incubations to remove excess unbound antibodies. For visualizing nuclei, samples were incu-

bated with 100ng/mL DAPI (4’, 6- diamidino-2- phenylindole dihydrochloride) diluted 1:1000

in PBS for 5 minutes. Stained gonads were visualized by mounting on a 1% agarose pad.

Image acquisition

All images were acquired on a Zeiss Imager Z.1 microscope fitted with an AxioCam MRm

camera using AxioVision 4.8.2.0 software. Z stacks were taken at 1μm intervals. Confocal

images were taken on a Leica SP5 laser confocal microscope. For experiments measuring

SYGL-1 levels, distal ends of gonads were focused in the middle focal plane, as much as possi-

ble, for image acquisition.

For determining CUP-2 localization by comparing α-V5 staining intensity in XB681 cup-2
(ug1) vs N2 dissected gonads, the two strains were fixed, permeabilized and blocked indepen-

dently and in parallel. The XB681 sample was incubated with α-HIM-3 antibody while the N2

sample was kept in block overnight. This helped mark the XB681 gonads so that they can be

easily distinguished when mixed with the N2 sample. The next day, the XB681 sample was

washed three times with PBT and mixed with the N2 sample so that subsequent processing on

the two samples could be done in the same tube to enable a direct comparison. The mixed

sample was incubated with α-V5 mouse overnight. The next day the sample was processed

with secondary antibodies as described above and mounted on the same pad. Exposure mea-

surements were taken in three positions across the slide and the average exposure was set as

the exposure for acquisition of images across the whole slide. Therefore, both XB681 and N2

samples were imaged with the same exposure settings.

Image processing and analysis

Fiji (Fiji is Just ImageJ) was used to process and analyze images [124,125]. Brightness and con-

trast adjustments, and the addition of scale bars was done in Fiji. Images were cropped and

organized into figure panels using Adobe Illustrator. For stitching a complete gonad picture,

the stitching plugin in Fiji was used [126]. For counting the total number of cells in the prolif-

erative zone, Z stack images of the distal ends of gonads were manually analyzed using the Cell

Counter plugin [127].

Statistical analysis and plotting was done in Python using Seaborn, a visualization library

based on the 2D graphics package, Matplotlib [128,129]. t-tests (independent) were performed

using the statannot package [130]. Chi-square tests were performed using SciPy [131].

SYGL-1 intensity measurements

For an experiment, the strain of interest was dissected in parallel with WU1770 sygl-1(am307)
as an internal positive control. The two strains were fixed, permeabilized and blocked indepen-

dently. The WU1770 dissected samples were incubated with α-HIM-3 antibody while the

other sample was left in block overnight. The next day, the WU1770 sample was washed three

times with PBT and the two samples were pooled for subsequent processing with α-FLAG

antibody, secondary antibody, DAPI and mounting.

For each experiment, the ideal exposure settings for each channel was determined by sam-

pling three germlines of each genotype across the slide using autoexposure and then using the

average exposure measurement as the setting for acquiring images for that slide. Germlines

were focussed in the central plane, through the middle of the rachis for acquiring images. For

analyses, pictures of 15 gonads of each genotype were analyzed. The images were opened on
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FIJI and a segmented line was drawn in the middle of the germline starting from the distal-

most germ cell to the most proximal cell in the field of view to generate a plot profile for each

germline. The values from the plot profile were copied into excel, subsequent analyses i.e., cal-

culation of the average intensity of each genotype, standard deviation, normalization and plot-

ting were done using Seaborn. For comparing multiple genotypes against each other,

normalization was performed to the average WU1770 plot profiles for these experiments. For

example, when comparing WU1770, XB709, XB710 and XB711 genotypes against each other,

the ‘scale average’ was calculated as the average WU1770 plot profile of these three experi-

ments (namely XB709 vs WU1770, XB710 vs WU1770 and XB711 vs WU1770). To obtain the

scaling factor for XB709, the ‘scale average’ was divided by the average WU1770 plot profile

for the XB709 experiment. The scaling factor for XB709 was then multiplied by the plot profile

for XB709 to normalize it. The same was repeated for the XB710 and XB711 experiments to

normalize their plot profiles. The normalized plot profiles of XB709, XB710 and XB711 were

plotted on the same graph along with the ‘scale average’ to represent the average WU1770

intensity across these three experiments. In order to more easily contrast the plot profiles

against each other, the plot profiles were fitted to a sixth-order polynomial to generate smooth-

ened plots (Fig 4B). The raw, non-normalized plots for the three experiments is shown in S4

Fig. Since standard deviations could not be normalized, the standard deviation shown in Fig

4B is the same as that shown in S4 Fig. For determining the distance to the transition zone, a

new line was drawn from the distal end to the first transition zone cells which were discernable

by their crescent-shaped DAPI stained nuclei. Since the pictures were acquired in the central Z

plane which has fewer nuclei, transition zones for all gonad pictures was difficult to determine.

However, transition zones for at least seven images for each genotype was determined. The

average distance to transition zone for each genotype was calculated in Excel and an arrow-

head was drawn in Adobe Illustrator to indicate the average position on the plot. By measuring

the distance to transition zone and using the cell counter plug in in FIJI for counting the num-

ber of germ cell diameters to transition zone for one WU1770 image, it was determined that

one germ cell diameter (g.c.d.) approximately corresponded to 2.833 microns. This formula

was applied to the distance in microns axes in the plots in Seaborn to convert the distance in

microns to g.c.d. and a second X axis indicating the approximate distance in g.c.d. was gener-

ated as a reference.

CRISPR/Cas9 editing

Two guide RNA sequences towards the 3’end of the cup-2 coding region were selected manually

by scanning for nearby NGG sites and running the seed sequence through NCBI BLAST to check

that it was not predicted to match any other region of the genome. MfeI and XbaI restriction

enzyme sites flanked 320bp fragments containing the sgRNA sequence were synthesized by Euro-

fins MWG Operon as per a previous study [72]. The plasmid was cut by MfeI and XbaI restriction

enzymes and the 320bp fragment was cloned into a PU6::sgRNA vector derived from Addgene

plasmid #46169, as per a previous study [72]. This generated PU6::cup-2_sgRNA_#4 (pDH386)

and PU6::cup-2_sgRNA_#5 (pDH387) vectors for injections. These sgRNA plasmids were each

used at the recommended 50ng/μl final concentration for injections [72].

For the repair template, a 258bp DNA fragment was designed containing a 90bp sequence

corresponding to a codon optimized V5::2XFLAG tag placed upstream of the endogenous

cup-2 stop codon and flanked by homology sequences, based on recommendations for PCR

directed repair templates by a previous study [73]. A silent point mutation (CAA to CAg) was

introduced one base pair upstream of the PAM sequence recognized by sgRNA#5 to prevent

potential re-cutting as advised by previous studies [73–75]. This repair template was
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synthesized by Eurofins MWG Operon to generate plasmid pDH373. For injections, PCR

using E10 (5’-ATCAGAGGAGCACGACAGCA-3’) and E11 (5’-AGGAAAAAGGAAATAAATTA-3’)

primers on pDH373 as a template generated a smaller fragment that was cleaned up by QIA-

GEN MinElute PCR Purification Kit (#28004). The PCR fragment was used at 72ng/μl final

concentration for injections. All other components of the injection mixture were used as previ-

ously described for co-conversions [74]. All plasmids used for injections were purified using

QIAGEN Plasmid Midi Kit #12143. The dpy-10 targeting sgRNA, pJA58 (Addgene #59933),

was used at a final concentration of 25ng/μl. The dpy-10(cn64) oligo repair template was syn-

thesized by IDT as 4nm Ultramer DNA Oligo and was used at 0.5μM final concentration for

injections. The Cas9 expressing plasmid, pDD162 (Addgene #47549), was used at a final con-

centration of 50ng/μl [76]. Injected worms were placed on individual plates after injections

and Dpy and/or Roller progeny were cloned individually and screened by PCR for insertions.

dsRNA injections for RNAi

1000ng of a miniprep of full-length cup-2 cDNA cloned into pL4440 and GFP cloned into

pL4440 was used to PCR amplify dsDNA using a T7 primer named HB61 (5’ TAATACGACT-
CACTATAGG 3’) and NEB OneTaq DNA Polymerase. 3.8μg of dsDNA was used as a template

for in vitro transcription using NEB T7 polymerase and RNAseOUT inhibitor at 37˚C over-

night as per manufacturer’s instructions. This yielded ~1000ng/μL of cup-2 dsRNA and

~850ng/μL of gfp dsRNA that was used for RNAi injections after checking integrity of the

RNA product by running it on a gel. One day past L4 XB737 worms were injected and their

non-green progeny were analyzed by dissections and immunostaining.

Feeding RNAi and whole mount DAPI

Feeding RNAi was performed as per standard procedures [132]. NGM plates supplemented

with 100μg/mL Ampicillin and 1mM IPTG were prepared as per standard procedures [133].

The bacterial clones obtained from the Ahringer RNAi library were verified by sequencing

and working stocks of verified clones were used for seeding RNAi plates. The bacteria were

grown overnight in LB supplemented with 100μg/mL Ampicillin, seeded on to RNAi plates

and allowed to grow for 2 days at room temperature. For each batch of RNAi experiments, a

positive and negative control (empty vector) were included for comparison.

Synchronized L1s were obtained as above and were placed on plates at the desired tempera-

ture. Adult animals were analyzed 72 hours later by whole mount DAPI. Briefly, adult animals

were washed off plates in PBS and fixed in methanol at -20˚C overnight. Fixed animals were

washed once in PBS then stained in 100ng/mL DAPI in PBS for 5 minutes, washed twice

more, then mounted on 1% agarose pads for microscopy.

Drug treatment assays

Worm preparation and analyses for DTT and Thapsigargin (TG) experiments were performed

as for RNAi experiments described above. NGM plates containing the respective concentra-

tions of drugs were made by adding drugs (or an equivalent amount of DMSO for no drug

control plates) to the standard NGM agar recipe. DTT and Thapsigargin concentrations used

were as previously described [88,89].

Supporting information

S1 Fig. A simplified schematic of the genetic pathway controlling the proliferation vs. dif-

ferentiation balance in the C. elegans germline and the consequence of disruption of key
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players in the pathway on the phenotype. (A) Wild-type gonad. (B) glp-1(gf) gonad (C) gld-2
(0) gld-1(0) gonad. Proliferative cells in green, differentiating cells in red within the tube-like

gonad.

(TIF)

S2 Fig. Raw, average CUP-2 intensity measurements to compare CUP-2 levels in WT vs.

puf-8(q725) genetic backgrounds at 25˚C. (A). CUP-2 immunostaining (by α-V5) in wild-

type (WT) and puf-8(q725) dissected gonads. Both strains contain the cup-2(ug1
[V5::2XFLAG::CUP-2]) allele. Scale bar = 10μm. (B) CUP-2 intensities measured by α-V5

immunostaining by drawing a line through the center of the germline from the distal end

along the distal-proximal axis. Shaded area represents the standard deviation of average inten-

sity measurements of each genotype. Fifteen germlines were analyzed for CUP-2 intensity

measurements of each genotype. Arrowheads point to the average location of the transition

zone measured in at least seven gonads of each genotype. Dashed line represents the predicted

peak of PUF-8 expression, based on previous work that found that PUF-8’s expression pattern

is a bell-shaped curve centered around the transition zone with low expression levels in the dis-

tal end [54]. While we find that the overall CUP-2 expression levels are higher in puf-8(q725)
gonads compared to wild type gonads, since this increase does not correlate with the known

expression pattern of PUF-8 in wild type gonads, CUP-2 levels are unlikely to be directly regu-

lated by PUF-8.

(TIF)

S3 Fig. α-REC-8 and α-HIM-3 immunostaining of gonads of the indicated genotypes.

Asterisk, distal tip. Scale bar = 20μm

(TIF)

S4 Fig. Raw, unscaled average SYGL-1 intensity measurements of individual experiments

to compare SYGL-1 intensity in glp-1(ar202) genetic backgrounds. SYGL-1 intensities were

measured by α-FLAG immunostaining by drawing a line through the center of the germline

from the distal end along the distal-proximal axis of the indicated genotypes. Each subfigure

indicates an individual experiment comparing two genotypes that were processed together

and imaged on the same slide with the same exposure setting. A-C measurements were used to

generate scaled, fitted intensity curves shown in Fig 4B. Shaded area represents the standard

deviation of average intensity measurements of each genotype. Fifteen germlines were ana-

lyzed for SYGL-1 intensity measurements of each genotype. Arrowheads point to the average

location of the transition zone measured in at least seven gonads of each genotype. A. Average

SYGL-1 intensity comparison of sygl-1(am307) against cup-2(tm2838) sygl-1(am307) germ-

lines. B. Average SYGL-1 intensity comparison of sygl-1(am307) against sygl-1(am307); glp-1
(ar202) germlines. C. Average SYGL-1 intensity comparison of sygl-1(am307) against cup-2
(tm2838) sygl-1(am307); glp-1(ar202) germlines. D. Average SYGL-1 intensity comparison of

sygl-1(am307); glp-1(ar202) against cup-2(tm2838) sygl-1(am307); glp-1(ar202) germlines

(TIF)

S5 Fig. Effect of DTT treatment on weak Notch-dependent tumours and Notch-indepen-

dent tumours. A. Suppression of puf-8(q725); glp-1(oz264) tumours by DTT treatment. Phe-

notypes were analyzed by dissections followed by α-REC-8/α-HIM-3 staining. B.

Quantification of phenotypic analysis of the effect of increasing doses of DTT on glp-1(oz264)
and glp-1(ar202) tumours at 25˚C. Phenotypes were analyzed by whole mount DAPI. C. Quan-

tification of phenotypic analysis of the effect of increasing doses of DTT on Notch-indepen-

dent gld-2(q497) gld-1(q485) tumours. Phenotypes were analyzed by dissections followed by α-
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REC-8/α-HIM-3 staining.

(TIF)

S6 Fig. Raw, unscaled average SYGL-1 intensity measurements of individual experiments

to compare SYGL-1 intensity in wildtype and glp-1(ar202) genetic backgrounds with

induction of ER stress by DTT treatment. SYGL-1 intensities were measured by α-FLAG

immunostaining by drawing a line through the center of the germline from the distal end

along the distal-proximal axis of the indicated treatments. Each subfigure indicates an individ-

ual experiment comparing two treatments that were processed together and imaged on the

same slide with the same exposure setting. A-B measurements were used to generate scaled, fit-

ted intensity curves shown in Fig 8A, C-D measurements were used to generate scaled, fitted

intensity curves shown in Fig 8B. Shaded area represents the standard deviation of average

intensity measurements of each treatment. Fifteen germlines were analyzed for SYGL-1 inten-

sity measurements of each treatment. Arrowheads point to the average location of the transi-

tion zone measured in at least seven gonads of each treatment. A. Average SYGL-1 intensity

comparison of 0 DTT treated against 2 DTT treated sygl-1(am307) germlines. B. Average

SYGL-1 intensity comparison of 0 DTT treated against 5 DTT treated sygl-1(am307) germ-

lines. C. Average SYGL-1 intensity comparison of 0 DTT treated against 2 DTT treated sygl-1
(am307); glp-1(ar202) germlines. D. Average SYGL-1 intensity comparison of 0 DTT treated

against 5 DTT treated sygl-1(am307); glp-1(ar202) germlines.

(TIF)

S7 Fig. Raw, unscaled average SYGL-1 intensity measurements comparing xbp-1 RNAi

treated RNAi germlines against empty vector control RNAi treated germlines of cup-2
(tm2838) sygl-1(am307); glp-1(ar202). SYGL-1 intensities were measured by α-FLAG immu-

nostaining by drawing a line through the center of the germline from the distal end along the

distal-proximal axis of the indicated treatments. Shaded area represents the standard deviation

of average intensity measurements of each treatment. At least twelve gonads were analyzed for

SYGL-1 intensity measurements of each treatment.

(TIF)

S1 Table. Key glp-1 alleles used in this study.

(DOCX)

S2 Table. Phenotypic analysis of the effect of loss of cup-2 on expression of the Glp pheno-

type. Individual gonads were analyzed at 22.5˚C by whole mount DAPI.

(DOCX)

S3 Table. Phenotypic analysis of the effect of ER stress induced by DTT treatment on sup-

pression of Notch-dependent tumourous phenotypes. puf-8(q725); glp-1(oz264) was ana-

lyzed by dissections followed by α-REC-8/α-HIM-3 staining while the glp-1(oz264) and glp-1
(ar202) phenotypes was analyzed by whole mount DAPI.

(DOCX)

S4 Table. Phenotypic analysis of the effect of ER stress induced by DTT treatment on sup-

pression of a gld-2 gld-1 Notch-independent tumours. Phenotypes were analyzed by dissec-

tions followed by α-REC-8/α-HIM-3 staining.

(DOCX)

S5 Table. List of strains used.

(DOCX)
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