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Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic
biomaterials for reconstructing damaged bone. Accompanied by bone healing
process, implanted materials are gradually degraded while bone ultimately returns to
its original geometry and function. In this progress report, we reviewed the complex and
tight relationship between the bone healing response and CaP-based biomaterials, with
the emphasis on the in vivo degradation mechanisms of such material and their
osteoinductive properties mediated by immune responses, osteoclastogenesis and
osteoblasts. A deep understanding of the interaction between biological healing
process and biomaterials will optimize the design of CaP-based biomaterials, and
further translate into effective strategies for biomaterials customization.
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1 INTRODUCTION

The clinical intervention of bone healing is necessary for bone defects beyond the critical size, such as
large segmental bone defects caused by severe trauma, tumor resection, cancer, congenital diseases,
or small-scale alveolar bone defects (Davies et al., 2017; Majidinia et al., 2018). Given inevitable
drawbacks of autografts (including donor site pain, increased operative time, risk of wound infection,
and insufficient availability), many synthetic biomaterials have been specifically designed as an
alternative for bone repair and regeneration (Pina et al., 2015; Xu et al., 2017; Stastny et al., 2019).
Since the 1970s, calcium phosphate (CaP)-based bioceramics have received the most attention, and
several of them [e.g., β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA or HAP)] have
already been clinically applied for orthopedic andmaxillofacial surgery (Schaefer et al., 2011; Danoux
et al., 2015).

For bone-filling purposes, CaPs have been utilized as bioactive components of solid ceramic,
coatings, self-setting CaP cements (CPC), as well as advanced polymers, intending to function as a
scaffold for bone formation (Parent et al., 2017). The family of CaP biomaterials comprises varying
phase compositions, including HA [Ca10(PO4)6(OH)2], tricalcium phosphate [TCP, Ca3(PO4)2],
octacalcium phosphate [OCP, Ca8(HPO4)2(PO4)4·5H2O], dicalcium phosphate dihydrate [DCPD,
CaHPO4.2H2O], and amorphous calcium phosphate [ACP, CaxHy(PO4)z·nH2O, n = 3–4.5; 15–20%
H2O], can be used in a variety of applications due to differences in solubility, stability, and
mechanical strength (Jeong et al., 2019; Dorozhkin, 2021). CaP-based biomaterials provide a
strong biomaterial/bone interface and demonstrate promising biological properties such as
biodegradability, osteoconductivity, and in some cases even osteoinductivity (i.e., the ability of
the material to induce de novo bone formation without the presence of osteogenic factors) (LeGeros,
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2008; Chai et al., 2012; Stastny et al., 2019). In addition, CaPs can
be manufactured in large quantities at relatively low cost, meeting
the requirements of socially responsible tissue engineering and
regenerative medicine (Habraken et al., 2016).

Much effort has been spent on optimizing biomechanical and
physico-chemical properties to “engineer” materials for better
“osteoinductivity” (Bigi and Boanini, 2017; Ruffini et al., 2021). In
this context, the stiffness, porosity and pore size, surface
microstructure, phase composition, and crystallinity have all
been shown to affect the bone regeneration capacity of CaP-
based materials. These bone-matching “static” physico-chemical
parameters and the underlying osteogenesis mechanisms have
been summarized in recent reviews for material design
optimization (Habraken et al., 2016; Galvan-Chacon and
Habibovic, 2017; Przekora, 2019; Dee et al., 2020).
Nevertheless, the laboratory-prepared bone graft materials are
often not successful in clinical application (Chen Z. et al., 2016).
The regeneration capacity of biomaterials is usually evaluated by
in vitro osteoblastic lineage (Diez-Escudero et al., 2017b), and in
vivo bone histomorphology measurements (Yuan et al., 2000;
Chiba et al., 2016). However, the biological process of bone
healing to implanted materials has always been neglected. The
mechanisms underlying bone healing are not simply led by
osteoblasts, but a synergy of multiple systems involving a
series of biological events including early inflammation
response and long-term reconstruction process (Newman
et al., 2021; Zhu et al., 2021). Therefore, the optimization and
design of CaP-based biomaterials should keep pace with the rapid
progress in bone healing biology, which eventually determines the
in vivo fate of CaP-based biomaterials and bone healing effects.

In this review, we first summarized the biological process of
bone healing and then focused on major developments in the
bone healing response to CaP-based biomaterials. Understanding
the interaction between biomaterials and host response during
the bone healing process is important for improving the design of
CaP-based biomaterials. Simultaneously, we also provide an
outlook toward customizable CaP-polymer composite
biomaterial strategies.

2 OVERVIEWOF BONE HEALING PROCESS

There are three overlapping stages of the bone healing process:
inflammation, bone formation and bone remodeling (Maruyama
et al., 2020; Newman et al., 2021; Zhu et al., 2021).

Inflammation begins immediately after the bone is broken and
lasts for several days. Driven by cytokines, macrophages and
other immune cells (granulocytes, lymphocytes, monocytes, etc.)
infiltrate bone defects, which trigger inflammatory reactions,
clean up bone-tissue debris, as well as form vascular tissue
and granulation tissue (Maruyama et al., 2020). Macrophages
demonstrate broad roles here in regulating bone tissue
homeostasis. Under the stimulation of the locally ischemic and
hypoxic environment, and cytokines [e.g., macrophage colony-
stimulating factor (M-CSF) and receptor activator of NF-κB
ligand (RANKL)], macrophages polarize towards “M1” type.
They secrete a series of pro-inflammatory cytokines [e.g.,

tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6],
which in turn recruit mesenchymal stem cells (MSCs),
osteoprogenitor cells, and fibroblasts for tissue repair (Miron
et al., 2016; Zhu et al., 2021). Macrophages transform towards
M2 wound-healing type at the end of the inflammatory stage and
secrete anti-inflammatory cytokines [e.g., IL-4, IL-10, and
transforming growth factors beta (TGF-β)] in favor of
establishing osteogenic environments (Oliveira et al., 2021).

During the bone formation process, there are two repair
mechanisms depending on the location of the bone defect.
The cancellous and inter-cortical bone regions are repaired by
endochondral ossification, while the subperiosteal and adjacent
soft tissue regions are repaired by intramembranous ossification
(Zhu et al., 2021). In cancellous and inter-cortical bone regions,
the recruited MSCs aggregate, proliferate and differentiate into
chondrocytes. They secrete an avascular cartilage matrix, and the
granulation tissue is gradually replaced by the fibrocartilage- and
hyaline cartilage-rich soft callus (Nossin et al., 2021). Along with
new blood vessel formation, endothelial cells, osteoblasts, and
chondrocytes secrete matrix metalloproteinases to degrade the
cartilage matrix. Mature hypertrophic chondrocytes undergo
apoptosis or transition into osteoblast-like cells, which
together with osteoblasts, contribute to the secretion of type I
collagen and the extracellular matrix (ECM) mineralization.
Finally, the soft callus is transformed into the disordered
woven bone (Tsang et al., 2015; Fu et al., 2021). Once the
periosteum and adjacent soft tissue regions are injured, the
MSCs recruited from the periosteum, bone marrow, adjacent
soft tissues, and peripheral circulation and osteoprogenitor cells
within the periosteum initiate the intramembranous bone
formation process. MSCs and osteoprogenitor cells
differentiate into osteoblasts. These cells secrete and mineralize
ECM, forming hard callus directly under the periosteum (Wang
et al., 2020).

Bone remodeling is the final stage of bone healing and typically
lasts for several months (ElHawary et al., 2021). As a dynamic
process, the irregular woven bone is reconstructed by bone
resorption and osteogenesis process under mechanical
stimulation and further developed as mature lamellar bone
(Frost, 2004; Loi et al., 2016; ElHawary et al., 2021). The
crosstalk between osteoblasts and osteoclasts plays an
important role in this phase. Bone ultimately returns to its
original shape and restores the geometry and function of the
damaged part (Zhu et al., 2021).

3 CALCIUM PHOSPHATE-BASED
BIOMATERIALS PARTICIPATE IN BONE
HEALING PROCESS
With similar composition to bone minerals, CaP-based
biomaterials induce biological responses like those occur
during bone healing (Diez-Escudero et al., 2017a). On the one
hand, multiple cells involved in bone healing mediate the
degradation and resorption of implanted materials. This is
critical for CaP-based biomaterials to provide the space into
which the bone and vascular tissues can grow (Rustom et al.,
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2019). The concomitant release of inorganic ions from the
biodegradation of CaPs is also necessary for modifying the
behavior of cells/tissues and enhances the osteoinductivity of
the biomaterials (Tang et al., 2018). On the other hand, the
osteoinductivity of CaP-based biomaterials is complicated in vivo
as inflammation and osteoclastogenesis accompany the entire
process of bone healing. Recent studies have pointed out that the
physico-chemical properties of CaP-based biomaterials could
affect the activity and function of immune cells and
osteoclasts, and indirectly or directly affect osteogenesis,
respectively (Figure 1). In this section, we will detail these
tight and complex interactions between CaP-based
biomaterials and bone healing responses.

3.1Mechanisms of in vivoBiodegradation of
Calcium Phosphate-Based Biomaterials
After implantation, the host body will first undergo a universal
immune response to the materials. Proteins (e.g., fibrinogen,
vitronectin, complement, and fibronectin) from blood and
interstitial fluid will immediately adsorb on the material
surface and then trigger an acute inflammation.
Chemoattractants and cytokines such as platelet factor 4 (PF-
4), platelet-derived growth factor (PDGF), and TGF-β lead to
monocyte colonization and differentiate into macrophages and
osteoclasts (Chen Z. et al., 2016; Galvan-Chacon and Habibovic,
2017). Meanwhile, CaP-based biomaterials will undergo
degradation and resorption processes in vivo (Sheikh et al.,
2015). Degradation is a physical process utilizing chemical
dissolution or mechanical degradation. The disintegration and
fragmentation of implants are often accompanied by the release
of material particles (Sheikh et al., 2015; Galvan-Chacon
and Habibovic, 2017). Biomaterial degradation paths the way
for cell-mediated resorption processes that involve macrophages,

osteoclasts, and multinucleated giant cells (Sheikh et al., 2015;
Miron and Bosshardt, 2016; Xiao et al., 2016).

CaP particles can be directly engulfed via phagocytosis and
intracellular digestion by macrophages and osteoclasts (size
<10 μm), as well as giant cells (size between 10 and 100 μm)
(Heymann et al., 2001; Wenisch et al., 2003; Nicolin et al., 2016).
The particles, if larger than 100 μm, will undergo extracellular
degradation within the acidic microenvironment created by
osteoclasts (Galvan-Chacon and Habibovic, 2017). Solubility of
the biomaterial (Yamada et al., 1997; Detsch et al., 2010; Wu and
Uskokovic, 2016) and topographic characteristics such as specific
surface area and the porosity content (Zimmer et al., 2013;
Davison et al., 2014; Diez-Escudero et al., 2017b) are relevant
physicochemical factors that influence the osteoclasts resorption
activity.

In addition, cytokines released bymonocytes/macrophages are
responsible for the recruitment of osteoprogenitor cells andMSCs
(Przekora, 2019). Cytokines such as M-CSF, RANKL and
osteoprotegerin are responsible for stimulating
osteoclastogenesis (Chen Z. et al., 2016). Contrary to previous
beliefs that all inflammatory responses should be suppressed after
biomaterial implantation, healing is promoted by suppression of
extended chronic inflammatory responses (Miron and Bosshardt,
2016; Batool et al., 2021).

3.2 The Interaction Between Bone Healing
Response and Calcium Phosphate-Based
Biomaterials
3.2.1 Calcium Phosphate-Based Materials Regulate
Osteoimmune
The concept of “osteoimmunomodulation” was proposed by
Chen Z. et al. (2016) to emphasize the important roles of
bone immune response in determining the in vivo fate of bone

FIGURE 1 | The physico-chemical properties of CaP-based biomaterials affect the activity and function of immune cells, osteoclasts, and osteoblasts.
Abbreviation: BCP, biphasic calcium phosphate; TCP, tricalcium phosphate; HA, hydroxyapatite; MSC, mesenchymal stem cell; OCP, octacalcium phosphate.
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substitute materials. Macrophages are major effector cells in
determining the duration and intensity of material-induced
immune responses and are indispensable for osteogenesis
(Chen et al., 2014a; Xiao et al., 2021). Chen and his team
(Chen et al., 2014b) demonstrated that macrophages switch to
the M2 phenotype through the calcium-sensing receptor (CaSR)
pathway in response to β-TCP powder extracts. At the same time,
the secreted bone morphogenetic protein 2 (BMP-2), as well as
anti-inflammatory genes (IL-10 and IL-1rα) were up-regulated,
and inflammatory genes (IL-1β and IL-6) were significantly
down-regulated in macrophages. When bone marrow
mesenchymal stem cells (BMSCs) were cultured in
macrophage/β-TCP extracts conditioned medium, the
osteogenic differentiation of BMSCs was significantly
enhanced. More recent studies also reported similar findings
that under the stimulation of biphasic calcium phosphate
(BCP) ceramics, the expression of anti-inflammatory cytokine
(IL-10) and growth factors, including vascular endothelial growth
factor (VEGF), PDGF, epidermal growth factor (EGF), BMP-2
and TGF-β1 was increased, which might synergistically create a
pro-osteogenic micro-environment, resulting in MSCs
recruitment and differentiation into osteoblasts (Chen X. et al.,
2016; Wang et al., 2017). Compared with macrophage/BCP
conditioned media, the degradation particles of BCP might
play a more substantial role in this process (Wang et al.,
2017). However, the increased expression of inflammatory
factors [IL-6, monocyte chemoattractant protein-1 (MCP-1),
and TNF-α] in macrophages was found by Wang et al. (2017),
and the increment of these pro-inflammatory cytokines did not
seem to inhibit the osteogenic differentiation of MSCs. The
reason may be that the effects of inflammatory cytokines are
dose-dependent, e.g., only IL-6 of high concentration (above
10 ng ml−1) was proven to exhibit an inhibitory effect on BCP-
induced osteogenesis (Chen X. et al., 2016). Further, more in vivo
evaluations are needed for validating the immune-stimulated
osteogenesis after CaP-based biomaterials implantation.

3.2.2 Calcium Phosphate-Based Materials Regulate
Osteoclast-Mediated Osteogenesis
Bone resorption mediated by osteoclasts is tightly coupled with
osteogenesis of osteoblasts (Chen et al., 2018; Kim et al., 2020).
Substantial efforts have been made in modifying the properties of
CaP-based materials to regulate the activities of osteoclasts. And
the phases, surface structure, and crystallinity of CaP materials
have been shown to control osteoclast activities (Takami et al.,
2009; Davison et al., 2014; Uskokovic et al., 2019; Wang et al.,
2021). Wang et al. (2021) prepared a series of CPC scaffolds with
different calcium and phosphate ratios (Ca/P) and found that
slight release of phosphate ions from CPC with higher Ca/P ratio
(1.67) improved osteoclastogenesis. The released phosphate ions
promoted osteoclast differentiation via increased affinity between
RANKL and RANK, as well as robust NF-κB signaling
transduction. Rat calvarial defect model further supported that
CPC with high Ca/P ratio could ameliorate osteoclast-mediated
bone healing. In addition to ions effects, the topographical
structure and crystallinity of CaP materials could also be
tuned to control osteoclast activities. For instance, Davison

et al. (2014) indicated that β-TCP with submicron structure
feature facilitated human peripheral blood monocytes
differentiation into osteoclasts compared to microstructure.
Similarly, another study pointed out that the surface structure
of BCP affected osteoclastogenesis and bone ectopic formation
after material implantation into the dorsal muscle of dogs
(Davison et al., 2015). A recent study also showed that
osteoclasts could sense the crystallinity of materials and higher
crystallinity enhances metabolic and resorption activities of
osteoclasts (Uskokovic et al., 2019).

In addition, the phases of CaPs in implanted materials could
affect the osteoblasts-osteoclasts crosstalk in vitro. Shiwaku et al.
(2015) found that osteoclasts cultured on BCPs with low HA
content (5%) increased the expression of positive coupling
factors, including sphingosine-kinase 1 (SPHK1) and collagen
triple helix repeat containing 1 (Cthrc1). In a subsequent study,
they cultured osteoclasts on HA/OCP or HA/TCP disks to
investigate how the distinct chemical composition and crystal
structure affect osteoclast formation and the osteoclasts-
osteoblasts crosstalk. Both OCP and β-TCP had a similar
ability to create multinucleated osteoclasts. OCP promoted the
expression of complement component 3a (C3a) and β-TCP
enhanced that of EphrinB2 (EfnB2) and Cthrc1 in osteoclasts,
respectively. In turn, these secreted positive coupling factors
promoted osteoblast differentiation and function (Shiwaku
et al., 2019). Chemical properties, such as dissolution and
precipitation around OCP and β-TCP crystals, may be factors
that contribute to similar and different cellular responses in these
CaP phases.

3.2.3 Biological Cell Responses to Internalized
Calcium Phosphate Particles
Nanoscale CaP particles are produced from degradation or
mechanical abrasion of macroscopic implants or direct
implantation as nanoscale bone substitute materials (Epple, 2018).
In all these cases, the surrounding tissue is subjected to calcium
phosphate nanoparticles (CaP-NPs) at varying concentrations. Apart
from small CaP-NPs (a few nm in diameter) that can directly
penetrate the cell membrane on their own, almost all CaP
nanoparticles are internalized by endocytosis and/or phagocytosis
(Mahmoudi et al., 2011). Primary endosomes or phagosomes then
fuse with cytoplasmic lysosomes to dissolve the CaP-NPs into
calcium and phosphate. The cargo is eventually delivered into the
cytoplasm (Epple, 2018). The CaP-NP-induced apoptotic pathway is
mediated via a mitochondrial-dependent pathway (Xu et al., 2012;
Xue et al., 2017). The sizes (Shi et al., 2009), surface topography and
morphology (Zhao et al., 2007;Okada et al., 2010) and concentrations
(Xu et al., 2012) of CaP-NPs have significant effects on the apoptotic
level. The CaP-NPs are not cytotoxic per se, but the release of a large
number of calcium ions after dissolution of the CaP-NPs is harmful.
And apoptosis is induced by increased intracellular calcium ions
concentration (Masouleh et al., 2017).

It is worthy that particles released from CaP materials
degradation should not disturb the ability of bone-forming
cells to form new bone. Therefore, in addition to studying the
effect of materials’ macroscopic properties on the osteogenic
ability of MSCs/osteoblasts, more studies on the effects of
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CaP-NPs on these cells and the underlying mechanisms have
been investigated (Albulescu et al., 2019; Khotib et al., 2021).
Particle size, shape, and concentration will have different effects
on the function, viability, proliferation, and extracellular matrix
of osteoblasts (Sheikh et al., 2015; Li et al., 2022). CaP-NPs have
dose-dependent effects on osteoblasts and the maximum number
of nanoparticles a single osteoblast can tolerate is 50 (Pioletti
et al., 2000). Small CaP particles (1–10 μm) are less biocompatible
than large particles (>10 μm) on the viability, proliferation and
gene expression of osteoblasts (Pioletti et al., 2000). The CaP-NPs
with higher specific surface area could increase the adhesion of
osteoblasts. However, Xu et al. (2012) found that larger specific
surface areas of CaP-NPs might induce higher apoptosis rates in
the concentration range of 20–100 μg/ml. Jin et al. (2017) have
studied the effect of unfunctionalized calcium phosphate
nanorods (HA; 20 nm in diameter and 80 nm in length) on
MC3T3 cells. They observed an uptake by micropinocytosis
and a significant cytotoxicity above 40 mg L−1, which was
caused by oxidative stress and lysosomal rupture. In a study
using SAOS-2 osteoblasts, nano-HA were actively internalized
and are retained within intracellular membrane-bound
compartments. Dissolution of the nano-HA was observed
within phagolysosomes. After 24 h of internalization, re-
precipitation of needle-like minerals appears in the

intracellular membrane-bound compartments (Rossi et al.,
2018). These re-precipitated nanoparticles may provide a
cellular protective mechanism against the cytotoxicity of
rapidly elevated cytoplasmic calcium ions (Rossi et al., 2018).

In addition, particle size also significantly affects the activity of
stimulating osteogenic differentiation. Yang et al. (2018) cultured
MSCs with three different-sized nano-HA (~50, ~100, and
~150 nm, resp.) and found that smaller-sized nano-HA (~50
and ~100 nm) accelerated the expression of osteoblast-like cell
osteogenic genes (Yang et al., 2018). This is in line with that
smaller-sized nano-HA (40–1000 nm) appeared to be more
effective in stimulating osteogenic differentiation of hMSCs
(Weissenboeck et al., 2006). An in vitro enzymatic reaction
route has been employed for generating biomimetic
amorphous calcium phosphate (EACP) nanominerals (Jiang
et al., 2018). The amorphous nanomineral is composed of
organic-inorganic hybrid nanoparticles. Adenosine
triphosphate (ATP) provides the pool of phosphate ions for
EACP formation. After internalization of EACP into human
bone marrow-derived mesenchymal stem cells (hBMSCs), the
release of ADP/AMP biomolecules and calcium ions activate
adenosine 5′-monophosphate (AMP)-activated protein kinase
(AMPK) and induces autophagy and osteogenic differentiation
of hBMSCs (Jiang et al., 2018).

FIGURE 2 | The interactions between CaP-based biomaterials and bone healing response. The osteoinductivity of CaP-based biomaterials can be “programmed”
by their physico-chemical properties and are necessary for modifying the behavior of immune cells, osteoclasts, and MSCs/osteoblasts. Under the simulation with CaP-
based biomaterials, the expression of inflammatory factors (IL-1β) is decreased, and the production of anti-inflammatory cytokine (IL-10, IL-1rα), as well as growth factors
(VEGF, PDGF, EGF, BMP-2, and TGF-β1) is increased in macrophages. The surface structure and crystallinity of CaP-based biomaterials can be sensed by
osteoclasts and regulate their metabolically active and resorption capacity. All above synergistically create a pro-osteogenic micro-environment leading to effects on
bone formation. Abbreviation: ALP, alkaline phosphatase; BMP-2, bone morphogenetic protein two; BSP, bone sialoprotein; CaSR, calcium-sensing receptor; C3a,
complement component 3a; Cthrc1, collagen triple helix repeat containing one; COL-I, collagen I; Ctsk, cathepsin k. DC-STAMP, dendritic cell-specific transmembrane
protein; EfnB2, EphrinB2; EGF, epidermal growth factor; IL, interleukin; SPHK1, sphingosine-kinase one; MCP-1, monocyte chemoattractant protein-1; M-CSF,
macrophage colony-stimulating factor; NFATc1, nuclear factor of activated T cells one; OCN, osteocalcin; OPN, osteopontin; OPG, osteoprotegerin; PDGF, platelet
derived growth factor; RANKL, receptor activator of NF-κB ligand; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor-α; TRAP, tartrate-resistant acid
phosphatase; VEGF, vascular endothelial growth factor.
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4 CUSTOMIZABLE CALCIUM
PHOSPHATE-POLYMER COMPOSITE
BIOMATERIALS
Although humans share a set of bone healing mechanisms, the
effects of bone healing vary in individuals, depending on the
conditions of bone defects. Such diversities account for the
different rates and effects of bone regeneration. Because these
biomaterials are likely to be transplanted into an ‘unfriendly’ host,
the disease state, and other specifics of the host, such as age,
ongoing chronic inflammation and infection should be well
understood and taken into consideration. Accordingly, the
fabrication of a customizable bone graft to match the
condition of the bone defect is important for efficient bone
regeneration.

Customizable bone graft substitutes may be designed by
following two principles: 1) Tailored external construction and
internal structural mimicking of the microenvironment of the
defect site. The specific technologies and methods relevant to the
design and manufacture of such materials are summarized in
another review (Forrestal et al., 2017). 2) Customized
biodegradation rate that matches the new bone formation rate,
which needs to be complemented by an appropriate in vivo bone
healing response. In this context, introducing CaPs into smart
hydrogel systems may be a promising solution.

Hydrogels possess good biocompatibility and tissue
integration properties and serve as the carriers in drug systems
and bone tissue engineering biomaterials (Forrestal et al., 2017;
Mantha et al., 2019). In response to stimulus [including
exogenous (thermoresponsively-, magnetically-,
electroresponsively- or light-triggered) and internal physical/
biochemical (pH-, redox- or enzyme-sensitive)], hydrogel
systems can change their structures, compositions or
conformations to support the release of encapsulated active
species (Claassen et al., 2019; Wei et al., 2022). The specific
microenvironment of bone healing process, such as specific
immune environment or enzyme release, can be used to
design corresponding intelligent stimulus-responsive
biomaterials for rapid reactive bone therapy and bone
regeneration. Enzyme-responsive systems provide
enlightenments for the selection of biomolecules. The design
of enzyme-responsive systems for drug delivery relies on
esterase- or protease-mediated cleavage of esters or short
peptide sequences, resulting in effective drug release
(Ramasamy et al., 2017). By choosing an appropriate peptide
sequence, enzyme-responsive materials may be designed to
respond exclusively to a target enzyme (Ramasamy et al.,
2017). To be specific, tissue-nonspecific alkaline phosphatase
(TNAP) may be considered a candidate. The TNAP
hydrolyzes inorganic pyrophosphate (PPi, a potent
mineralization inhibitor) and ATP into monophosphate (Pi,
inorganic phosphate) to control ECM mineralization (Bottini
et al., 2018). Ideally, a matching peptide sequence can make

polymers respond exclusively to TNAP. New bone formation that
coordinates with the biodegradation of CaP-polymer composites
may be achieved by harnessing the TNAP-response to achieve a
customized biodegradation rate.

5 CONCLUSION

Synthetic biodegradable bone grafts are gradually being replaced
by the patient’s own bone. After implantation, tight and complex
interactions occur between CaP-based biomaterials and the bone
healing process. Multiple cells involved in bone healing mediate
the materials’ degradation and resorption, which is essential to
provide the space into which the bone and vascular tissues can
grow. The physico-chemical properties of materials are also
necessary for modifying the behavior of cells/tissues and
enhancing the osteoinductivity of the biomaterials. In light
with previous studies, we summarized the osteoinductive
mechanism of CaP-based biomaterials accompanying bone
healing (Figure 2). Under the stimulation with CaP-based
biomaterials, the expression of inflammatory factors (IL-1β) is
decreased, and the production of anti-inflammatory cytokine (IL-
10, IL-1rα), as well as growth factors (VEGF, PDGF, EGF, BMP-2
and TGF-β1) is increased in macrophages, which synergistically
create a pro-osteogenic micro-environment. The surface
topography and crystallinity of CaP-based biomaterials can be
sensed by osteoclasts and regulate their metabolic activity and
resorption capacity, then influencing bone formation. These
material particles are eventually internalized into cells and are
involved in the regulation of cell homeostasis and cell
differentiation. Based on the in-depth understanding of the
involvement of CaP-based biomaterials in the bone healing
process, we propose the future design of these materials is to
develop biomaterials with customizability, such as tailored
geometry and biodegradation rate.
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