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ARTICLE

Time-to-Event Modeling of Peripheral Neuropathy: 
Platform Analysis of Eight Valine-Citrulline-
Monomethylauristatin E Antibody–Drug Conjugates

Matts Kågedal1,*,†, Divya Samineni1,†, William R. Gillespie2, Dan Lu1, Bernard M. Fine1, Sandhya Girish1, Chunze Li1 and Jin Y. Jin1

Peripheral neuropathy (PN) is a common long-term debilitating toxicity of antimicrotubule agents. PN was the most frequent 
adverse event resulting in dose modifications and/or discontinuation of treatment for valine-citrulline-monomethylaurista-
tin E antibody–drug conjugates (ADCs) developed at Genentech. A pooled time-to-event analysis across eight ADCs (~700 
patients) was performed to evaluate the relationship between the ADC exposure and the risk for developing a clinically 
significant (grade ≥ 2) PN. In addition, the impact of demographic and pathophysiological risk factors on the risk for PN was 
explored. The time-to-event analysis suggested that the development of PN risk increased with ADC exposure, treatment 
duration, body weight, and previously reported PN. This model can be used to inform clinical strategies such as adaptations 
to dosing regimen and/or treatment duration as well as inform clinical eligibility to reduce the incidence of grade ≥ 2 PN.

With recent advances in cancer diagnosis and treatment, the 
overall cancer death rate in the United States has declined by 
1.5% annually during the past decade, resulting in an estimated 
15.5 million cancer survivors in 2017.1 Although an increasing 
number of cancer patients become long-term survivors, these 
survivors endure physiological sequelae and side effects from 
the disease and its treatments that can potentially interfere 
with the completion of treatment and negatively impact can-
cer survivors’ quality of life. Therefore, oncology therapeutics 
need to be optimized to enhance the benefit–risk profile for 
patients through rational dose/dose regimen selection.

Amongst the most debilitating of these long-term toxicities 
is chemotherapy-induced peripheral neuropathy (PN) that 
can lead to permanent symptoms and disability in up to 38% 
of cancer survivors.2,3 PN is a common nonhematological 

adverse event associated with a number of effective chemo-
therapeutic agents, including platinum compounds,4,5 tax-
anes,6,7 vinca alkaloids,8,9 thalidomide, and bortezomib. PN 
affects distinct components of the nervous system, from the 
sensory cell bodies in the dorsal root ganglion to the distal 
axons of the primary sensory neurons, leading to paresthe-
sia, dysesthesia, and numbness in the hands and feet.10 The 
clinical presentation of PN is predominantly sensory, rather 
than motor, with symptoms predominantly occurring in a cu-
mulative dose-dependent manner, with a symmetric, distal, 
length-dependent “stocking-glove” distribution.11 The risk 
profiles vary depending on the mechanisms of neurotoxicity 
among the different offending agents, dose intensity, dura-
tion of exposure, and the site of action.12,13 PN has the po-
tential to interfere with treatment by compromising treatment 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   Peripheral neuropathy (PN) is a frequent adverse event 
resulting in dose modifications and/or treatment discon-
tinuations for valine-citrulline-monomethylauristatin E an-
tibody–drug conjugates (ADCs).
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   What are the important patient risk factors for develop-
ing PN? Does the ADC target or cancer type influence the 
risk? What are the relevant treatment options considering 
the risk for PN?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   Prior PN and body weight appear to be the most im-
portant risk factors in addition to dose and treatment du-
ration. Drug target and cancer type do not seem to play 
an important role.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   The developed-to-event model can be used to inform 
clinical strategies such as adaptations to dosing regimen 
and/or treatment duration as well as inform clinical eligibil-
ity to reduce the incidence of grade ≥ 2 PN.
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adherence and by limiting the dosing intensity of long-term 
treatment, resulting in reduced efficacy.

Antibody–drug conjugates (ADCs) constitute a sophis-
ticated class of therapeutic agents that allow delivery of 
highly potent antineoplastic agents to target cells via spe-
cific antibody–antigen binding while minimizing exposure 
to healthy cells.14 The valine-citrulline-monomethylauristatin 
E (vc-MMAE) class of ADCs constitute the largest group of 
ADCs in clinical development.15 MMAE is a synthetic auristatin 
derivative that inhibits cell division and promotes apoptosis by 
disrupting the microtubule network upon binding to tubulin.16 
These ADCs use a protease-labile linker, maleimidocaproyl 
valine citrulline p-aminobenzyloxycarbonyl, conjugated to a 
potent antimitotic agent, monomethyl auristatin E (MMAE) 
via solvent accessible thiols present in monoclonal antibody 
(mAb) cysteines (vc-MMAE ADC). Although the Genentech 
(South San Francisco, CA) vc-MMAE ADCs target different tu-
mor-specific antigens against a wide variety of cancer types, 
i.e., solid tumors and/or hematological malignancies, they use 
the same linker-drug combination (i.e., vc-MMAE). 

In clinical studies (phases I and II) conducted with eight 
vc-MMAE ADCs developed at Genentech, PN was the most 
frequent adverse event resulting in dose modification and 
treatment discontinuation. This is consistent with the clini-
cally observed adverse event profile following the admin-
istration of brentuximab vedotin, a vc-MMAE–containing 
ADC targeting the cancer antigen CD30, in lymphoma pa-
tients.17–19 The pharmacokinetics (PK) of the antibody-con-
jugated monomethyl auristatin E (ac-MMAE, measured as 
MMAE conjugated to the mAb) analyte have previously been 
shown to be largely comparable across the eight vc-MMAE 
ADCs in a pooled analysis.20 The intercompound variabili-
ties were estimated to be 15% and 5% for clearance and 
central volume of distribution, respectively, which are small 
compared with  the corresponding interpatient variabilities of 
39% and 15%. Clinical results from all eight ADCs included 
here have previously been published individually.21–28

Exploratory exposure–safety evaluations for the individual 
vc-MMAE ADCs suggested that a higher exposure for the 
conjugate analyte was associated with a higher incidence 
of clinically significant (grade ≥ 2) PN. On the other hand, 
consistent with previous reports,29 no correlation between 
unconjugated MMAE exposure and grade ≥ 2 PN was seen. 
A time-to-event (TTE) model was previously developed 
for polatuzumab vedotin, a vc-MMAE–containing ADC, to 
quantify the relationship between ADC exposure (MMAE 
conjugated to the mAb) and treatment duration on the inci-
dence of PN, considering the cumulative onset of grade ≥ 2 
PN events.30 Given that the eight in-house vc-MMAE ADCs 
contain the same antimicrotubule agent (i.e., MMAE), display 
comparable PK properties, and have consistent exposure–
response trends for grade ≥ 2 PN for the individual ADCs, we 
have performed a pooled TTE analysis to describe the ex-
posure–safety relationships of grade ≥2 PN. This enabled an 
informative analysis despite limited data on each separate 
ADC (except polatuzumab) and also allowed a comparison 
among ADCs after accounting for other covariate effects. In 
fact, the developed TTE analysis leveraged a rich data set  
consisting of ~700 patients across the eight individual ADCs 
in phases I and II of clinical development.

Our objectives were as follows: (i) to evaluate the relation-
ship between the ADC exposure and treatment duration on 
the clinically significant (grade ≥ 2) PN risk, (ii) to evaluate 
the impact of baseline demographic and pathophysiological 
risk factors on the PN risk, and (iii) to explore management/
risk mitigation strategies (i.e., dose adaptations, capping of 
treatment duration, inform clinical eligibility) to reduce the 
incidence of grade ≥ 2 PN for in-house vc-MMAE ADCs in 
development.

METHODS
Study designs and data
The TTE analysis was based on the clinical data obtained 
following the administration of the eight in-house vc-MMAE 
ADCs evaluated in nine phase I and II studies of 694 cancer 
patients. The drug antigen targets, indications, number of 
patients, doses, and schedules for each ADC are summa-
rized in Table S2. All studies were approved by the med-
ical ethics committee and were carried out according to 
the International Conference on Harmonization guidelines 
for good clinical practice.31 The eight phase I monotherapy 
studies included both dose escalation and at least one ex-
pansion cohort at a dose identified for further clinical de-
velopment. The doses tested in phase I were in the range 
0.1–3.2 mg/kg administered every 3 weeks (q3w) and in the 
range of 0.8–1.6 mg/kg administered in a weekly regimen. 
All studies included an expansion cohort at 2.4  mg/kg, 
q3w. In addition, pinatuzumab vedotin (1.8 mg/kg q3w and 
2.4 mg/kg q3w) and polatuzumab vedotin (2.4 mg/kg q3w) 
were also evaluated in combination with rituximab during 
the phase Ib portion of clinical development. In the phase II 
study, relapsed/refractory non-Hodgkin lymphoma patients 
were randomized to receive either 2.4 mg/kg q3w of pinatu-
zumab vedotin or 2.4 mg/kg q3w of polatuzumab vedotin in 
combination with rituximab, which has established clinical 
activity in B-cell malignancies. In addition, a cohort of follic-
ular lymphoma patients received 1.8 mg/kg q3w of polatu-
zumab vedotin in combination with rituximab. 

The PK collection was extensive, with multiple samples 
(~n = 10) collected during cycle 1 (up to 21 days post first 
dose) and 4–5 samples/cycle up to cycle 4. In addition, PK 
samples preinfusion and postinfusion were collected until 
cycle 8. No PK data were available for study DNB4987G at 
the time of the present analysis. For the remaining studies, 
91% of the patients had PK observations and were also in-
cluded in the previously reported population PK analysis.20

Bioanalytical methods for PK concentrations of the 
ac-MMAE analyte
The concentration of the conjugate represented the total 
concentration of ac-MMAE conjugated to the antibody via 
the maleimidocaproyl-valine-citrulline-p-aminobenzyloxy-
carbonyl (MC-VC_PAB) linker. The conjugate concentra-
tions for each ADC were measured in the plasma samples 
using a validated electrospray liquid chromatography-
tandem mass spectrometry assay. Initially, affinity capture 
using protein A was used to capture the ADC followed by 
the enzyme-mediated release of MMAE and subsequent 
detection using liquid chromatography-tandem mass spec-
trometry.32 The lower limit of quantitation for validated 
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conjugate assays in human Li-heparin plasma across the 
eight programs was 0.179 ng/mL (0.25 nM) or 0.359 ng/mL 
(0.5 nM) with a linear range up to 35.9 ng/mL (50 nM) using 
a sample volume of 50 μL.

Base model development
The individually predicted ac-MMAE concentration time 
course in plasma was used as an input function in the model. 
The individual PK profiles were derived based on a previ-
ously published pooled population PK analysis of the same 
studies.20 The individual predictions for one of the patients 
was unrealistic with a clearance estimate at only ~3% of the 
expected value and a poor individual fit, most likely the result 
of inaccurate dosing history. This patient was excluded from 
the analysis. For patients not included in the PK analysis, 
the population PK parameter estimates were used to predict 
individual exposures accounting for covariate effects.

The TTE model for grade ≥ 2 PN published previously for 
polatuzumab vedotin30 was used as a starting point. The 
addition of a transit compartment between plasma and the 
effect compartment provided a slightly better fit to the data 
with the same number of parameters. Hence, in the final 
base model, the delay between start of treatment and the in-
creased incidence of grade ≥ 2 PN was described by a tran-
sit compartment (Ctransit) followed by an effect compartment 
where the first order transit rate constant (Ktr) determines the 
extent of the delay (Figure 1). A linear relationship between 
drug concentration in the effect compartment (Ce) and the 
drug effect (Edrug) was assumed where α was the estimate 
slope. An EMAX model was also tried but did not improve 
the fit. A Weibull function was also included in the final base 
hazard model, including the parameter β to further allow a 
time-varying baseline hazard (hbase). The model appropriately 
accounted for right censoring for patients who discontinued 
the study or died prior to experiencing grade ≥ 2 PN. The 
structure of the final base model is illustrated in Figure 1 and 
specified in Eqs. 1–4, where t is time.

The analysis was conducted using the NONMEM 
software version 7.3.0 (Icon Development Solutions, 
Ellicott City, MD.33 Goodness of fit was evaluated based 
on evaluation of Kaplan–Meier visual predictive checks 
(VPCs). The VPCs were created by Monte Carlo simula-
tions using Perl-speaks-NONMEM (PsN) 3.7.6 (number 
of simulated studies ≥ 300) and the Kaplan.plot function 
of Expose 4 for plotting.34

Covariate analysis
The association between covariates of interest and the 
risk for development of PN were explored. Covariates 
were selected based on previously reported analyses20 
as well as scientific and clinical interests. Evaluated co-
variates included body weight (BWT), prior PN, albumin 
(ALBU), diabetes, performance status based on the re-
sponse criteria of the Eastern Cooperative Oncology 
Group (ECOG), age, gender, prior chemotherapy treat-
ment, concomitant rituximab treatment, ADC target, and 
cancer type. Four patients had missing BWT. The BWT for 
these patients were imputed as the median BWT of the 
corresponding sex.

Covariates were initially explored in a univariate fashion 
both by inspection of the VPCs from the base model and by 
introducing covariates one by one to the base model assum-
ing proportional hazards. A full covariate model, including all 
covariates of interest except ADC target and cancer type, 
was also fit to the data to account for any correlations be-
tween covariates and to obtain accurate estimates of the im-
precision.35 In addition, backward elimination of insignificant 
covariates (P = 0.05) was performed to derive a final model. 
The different ADCs were studied in different cancer types, in-
cluding prostate cancer and ovarian cancer, which are gender 
specific. The ADC target and cancer type were hence con-
founded with each other and also with gender to some ex-
tent. The inclusion of these covariates simultaneously in the 
full model was hence not possible. The potential influence of 
the ADC target and cancer type was therefore assessed after 

(1)
dCtransit

dt
=Ktr ⋅CP(t)−Ktr ⋅Ctransit(t)

(2)
dCe

dt
=Ktr ⋅Ctransit(t)−Ktr ⋅Ce(t)

(3)Edrug(t)=α ⋅Ce(t)

(4)hbase(t)=β ⋅Edrug(t)
β
⋅ t

(β−1) (Weibull function)

Figure 1.  Model structure. The hazard in the time-to-event model is driven by individually predicted antibody–drug conjugate plasma 
concentrations (Cp). Transit and effect compartments were included to account for the slow initial event rate. The hazard was linearly 
related to the concentration in the effect compartment (Ce). In addition, a Weibull function on top of the drug effect on hazard is added 
for slight improvement over time. Covariates in the full and final models were included assuming proportional hazards  (Prop HZ).  
Ktr, first order transit rate; Ctransit, concentration in the transit compartment; PN, peripheral neuropathy. 
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developing a final covariate model based on the other covari-
ates. BWT was selected as the metric for body size for the 
initial full model and covariate screening. Body mass index 
(BMI) is correlated with BWT and was therefore explored after 
development of the final model. Case deletion diagnostics34 
by trial was performed based on the final model to investigate 
if any study was particularly influential and to understand if 
any of the derived relationships could result from differences 
between trials. The effects of baseline covariates were intro-
duced as proportional hazards as shown in Eq. 5.

where hbase(t) is the time varying hazard function described 
in Eq. 1. θage is the effect of age. θbwt is the effect of BWT. 

θALBU is the effect of ALBU (g/L). θECOG is the effect of ECOG 
status (>0 vs. 0). Θfemale is the effect of gender (female vs. 
male). θPPN is the effect of prior PN (yes/no); θDiabetes is the 
effect of diabetes (yes/no). θPriorChemo is the effect of prior 
chemotherapy treatment (yes/no), and θritux is the effect of 
combining with rituximab (yes/no).

RESULTS

A base model was developed (Figure 1) that accounted for 
dosing history and individually predicted drug concentra-
tions in plasma. It could describe the risk for developing 
PN over time as well as the exposure–response relationship 
(Figure 2). A univariate screen of baseline covariates of in-
terest suggested that prior PN, high BWT, and male gender 
were associated with an increased risk for PN (P < 0.05). 
These trends could also be seen by inspection of the VPCs 
when simulating from the base model (not shown). Results 

(5)

h(t)= hbase(t) ⋅exp (θage(age−65)+θbwt(BWT−75)

+θALBU(ALBU−4)+θECOG(ECOG)+θfemale(female)

+θPPN(PPN)+θDiabetes(Diabetes)

+θPriorChemo(PriorChemo)+θritux(ritux))

Figure 2.  Base model Kaplan–Meier visual predictive check for time to grade ≥ 2 peripheral neuropathy at different levels of average 
plasma concentrations (Cavg; ng/mL). Cavg was computed as the area under the curve up to the observed or simulated event divided 
by the time to the event. 

Cavg 70-100 Cavg  100-130

Cavg 40-70Cavg < 40

Cavg 130-170 Cavg   > 170
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based on the full model, including all covariates except 
target and cancer type, suggested that BWT and prior PN 
were the most important covariates. However, there was 
no effect of gender (Figure 3). The gender difference seen 
in the univariate screen was hence explained by the dif-
ferences in BWT between the male and female patients. 
Consistent with this finding, the final model, after backward 
elimination, only included prior PN and BWT. Obesity is a 
known risk factor for diabetic patients to develop PN.36 It 
was therefore of interest to explore if BMI rather than BWT 
was responsible for the increased risk. Replacing BWT with 
BMI in the final model, however, resulted in a poorer fit (ob-
jective function value (OFV) increased by 5.6) and could 
not explain the gender effect. A hazard ratio of around 1.5 
was seen for prior PN (yes/no) as well as for an increase in 
BWT of 30 kg. This finding was consistent for both the full 
and final models (Figure 3). The difference in the NONMEM 
OFV of 3.7 between the full and the final models was small 
considering that the full model contained five additional 
parameters. The parameter estimates of the full and final 
models were generally determined with an acceptable pre-
cision (Table 1, Table S1).

The VPCs based on the final model (Figure S1) illustrate 
that the initial delay in the onset of PN seen in the observed 

data is captured well by the model. The model performed 
well for weekly as well as for q3w dosing, although the 
number of patients on weekly dosing was limited. Model 
predictions for patients with BWT greater or less than 
75  kg with and without prior PN was also adequate  
(Figure S2).

The VPCs by tumor type/target based on the final model 
suggested that it could describe the individual tumor types 
well (Figure 4). Although the observed TTE was in the lower 
range predicted by the model for melanoma patients and 
in the upper range for ovarian patients, they are generally 
within the interval predicted by the model. Furthermore, the 
addition of molecular targets (six additional parameters) or 
tumor types (five additional parameters) to the final model 
resulted in OFV drops of 4.9 and 2.9, respectively, which are 
not significant (P ≫ 0.05) considering the additional degrees 
of freedom added. The final model was also evaluated by 
case deletion diagnostics to investigate the influence of trial 
differences on the derived covariate relationships. Similar 
estimates of the covariate effects of prior PN and BWT were 
seen regardless of what trial was deleted from the data set  
(Figure S3). This suggests that the identified covariate rela-
tionships were not primarily driven by differences between 
individual trials.

Figure 3.  Estimated hazard ratios (95% CI) for covariate effects based on full and final model. ALBU, albumin; CI, confidence interval; 
BWT, body weight; ECOG, Eastern Cooperative Oncology Group; PN, peripheral neuropathy. 

Table 1.  Parameter estimates of final model

Parameter (unit) Description Estimate SEa
RSEb

Ktr (1/day) Transit rate constant explaining delay in onset 0.0108   0.45

α Drug effect parameter 0.0000619   0.51

β Weibul function parameter 0.721   0.091

θbwt (1/kg) Effect of BWT on hazard 0.0145 0.0042  

θppn Effect of prior PN on hazard 0.434 0.15  

BWT, body weight; PN, peripheral neuropathy; RSE, relative standard error; SE, standard error. 
aEffects of covariates are estimated in the normal domain and can be negative, thus SE is presented. bModel parameters α, β, Ktr, are shown on normal scale 
but were estimated in the log domain. The RSE presented is the SE of the logged parameter that is approximately equal to the RSE of the parameter on the 
normal domain.
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The combined impact of dose, prior PN, BWT, and treat-
ment duration on the risk for developing PN at cycles 8 or 12 
is illustrated based on the final model in Figure 5.

Simulations were performed to explore dose capping and 
the flat dose as alternatives to dosing in proportion to BWT. 
As illustrated in Figure 6, capping the dose for heavy pa-
tients (>100 kg) only had a marginal benefit for the heaviest 
patients in terms of reduced PN risk compared with mg/kg 
dosing. When compared with BWT-based dosing (i.e., mg/kg),  
flat dosing did not change the overall risk for the population. 
It did, however, slightly increase the risk in lighter patients 
and slightly reduced the risk in the heavier patients. It should 
be noted that the risk was still higher in heavy patients de-
spite lower plasma drug exposures resulting from flat dosing.

DISCUSSION

PN is commonly observed with chemotherapeutic agents 
targeting microtubules and is also one of the most com-
mon adverse events in patients treated with the vc-MMAE 
ADCs. A new or worsening grade  ≥  2 PN, according to 
NCI-Common Terminology Criteria for Adverse Events 
(CTCAE) v4.0, is considered clinically significant, result-
ing in diminished quality of life in patients, and may lead 
to off-therapy worsening of neutrotoxic symptoms. It often 
necessitates dose interruptions, reductions, and/or early 
treatment discontinuations that in turn may have a nega-
tive impact on antitumor activity for potentially life-saving 
vc-MMAE ADCs. The availability of standardized data en-
abled the creation of an integrated data set (~700 patients) 
for the eight vc-MMAE ADCs across nine phase I and II 
clinical trials. This large database facilitated a comprehen-
sive analysis that improved the understanding of the risk 

for developing PN and the relation to dose and treatment 
duration. In addition, the influence of potential patient-spe-
cific demographic and pathophysiological factors on the 
development of the PN risk was assessed using the inte-
grated data set.

The present analysis showed that the ac-MMAE in plasma 
approached steady-state concentrations within the first 
cycle upon repeated q3w dosing. The incidence of grade ≥ 2 
PN was initially low and did not start to increase until around 
60  days following administration of the study drug, with a 
median time to onset of ~200 days. This suggested that pe-
ripheral nerve damage develops gradually, with a delayed 
onset for the manifestation of the PN symptoms. An effect 
compartment was incorporated in the model to enable a 
delay between initiation of treatment and increased risk 
for developing of grade ≥2 PN. The present modeling ap-
proach was restricted to modeling the onset of clinically rel-
evant grade ≥ 2 PN events. An understanding of the full-time 
course, i.e., onset and subsequent changes in severity and 
recovery of PN over time, would be of considerable interest to 
inform individual dose adjustments a posteriori to effectively 
manage the PN symptoms. However, given the limitations 
around the reliability of monitoring and reporting the severity 
of adverse event grade or resolution to the baseline grade in 
clinical trials, this was deemed not possible in the present 
analysis. To comprehensively characterize the time course 
of PN longitudinally, more focused efforts on the accurate 
recording of changes in adverse event grade are needed in 
the clinical assessment. Standardized clinical grading scales, 
patient-reported outcomes, and functional assessments fo-
cused on neuropathy could also be helpful in this respect.10

The observed exposure–response relationship was well 
captured by this model. It was explained using a linear 

Figure 4.  Kaplan–Meier visual predictive check for time to grade ≥ 2 peripheral neuropathy by cancer type. Based on the final model. 
CI, confidence interval.
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relationship between the ac-MMAE concentration in the 
effect compartment and the hazard, suggesting a gradual 
increase in the risk for grade  ≥  2 PN with an increase in 
drug exposure. Furthermore, the availability of the base TTE 
model, including the time course of the ac-MMAE systemic 
exposure enabled exploration of covariate effects on the PN 
risk after accounting for any difference in exposure.

Two patient-specific factors that influenced the risk for 
grade ≥ 2 PN were identified in the covariate analysis: prior 
PN and BWT. The importance of these factors seems to be 
of similar magnitude (Figure 3). The finding regarding prior 
PN was in line with several previous reports showing that 
patients with a preexisting neuropathy, either hereditary or 
acquired, were more susceptible to chemotherapy-induced 
neuropathies.37–39 Also, it is likely that patients with preex-
isting peripheral neuropathies have persisting nerve damage 
and therefore may experience increased sensitivity for the 
manifestation/progression of PN symptoms upon reinitiation 
of subsequent neurotoxic therapies. The presence of prior 
PN was identified based on the patient reporting recorded at 
the time of study entry. It has been proposed that PN is un-
derreported by patients and underrecognized by doctors.40 
A careful objective neurophysiological assessment suitable 
for clinical use at screening, i.e., before the initiation of the 

ADC treatment, might be more reliable in identifying patients 
with preexisting peripheral neuropathies with an increased 
risk for developing PN.

BWT was the second identified covariate that influenced 
the risk for PN. Higher ADC plasma concentrations in heavier 
patients relative to lighter BWT patients were observed when 
dosing in proportion to BWT.20 The increased exposure in 
heavier patients resulting from mg/kg dosing was, however, 
not sufficient to explain the impact of BWT on the risk for 
developing PN. Instead, BWT appeared to be a risk factor 
independent of drug exposure. In fact, the model predicts a 
higher incidence of grade 2 PN in heavy compared with light 
patients even when flat dosing (180 mg) was applied, de-
spite the lower exposure in heavier patients (Figure 6). The 
inclusion of BWT in the model also explained the apparent 
gender effect observed during the univariate screening of the 
covariates during the model development, suggesting that 
the observed gender difference resulted from a difference in 
body size. Diabetes and obesity have been reported to be 
associated with PN risk in published studies41 and were also 
correlated to BWT. It was therefore of interest to explore if 
BMI and diabetes rather than BWT were responsible for the 
increased risk. Replacing BWT with BMI in the final model, 
however, resulted in a poorer fit based on objective function 

Figure 5.  Model-predicted probability of being event free (grade ≥ 2 PN) at 8 and 12 cycles for patients given a dosing regimen every 
3 weeks at doses ranging from 1–3.5 mg/kg. Predictions are derived for patients with a BWT of 50 kg and 100 kg without (0) or with 
(1) prior PN. Shaded areas are the 90% CI, derived based on a nonparametric bootstrap (N = 200). BWT, body weight; CI, confidence 
interval; PN, peripheral neuropathy.
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value and also could not explain the apparent gender effect. 
In addition, the estimated effect of BWT was not influenced 
by inclusion of diabetes as a covariate in the model. Hence, 
taken together, our analysis suggests that the increased risk 
associated with a high BWT may be related to the length and 
surface area of the axonal nerve fibers42 being available for 
the ADC exposure rather than obesity-induced inflammation 
or diabetes. It is also possible that a combination of these 
effects is in play.

After accounting for the dose, treatment duration, and 
covariates such as prior PN and BWT, no substantial dif-
ferences in PN risk between the tested vc-MMAE ADCs/
molecular targets/cancer types were identified, suggesting 
that the effect was nonspecific and not related to target or 
tumor type. The observed time to event was in the lower 
range predicted by the model for melanoma patients and in 
the upper range for ovarian patients. These trends may be 
the result of random variations between studies rather than 
an actual difference.

Following the evaluation of the performance of the de-
veloped TTE model for predicting PN risk, simulations were 
performed to evaluate (i) the impact of ADC dose and treat-
ment duration on the incidence of PN risk in patients with 
and without the prior PN and (ii) the impact of flat, BWT-
based dosing or dose capping to minimize the PN risk and/
or inform clinical eligibility.

As illustrated in Figure 6, heavier patients with prior inci-
dence of PN before treatment initiation are at a greater risk 

of developing grade ≥ 2 PN following ADC administration, 
thereby warranting careful monitoring of PN symptoms in 
such patients. In addition, a shorter treatment duration (e.g., 
limited to eight cycles) or a lower dose intensity may be con-
sidered to reduce the risk of treatment induced PN.

Although flat dosing is not likely to reduce the over-
all PN incidence in the patient population as a whole, the 
simulations (Figures 5 and 6) suggest that it is possible to 
treat lighter weight patients for a longer duration and/or at 
a higher mg/kg dose when compared with heavier patients 
with acceptable risk for PN, thereby potentially improving 
efficacy in these patients. PN risk predictions for dose cap-
ping at 100  kg was comparable to the predicted PN risk 
following the administration of the BWT-based ADC dosing 
in the heavier patients. Hence, capping the dose at a BWT 
of 100 kg was likely to have a minimal impact on lowering 
the PN risk in the heavier patients (>100 kg) as illustrated in 
Figure 6.

In conclusion, a TTE model of PN was developed based 
on a large data set . It could be used to make predictions of 
the PN risk accounting for treatment duration, prior PN, and 
BWT, thus enabling an individualized dose/schedule selec-
tion for the vc-MMAE–containing ADCs. Our modeling effort 
was limited to the PN risk. A careful evaluation of the dose/
schedule for individual molecules or patients also needs to 
consider efficacy as well as other safety aspects to opti-
mize the benefit–risk balance of novel therapies for cancer 
patients.

Figure 6.  Influence of different body weight (BWT)-based dosing strategies on the probability of being event free vs. time (a) or vs. 
BWT at cycle 8 (b). Dosing strategies explored were 2.4, 2.4 mg/kg dosing but capping the dose at a BWT of 100 kg (dose = 240 mg), 
and flat dosing of 180 mg (2.4 mg/kg*75 kg) to all patients. All doses were given every 3 weeks. The simulations were based on patients 
with prior peripheral neuropathy and a BWT distribution similar to what was observed in the study. The simulation also accounted for 
the effect of BWT on the pharmacokinetics.
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Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Figure S1. Kaplan–Meier visual predictive check illustrating goodness 
of fit for weekly (qw) and every 3 weeks (q3w) dosing.
Figure S2. Kaplan–Meier visual predictive check illustrating goodness 
of fit for patients with low (<75 kg) and high (≥75 kg) body weight (BWT) 
with and without prior peripheral neuropathy (PN).
Figure S3. Case deletion diagnostics by study based on final model. 
Estimated hazard ratios (95% CI) for BWT (upper figure) and Prior PN 
(lower figure). BWT, body weight; CI, confidence interval; PN, peripheral 
neuropathy.
Table S1. Parameter estimates of full model.
Table S2. Drug target, cancer type, and key covariate summary of the 
trials included in the analysis.
nonmem Model Code.
Data Set.
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