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Simple Summary: Osteosarcoma is the predominant form of primary bone cancer and outcomes
for patients with metastatic disease have not improved for several decades. Recent genomic and
pharmacological studies have implicated dysregulated histone deacetylases as druggable targets
to treat several types of cancers, including osteosarcoma. This study aimed to assess the inhibitory
effects of 45C-202, a next-generation inhibitor for class I histone deacetylases, on human osteosarcoma
cell growth in vitro and in vivo. We demonstrated that the anti-tumor effect of 45C-202 involves
combined cell-cycle arrest and apoptosis, as well as a reduction in cell invasion and migration. More-
over, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression
in vitro. Additionally, 4SC-202 decreased tumor growth of established human tumor xenografts in
immunodeficient mice in vivo. Our study suggests that 45C-202 may be exploited as a valuable drug
to promote more effective treatment of patients.

Abstract: Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of
human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target.
Domatinostat (4SC-202) is a next-generation class  HDAC inhibitor that is currently being used in
clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In
this study, we report that 45C-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing
cell function in vitro, we show that the anti-tumor effect of 45C-202 involves the combined induction
of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion
and migration capabilities. We also found that 45C-202 has little capacity to promote osteogenic
differentiation. Remarkably, 45C-202 revised the global transcriptome and induced distinct signatures
of gene expression in vitro. Moreover, 45C-202 decreased tumor growth of established human tumor
xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 45C-202 that
contribute to tumor cell growth and survival, and canonical signaling pathways associated with
progression and metastasis of osteosarcoma. Our study suggests that 45C-202 may be exploited as
a valuable drug to promote more effective treatment of patients with osteosarcoma and provide
molecular insights into the mechanism of action of class I HDAC inhibitors.
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1. Introduction

Osteosarcoma (OS) is the most common primary bone cancer that mainly occurs in
children, adolescents, and young adults. In the past 40 years, the five-year survival rate has
stagnated as standard patient care procedures, including multi-agent chemotherapy and
surgery, have remained relatively unchanged [1]. In addition to the devastating side effects
and social-emotional consequences of the rigorous treatment, additional complications
include the need for prostheses after surgical amputation [2]. OS metastasis and chemore-
sistance are the key clinical factors leading to a low five-year survival rate of approximately
30% in patients with remote involvement [3—6]. Recent studies have shown that tumor
suppressor and/or oncogene mutations, copy number alterations, fusion genes, and epi-
genetic dysregulation may lead to tumor formation, cancer metastasis, and multidrug
resistance [7-11]. These distinct characteristics may pose as vulnerabilities that can be
exploited as treatment targets. These findings require urgent investigations to explore the
vulnerabilities outlined above in order to develop or repurpose second-line drugs that can
improve patient survival.

Epigenetic dysregulation is an evolving hallmark of cancer and results from aberrant
epigenetic regulators (such as writers, readers, and erasers) that modify histone and nonhis-
tone proteins to balance the transcription of tumor suppressor genes and oncogenes [12,13].
Recently, aberrant, or dysregulated, epigenetic regulators are overwhelmingly discovered
by next-generation sequencing studies in OS samples [5,6,14-19]. Targeting dysregulated
erasers such as histone deacetylases (HDACs) can reinstate the epigenetic homeostasis
from an abnormal epigenetic landscape and, as a result, they are emerging as druggable
targets to treat several types of cancers, including osteosarcoma [1,6,11,20].

There are 18 unique human HDAC isoforms, which contain evolutionarily conserved
catalytic domains that trace back to bacteria and yeast [21]. HDACs enzymatically remove
acetyl groups (CH3CO-) from e-amino groups of histone lysine residues within multi-
protein complexes, which enables chromatin condensation and transcriptional repression
and/or activation, and affects the stability and cellular location of non-histone proteins
such as master transcription factor RUNX2, a key regulator of gene expression in normal
bone and OS cells [22-24]. They can be categorized into four classes (I-1V) according
to their domain organization, sequence, and functional similarity [25]. Class I retains
four isoforms (HDACs 1, 2, 3, and 8), which are primarily located in the nucleus and are
broadly expressed in most tissues. Class II retains six isoforms (HDACs 4, 5, 6, 7, 9 and
10), which shuttle between the cytoplasm and nucleus with a tissue-restricted pattern of
gene expression. Class III retains seven isoforms (SIRTs 1-7), which may be located within
the nucleus, cytoplasm, or mitochondria. Class IV retains one isoform (HDAC11), which
is the least studied enzyme and shares similarities with the catalytic domains of classes
I and II. Moreover, the catalytic function of classes I, II, and IV, dubbed the “classical”
isoforms, depends on a cofactor zinc ion (Zn?*), whereas class IIl depends on the coenzyme
nicotinamide adenine dinucleotide (NAD*) [22]. It is worth noting that small chemical
inhibitors to HDACs have been designed and developed to chelate cofactor Zn?* to prevent
the accessibility of the active site from other complex components near the active site. These
inhibitors can be classified into two groups. One is those with broad-spectrum inhibitory
ability to HDACs, collectively named pan-HDAC inhibitors (or pan-HDACi), which can
block the enzymatic function of two or more classes of isoforms. The other is those with
an ability to selectively block one class or one isoform of HDACs, which are collectively
named selective HDACi [26].

In skeletal development, HDACs promote endochondral and intramembranous os-
sification through regulating the expression of crucial genes and signaling pathways as
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well as mediating cell differentiation and survival of bone cells including osteoblasts,
from which OS tumor arises [25,27]. For example, class I HDACs share 45-94% of amino
acid sequence similarity, resulting in redundant cellular functions in development and
adult tissue homeostasis. The co-expression pattern and overlapping roles of HDAC1
and HDAC?2 have been reported in several cell types, including podocytes, cardiac, and
osteoblasts [23,25,28-30]. In addition, HDAC1 and HDAC3 have been shown to physically
interact with RUNX2 to regulate gene transcription in osteoblasts and chondrocytes [29,31].
The significantly elevated expression levels of HDAC1, HDAC2, and HDAC3 (HDAC1-3)
have also been reported in several human OS cell lines and primary and metastatic tumor
samples [11,32,33]. Therefore, the application of a selective inhibitor that can specifically
target HDAC1-3 may lead to high-quality therapies with better efficacy and lower toxicity.

Since FDA approval of vorinostat, the first HDAC], to treat patients with cutaneous
T-cell lymphoma in 2006, several pan- and selective HDAC inhibitors have been developed
and applied to the treatment of hematological malignancies [6,34]. Currently, HDACi
drugs have not been approved for the treatment of solid tumors, including OS patients [6].
Additionally, a limited number of OS cases have been included in several completed
and active clinical trials constructed for solid tumors, but no clinical trials have been
specifically designed to study the disease (https://www.clinicaltrials.gov (accessed on
23 March 2021). For example, in a phase I trial study, only one OS patient was included
and treated with a combination of vorinostat and bortezomib, but did not have a re-
sponse [35]. A preclinical study using vorinostat showed modest inhibitory activity in
OS cells and no objective responses for OS xenografts [36]. However, many more newly
developed HDAC] agents have recently been studied using established human OS cell
lines. According to the chemical structures of HDAC], they can be categorized into four
groups: (a) hydroxamic acids (e.g., vorinostat/SAHA [37-45], AR42 [46], trichostatin
A/TSA [33,47-55], quisinostat [56-58], panobinostat/ LBH589 [11,57-60], abexinostat [61],
MC 1742 [62], and tubacin [63]), (b) short-chain fatty acids (e.g., valproate/VPA [64-71]
and butyrate/NaB [72,73]), (c) benzamides (e.g., entinostat/MS-275 [74-77]), and (d) cyclic
peptide (e.g., romidepsin/FK228 [11,58,60,78-82] and apicidin [80]). The latter two typi-
cally are considered selective HDACi. Hence, given the lack of clinical application and the
paucity of information studying current HDAC] in OS, the development and investigation
of novel HDACi agents, especially selective-HDACI, are urgently needed.

45C-202 (domatinostat), which is a recently developed small molecule that selectively
targets class | HDACsS, has been studied in several types of cancer, including urothelial
carcinoma, squamous cell carcinoma, myelodysplastic syndrome, cutaneous T-cell lym-
phoma, cholangiocarcinoma, hepatocellular carcinoma, colorectal cancer, medulloblastoma,
pancreatic cancer, and Merkel cell carcinoma [83-93]. Its safety and antitumor activity were
established in a phase I study as a monotherapy for adult patients with hematological
malignancies [94]. It is currently being tested in several clinical trials in the treatment of
patients with hematologic malignancies and solid tumors (ClinicalTrials.gov Identifier:
NCT04874831, NCT04393753, NCT04871594, NCT04133948 and NCT03812796). Prior to
this study, 45C-202 had not been examined for the treatment of OS. In our proof-of-concept
study, we applied SJSA-1 and hFOB 1.19 cell lines to investigate global transcriptomic
changes and drug effects of 45C-202 in vitro and in vivo. We chose SJSA-1 because it is
an established human OS cell line [95] that has been used to examine pan-HDACi drugs
including, panobinostat and vorinostat [37,46,57,96], whereas hFOB 1.19 (hFOB) is an im-
mortalized cell line derived from normal human fetal osteoblastic cells [97], which has been
frequently applied in parallel to examine pan-HDACi including vorinostat, trichostatin A,
and panobinostat [33,97,98].

2. Materials and Methods
2.1. Cell Culture and Treatment

For this study all cell lines, including human osteosarcoma SJSA-1 (CRL-2098) and
the human immortalized osteoblast hFOB 1.19 (ATCC, CRL-11372), were purchased from


https://www.clinicaltrials.gov

Cancers 2021, 13, 4199

40f24

the American Type Culture Collection (ATCC, Manassas, VA, USA). SJSA-1 and hFOB
1.19 were grown in a humidified chamber containing 5% CO, and cultured in a growth
medium (HyClone™ MEM-« medium, Marlborough, MA, USA, SH30265FS) containing
10% fetal bovine serum (Fisher Scientific, Waltham, MA, USA, ES009B) and 1% HyClone™
penicillin-streptomycin (Cytiva, SV30010). However, the hFOB 1.19 cell line media also
contained 0.3 mg/mL G418 (Fisher Scientific, 10-131-035) and was maintained at 34 °C, as
per ATCC protocol. Cells in 100 mm tissue culture dishes (Fisher Scientific, 430167) were
treated with 1 uM 45C-202 (Adooq Bioscience, Irvine, CA, USA, A14354-25) for 24 h unless
differently stated. The corresponding amount of DMSO (vehicle) was used as a control. All
assays were performed at 37 °C.

2.2. Western Blot Analysis

Western blotting analysis was performed as described previously [99,100]. Cells
were briefly lysed with 1x Laemmli Sample Buffer solution (BioRad, Hercules, CA, USA,
1610737), boiled for 5 min to 95 °C, and sonicated. Lysates were separated on 4-20% Mini-
PROTEAN® TGX™ Precast Protein Gels (BioRad, 4561094) and transferred onto a PVDF
membrane (BioRad, 1704272) using a semi-dry method of transfer (Bio-Rad Trans-blot
Turbo system). The transferred blots were probed overnight with one of the follow-
ing primary antibodies: rabbit anti-H3K4Me2 antibody (Diagenode, Denville, NJ, USA,
C15200151), H3K27Ac (Diagenode, C15410196), rabbit anti-B-ACTIN (Li-Cor, 926-42210),
JAG2 (Cell Signaling, #2205, C83A8), NOTCHS3 (Proteintech, Chicago, IL, USA, 55114-1-
AP), or NOTCH4 (Abcam, Cambridge, MA, USA, ab184742) primary antibodies. After
incubation with IRDye 800 goat anti-rabbit (Li-Cor, Lincoln, NE, USA, 925-32211) and
IRDye 680 goat anti-rabbit (Li-Cor, 925-68071) secondary antibodies (1:10,000) in 10% adult
bovine serum blocking buffer was placed on a rocker for 1 h at room temperature. After
several washes in 1XTBST, the protein signal was visualized on an Odyssey imaging system
(Li-Cor, Lincoln, NE, USA) and quantified using (3-actin as a normalizer with the optical
density (OD) function of Image ] software (NIH, Bethesda, MD, USA).

2.3. Cell Viability and Colony Formation Assays

The cell proliferation and viability assay was performed using a CCK-8 kit (Dojindo
Molecular Technologies, CK04-11, Kumamoto, Japan) according to the manufacturer’s
instructions and assays were performed at least three times. Cells were seeded into a 96-well
plate (Fisher Scientific, N8010560) at a density of 6250 cells per well as five replicates. A
black control was also used, which only contained media and no cells. Cells were treated
with increasing concentrations of 45C-202 (or vehicle) for 24, 48, and 72 h, with media
and/or treatment replacement after 24 and 48 h for the latter time points, respectively.
hFOB 1.19 was treated with increasing concentrations of 45C-202 (or vehicle) for 72 h with
media changes every 24 h. Once the wells reached the treatment time point, 10 uL of the
CCK-8 was added to each condition, including negative controls, and incubated for 1 h at
37 °Cin 5% COy. The OD at 450 nm of each well was then read using a Cytation3. Statistical
significance comparing each treated group to the control was analyzed using GraphPad
software with one-way ANOVA (Holm method). For the colony formation assay [99,101],
1000 cells/mL were seeded into 6-well plates. After attachment to the wells, the cells
underwent media changes with or without treatment with indicated concentrations of
4SC-202 every 2-3 days for about two weeks or until visible clonal colonies formed. The
wells were washed with PBS, fixed with 10% formalin, and stained with 0.5% Crystal Violet
solution at the endpoint of this study.

2.4. Wound Healing Assay

To investigate 45C-202-induced inhibition of cell migration, a wound-healing (i.e., in vitro
scratch) assay was performed as we previously reported [99,100]. Cells were seeded into
6-well plates (Fisher Scientific, 353046) and grown to confluence. A vertical and horizontal
cross-shaped scratch was made using a 2-2000 pL pipette tip on the monolayer of confluent
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cells. Dislodged cells and debris were removed by washing the cells three times with PBS.
Fresh medium containing 1 uM 4SC-202 or DMSO vehicle was added (t = 0), and images
were taken where the two scratch lines met using an upright Olympus IX71 microscope.
After the indicated incubation time with either vehicle or drug treatment, the same area
was photographed again. Scratched areas at the initial and final time points were quantified
using the NIH Image] software (Bethesda, MD, USA). The percentage of relative wound
healing was expressed according to the following formula: ((initial scratched area, 45C-202
added) — (resulting scratched area, 45C-202 added))/((initial scratched area, vehicle added)
— (resulting scratched area, vehicle added)) x 100.

2.5. Boyden Chamber-Based Cell Migration and Invasion Assays

The in vitro Boyden migration and invasion assays were performed and modified
using 8 pm pore-sized cell-culture inserts (Falcon, 08-771-21) into wells of a 24-well plate
as previously reported [100]. Briefly, the cells were serum-started overnight with cul-
ture media containing either 45C-202 or vehicle. Wells of a 24 well-plate were filled
with culture medium containing 10% FBS prior to loading the cells at a concentration of
4 x 10* cells/well into the upper compartment of the chamber (i.e., inside the cell-culture
insert). For the invasion assay, the membrane at the bottom of the insert was coated with a
layer of 0.2 mg/mL Matrigel overnight prior to the addition of the cells (Fisher Scientific,
CB354248). After 24 h, the upper compartment was washed and fixed in 10% formalin.
Cells that traveled through the insert remained and were visualized by staining with
Crystal Violet (Fisher Scientific, C581-25). Any remaining cells on the upper surface of the
insert were removed with a Q-tip, and the plate with inserts was then imaged. The dye
from the cells was then extracted using 33% acetic acid (Fisher Scientific, A385-212) and
the OD was quantified on a Cytation3 at a wavelength of 570 nm. The OD of the extracted
stain was used to determine the relative number of cells that invaded the gel barrier and
passed through the insert’s pores.

2.6. Osteoblast Differentiation Assay

The osteoblast differentiation approach and quantification were completed according
to the modified procedure described previously [100,102]. Cells were cultured to approach
confluence in a 12-well plate (Fisher Scientific, 353043) and then treated with appropriate
media. The osteoblast differentiation (OB diff) medium used contained 50 uM ascorbic
acid (Cayman Chemical, Ann Arbor, MI, USA, 16457), 100 nM dexamethasone (Cayman
Chemical, 11015), and 10 mM (-glycerophosphate (BGP) (Cayman Chemical, 14405). The
assay was performed over 14 days, with a medium change every three days. At the
endpoint, the cells were gently washed, fixed in 10% formalin, and stained to visualize
calcium deposits with 40 mM Alizarin Red S (ARS) pH 4.2 (Sigma, St. Louis, MO, USA,
Ab5533-25G). Images were taken with an upright microscope (Olympus, Center Valley, PA,
USA, IX71). To quantify the staining, ARS was dissolved with 10% (w/v) cetylpyridinium
chloride in 10 mM sodium phosphate (pH 7.0) on a rocker for approximately 3 h. Equal
volumes of the extracted solution were measured on a Cytation 3 (BioTek, Crawfordsville,
IN, USA) at 562 nm. Statistical significance comparing among groups was analyzed using
GraphPad software with two-way ANOVA (Tukey method).

2.7. Analysis of Cell Cycle and Apoptosis by Flow Cytometry

The cells were seeded into a 10 cm dish, allowed to reach 70% confluence, and then
treated with DMSO vehicle or 1 uM 4SC-202 for 24 h. The media and adherent cells were
pooled together into a single-cell suspension. For cell-cycle analysis, single-cell suspensions
were pelleted and washed at room temperature twice with 1 x phosphate buffered saline
(PBS), fixed in 66% ethanol for 1 h, then rehydrated in 1x PBS. In order to ensure only
DNA was being measured, the cells were incubated for 30 min with RNAse A (Qiagen,
Germantown, MD, USA, 19101), followed by 1 x PBS and 50 pg/mL propidium iodide in
the dark. The PI was excited at 561 nm, the emission spectrum was detected through a
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595 LP (longpass) mirror and 610/20 bandpass filter, and results were generated using a
BD Fortessa system (Becton Dickinson, Franklin Lakes, NJ, USA). The data were analyzed
using Flow]o v10.6 software (FlowJo, Ashland, OR, USA). For the apoptosis assay, single-
cell suspensions were pelleted and washed twice with ice-cold 1x PBS and resuspended
in 500 pL cold 1x binding buffer (25 mM HEPES, 1 mM EDTA, 2% FBS, 1% Pen/strep).
After the cells were incubated with 5 ul. Annexin V-FITC (Fisher Scientific, BDB560931)
and 50 ug/mL propidium iodide (PI) for 15 min in the dark, they were analyzed by flow
cytometry on a BD Fortessa system (Becton Dickinson, Franklin Lakes, NJ, USA). The FITC
was excited at 488 nm and the emission spectrum was detected through a 495 LP (longpass)
mirror and 530/30 bandpass filter, then analyzed by the BD FACSDiva v6.0 software.
DMSO- and 4SC-202-treated groups were performed in triplicate with the following control
groups: PI only, Annexin V-FITC only, and treatment only.

2.8. RNA Sequencing, Pathway Analysis, and Data Availability

Total RNA was isolated using a PureLink® RNA Mini Kit (ThermoFisher Scientific,
Waltham, MA, USA, 12183018A) according to the manufacturer’s instructions. RNA concen-
tration and purity were measured by Thermo Scientific™ NanoDrop™ spectrophotometers.
RNA integrity was measured on a Bioanalyzer 2100 with RNA 6000 Nano Labchips (Agi-
lent Technologies Ireland, Dublin, Ireland). Twelve RNA samples with an RNA integrity
number >8.0 were used for RNA cleanup, library preparation, and sequencing by Novo-
gene according to the procedure and protocols of the company (Novogene Corporation,
Sacramento, CA, USA). In short, according to the manufacturer’s protocol, 1 ug RNA was
used for cDNA library construction using a NEBNext® Ul-tra™ II RNA Library Prep Kit for
Mlumina® (NEB #E7770). The mRNA was enriched with oligo(dT) beads, followed by two
rounds of purification and random fragmentation by adding fragmentation buffer. We used
random hexamer primers to synthesize the first-strand cDNA, and then added customized
second-strand synthesis buffer (Illumina), dNTP, RNase H, and DNA polymerase I to
generate the second strand (ds cDNA). After a series of end repair, polyadenylation, and
sequencing linker connection, the double-stranded cDNA library was completed by size
selection and PCR enrichment. The 250-350 bp insert library was quantified using a Qubit
2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. We
used NGS3K to analyze the size distribution. Qualified libraries were sequenced on an
Nlumina platform using a paired-end 150 run (2 x 150 bases). The high-quality reads
from 27.5 to 31.5 million were generated from each library. Paired-end reads were aligned
to the human genome (GRCh37) and annotated with GENCODE gene annotation (v32)
using STAR.

Raw counts were estimated with the option set (—quantMode GeneCounts) in STAR.
Differential expression (DE) analysis were performed using the R [103] package DE-
Seq2 [104]. DE genes were identified based on cutoff values of 0.05 for adjusted p-value
and/or log2-fold-change. To account for gene length bias, gene ontology and KEGG
pathway enrichment analysis were conducted using R package goseq [105]. The
Benjamini-Hochberg correction for multiple testing in enrichment was used and path-
ways with adjusted p-values less than 0.05 were declared significant [106]. The principal
component analysis (PCA) plots and heatmaps of Euclidean distances among samples are
based on the expression data and using DESeq2 [104]. Heatmaps of the top varying genes
in each experiment were produced using the R package pheatmap [107]. The number of
fragments per kilo base per million mapped reads (FPKM) was calculated for each sample
to help visualize expression patterns for each unigene between the treated and untreated
samples. Additional functional annotation, pathways, and gene network analyses were
performed by IPA (Ingenuity Pathways Analysis, http:/ /www.ingenuity.com/ (accessed
on 11 December 2020) with default parameters.

All RNA-seq experiments were performed in at least three biological replicates under
each condition. The raw sequence data of RNA-seq generated in this study are stored in the
National Center for Biotechnology Information (NCBI) sequence reading archive database
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(accession numbers: SRR14772115 to SRR14772126). All other data can be obtained from
the corresponding author upon reasonable request.

2.9. In Vivo Studies

Athymic nude female mice (stock #002019) were purchased from Jackson Laboratory
(Bar Harbor, ME, USA). Before transplant, SJSA-1 cells were harvested, washed, and resus-
pended in serum-free MEM-alpha media. Nude mice (6-8 weeks old) were anesthetized
by isoflurane inhalation (3%). Mice were injected subcutaneously to the rear flank with
250 uL of cell suspension (5 x 106 cells/ injection) using a 27G needle (1 = 16). Once the
tumor size reached an average volume of around 60 cubic millimeters, the mice were
randomly divided into two groups, control and treatment, and treated with either vehicle
(10% DMSO + 45% PEG400) or 45C-202 (50 mg/kg/d) via intraperitoneal injections daily
for 16 days. Mouse body weight was measured daily. Tumor size was measured using
digital calipers, and volumes were calculated according to the formula, tumor volume
(cubic millimeter) = (Width x Width x Length)/2. The mice were housed in a specific
pathogen-free facility under controlled conditions of light, temperature, and humidity.

2.10. Statistical Analysis

Data were analyzed using Student’s t-test, or one-way (Holm method) or two-way
ANOVA (Tukey method) accordingly (GraphPad Prism, GraphPad Software, Inc., La Jolla,
CA, USA). A p-value less than or equal to 0.05 was considered statistically significant. All
data unless otherwise specified are expressed as mean =+ standard deviation.

3. Results
3.1. HDAC1-3 Have the Highest Expression among All Isoforms in Human OS Cells

To have a clearer understanding of the relative expression levels of class I HDACs,
other HDAC isoforms, and the status of gene expression in the entire transcriptome of
untreated cells, we first performed a next-generation RNA sequencing (RNA-seq) analysis.
We found that HDAC1, HDAC2, and HDAC3 have much higher gene expression than
other isoforms in SJSA-1 OS cells, as well as hFOB cells (Figures 1A and 2A). Previous
research showed that 45C-202 is a selective benzamide-type HDACi-targeting class IHDAC
(Figure S1A,B) with a higher specificity (lower inhibitory constant (Ki) values) for HDAC1
(14.8 nM), HDAC2 (38.8 nM), and HDACS3 (27.9 nM) than other isoforms and lysine-specific
histone demethylase 1A (LSD1) (Ki values > 1800 nM) [94]. These data prompted us to
further examine the potential therapeutic effects of this newly developed drug in human OS
cells. Thus, our data suggest that SJSA-1 together with hFOB are the prominent candidate
cell lines to examine the repressive consequences of 45C-202.

3.2. 45C-202 Impairs Human Osteosarcoma Cell Growth and Clonogenicity In Vitro

To investigate the anti-proliferative effects of 45C-202 in OS in vitro, we cultured SJSA-
1 cells in the presence of different concentrations (0.1 to 25 uM) of 45C-202. Treatment with
45C-202 resulted in a dose-dependent inhibitory effect on cell growth at 24 h (h) (Figure 1B).
Among five concentrations, 1 uM or higher of the drug was enough to suppress the cell
viability and proliferation in a time-dependent fashion (24, 48, and 72 h) (Figure S1C,D).
Moreover, a similar effect was observed in hFOB 1.19 cells that could be attributed to
their high proliferation rate (Figure 2B and Figure S1E,F). To assess the activity of 45C-202
in altering acetylation and methylation of histone proteins, we cultured the cells in the
absence or presence of 1 pM 45C-202 for 24 h and then harvested them for Western blotting
analysis to detect acetylated histone 3 (Ac-H3), a substrate of HDACs, and demethylated
H3K4Me?2, a substrate of LSD1. As shown in Figures 1 and 2, Ac-H3 protein expression
was significantly increased, whereas a change in H3K4Me2 expression was not detected in
SJSA-1 cells (Figure 1C,D and Figure S2E,G) or hFOB cells (Figure 2C,D and Figure S2EH).
We also observed an increase in H3K27Ac protein level in a dose-dependent manner to
respond to 45C-202 treatment in SJSA-1 and hFOB cells (Figure S2A-D). Notably, the
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mRNA levels of class I HDACs in the presence of 1 uM 45C-202 for 24 h were also altered,
likely due to a compensatory mechanism (Figures 1A and 2A). Our data suggest that
45C-202 impairs human osteosarcoma cell growth in vitro through the inhibition of the
activity of HDACs.

To examine the long-term effect of 45C-202 on cell growth and clonogenicity in vitro,
we performed a colony formation assay, which can detect the ability of a single cell to grow
into a colony (>50 cells) by clonal expansion under drug selection. Crystal violet staining
clearly showed that a 14-day treatment with 4SC-202 at concentrations ranging from 1
to 25 uM significantly inhibited proliferative SJSA-1 colonies, indicating an inhibitory
effect on cell growth and clonogenicity (Figure 3A). Notably, we also observed remnant
cells or small clones (<50 cells), which implies cancer cell survival and drug resistance
after treatment with 45C-202 at this concentration (Figure 3B). Moreover, the clonogenicity
of hFOB 1.19 cells was also strongly inhibited by 1 uM 4SC-202 treatment for 14 days
(Figure 3A,B). Since clonogenic activity is a sensitive indicator of capacity for renewal
of cancer stem cells (CSCs) and drug resistance, this result implies that HDACs may be
required for maintenance of CSC numbers and resistance of chemotherapy drugs in OS
tumor tissues. Altogether, 1 uM 4SC-202 was an effective concentration in both cell lines
and was therefore applied for all further experiments in this study.
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Figure 1. Impact of selective pharmacological inhibition of class I histone deacetylases with 4SC-202
on human SJSA-1 OS cells. (A) Gene expression of 18 histone deacetylases (HDACsS) in SJSA-1
cells. Average FPKM (i.e., fragments per kilo base per million mapped reads) values generated
from RNA-seq analysis of indicated genes from 3 samples treated with DMSO vehicle (dark bar)
and 3 samples treated with 45C-202 (grey bar). (B) 45C-202 effect on cell proliferation and viability
treated with increased concentration of 45C-202 for 24 h. Statistical significance comparing each
treated group to the control was analyzed using GraphPad software with one-way ANOVA (Holm
method). (C) Representative Western blot analysis of Ac-H3 and 3-ACTIN in DMSO-treated and
45C-202-treated conditions in OS cells. (D) Densitometric quantification of the blots of protein band
intensity of Ac-H3 normalized to housekeeping 3-ACTIN bands. Number of asterisks indicates level
of statistical significance between groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are
presented as mean (SD).
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Figure 2. Impact of selective pharmacological inhibition of class I histone deacetylases with 4SC-202
on human hFOB 1.19 cells. (A) Gene expression of 18 histone deacetylases (HDACs) in hFOB 1.19
cells. Average FPKM (i.e., fragments per kilo base per million mapped reads) values generated
from RNA-seq analysis of indicated genes from 3 samples treated with DMSO vehicle (dark bar)
and 3 samples treated with 45C-202 (grey bar). (B) 45C-202 effect on cell proliferation and viability.
Statistical significance comparing each treated group to the control was analyzed using GraphPad
software with one-way ANOVA (Holm method). (C) Representative Western blot analysis of Ac-H3
and B-ACTIN at DMSO-treated and 4SC-202-treated conditions in bone cells. (D) Densitometric
quantification of the blots of protein band intensity of Ac-H3 normalized to housekeeping -ACTIN
bands. Number of asterisks indicates level of statistical significance between groups. * p < 0.05,
**p <0.01, ** p < 0.001. Data are presented as mean (SD).
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Figure 3. Effect of 45C-202 on colony formation and wound healing. (A) Representative images of crystal violet-stained
colonies in wells from SJSA-1 (top panel) and hFOB 1.19 cells (bottom left). Cells were treated with indicated concentrations
of 45C-202 or DMSO vehicle for 14 days. (B) Representative images of colonies under microscope with 2x objective
magnification. (C) Representative images of wound healing at indicated hours after the mechanical scratch under 10x
objective magnification from SJSA-1 (top panel) and hFOB 1.19 cells (bottom). Left: vehicle, right: treated with 45C-202.
The white and blue lines indicate the edges of the wounded area. (D) Quantitative analysis of the wound healing area after
the scratch. Wound healing area of vehicle-treated cells is defined as 100% versus areas of drug-treated cells (*** p < 0.001).
Data are presented as mean (SD).
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3.3. Cell Migration and Invasion In Vitro Are Partially Suppressed by 45C-202

To dissect the effects of 45C-202 on cell migration, we first performed a wound-healing
assay. After 17 h, 45C-202-treated SJSA-1 and hFOB 1.19 cells migrated significantly less
than those treated with vehicle DMSO control (Figure 3C,D). A Boyden chamber-based cell
migration system was applied to further examine this phenomenon of migration suppres-
sion under 45C-202 treatment. Cells were serum-starved for 16 h to minify the contribution
from cell proliferation before seeding into the trans-well chamber. Quantification of cells
able to travel through the pores showed an approximate 55% decrease in 45C-202-treated
cells compared to vehicle-treated cells (Figure 4A-D). A layer of Matrigel was added to the
top insert of the chamber to test the cell ability to invade through the gel under 4SC-202
treatment. We found that 45C-202 significantly decreased the invasive ability of both
SJSA-1 and hFOB 1.19 cells by approximately 40% compared to that of the cells treated
with vehicle (Figure 4A-D). Altogether, this data implies that inhibition of class I HDACs
by 45C-202 may suppress tumor metastasis in human OS patients.
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Figure 4. Effect of 45C-202 on cell migration and invasion. (A) Representative images of crystal
violet-stained SJSA-1 cell migration (top panel) or invasion (bottom panel) in a trans-well system
with or without 45C-202 treatment under 10 x objective magnification. (B) Representative images of
crystal violet-stained hFOB 1.19 cell migration (top panel) or invasion (bottom panel) in a trans-well
system treated with or without 45C-202 under 10x objective magnification. (C) Quantification of
panel A data. (D) Quantification of panel B data. ** p < 0.01, ** p < 0.001. Data are presented as
mean (SD).

3.4. Cell Cycle Is Arrested at the G2/M-Phase Checkpoint by 45C-202

HDACI agents are known inducers of cell-cycle arrest and apoptosis in many cancer
cell types [108]. A dose-dependent disturbance of cell-cycle progression by 45C-202 was
observed in several cancer types [83-85,93]. To examine the cell-cycle behavior in human
OS cells, unsynchronized SJSA-1 cells were incubated in the absence or presence of 1 pM
4SC-202 for 24 h before propidium iodide (PI) staining. Our flow cytometry analysis
demonstrated that the percentage of cells at the G2/M phase in drug-treated cells signifi-
cantly increased to 87.08% from 21.49% compared to vehicle control, whereas cells at the G1
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and S phases in 45C-202-treated cells decreased to 6.66% and 6.26%, respectively, and from
41.96% and 36.55%, respectively, in control (Figure 5A,B). In parallel, we also observed
a dramatic blockage of the cell cycle in hFOB cells (Figure S3A,B). To further explore the
anti-tumor growth effects of 45C-202 in OS cells, we performed flow-cytometric quantifi-
cation of an apoptotic response using annexin V and PI double staining on cells treated
with the drug for 24 h. Treatment with 45C-202 significantly increased the population of
early-phase (Q4 quadrant: annexin V* PI7) and late-phase (Q2 quadrant: annexin V* PI*)
apoptotic cells to 10.63% and 10.33%, respectively (Figure 5C,D). Notably, we observed no
significant cell death (Q1 quadrant: Annexin V- PI*) in treated SJSA-1 cells compared to the
control. Moreover, 45C-202 treatment showed a similar drug effect on hFOB cells, although
a slightly different pattern with an increased population of early- and late-phase apoptotic
and dead cells to 4.9%, 19.16%, and 9.13%, respectively (Figure S3C,D). Collectively, these
data indicate that cell-cycle arrest and apoptosis induced by 45C-202 may be responsible
for the acute anti-proliferative effect of the drug.

A DMSO 4SC-202 B Cell cycle
] < 100
800 f < m G2M
8 600- g 07 H 2 801 D\ !
| € 5 i E S
<| 2 € 200 A 3 60
0 | 5 4004 o] \ g
| © o w 2
(2N 2 100 ] g 40
= 2004 =
s ; < i 2
e LA ) | 2 20
0] b\ 0 i/ K]
Y U 4 . o
0 50k 100k 150k 200k 250k 0 50k 100k 150k 200k 250k ¥ 0
DNA content DNA content
(channels for Pl staining intensity) (channels for Pl staining intensity)
:‘2-; 5] gZO- ** *k
g < ] g 3 5
T Qo g5 = 154
A : 8 -—? B ® DMSO
(</() £ > Q. e E 2] §10 8 45C202
T 3 . . 3 +3 -
|35 ] iR =
0| e =y 8
Q4 g~ Q 54
o o= g
- % ' © E S
‘? | BRRAAALL | LELRALLL | LBLRRLLL B A RLLL | T ‘.’ lllI“lIIllllll TT |||l||| T ||||l|r| T ll|l|l|| T [0
010‘ 102 108 10 10° 102 10° 104 10° x oA
Annexin V -49 Annexin V

Early apoptosis Late apoptosis

Figure 5. Effect of 45C-202 on the cell-cycle distribution and apoptosis in human SJSA-1 OS cells. (A) Representative
cell-cycle flow cytometry profiles of cells treated with or without 45C-202 for 24 h. The DNA content of cells was analyzed
by flow cytometry after staining with propidium iodide. (B) Relative cell population quantified data from cell-cycle profiles
in A. (C) Representative flow cytometry scatter plots of cells treated with or without 45C-202 for 24 h and stained with
annexin V (positive for apoptotic cells) and propidium iodide. (D) Quantification of apoptotic profiles for relative cell

population from C. ** p < 0.01. Data are presented as mean (SD).

3.5. 45C-202 Is Incompetent at Initiating and Enhancing Osteogenic Differentiation of
Osteosarcoma Cells into Mineralizing Osteoblast-Like Cells

Since osteosarcoma cells habitually possess an osteogenic differentiation program,
we probed the possibility of 45C-202 alone in promoting osteoblast-like differentiation
(OB diff) phenotype. As shown in the left panels of Figure 6A-C and consistent with our
previous study [100], SJSA-1 cells cultured with OB diff medium had a strong ability to
differentiate into mature mineralizing cells to produce bone matrix and calcium (positively
stained by Alizarin Red S). In the absence of OB diff agents, we found that 1 uM 4SC-202
treatment was incompetent at inducing osteogenic differentiation for 14 days (Figure 6A).
Furthermore, with the addition of 1uM of 45C-202 to the OB diff medium, we found that
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SJSA-1 cells produced similar mineralized nodules (Figure 6B) and content of calcium to
cells treated with OB-diff alone (Figure 6C). These data indicate that 45C-202 has little
capacity to promote osteogenic differentiation.
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Figure 6. Effect of 45C-202 on osteoblast-like differentiation and mineralization. (A) Representa-
tive photo of 12-well plate wells stained with Alizarin Red S after treatment for two weeks with
control media or osteoblast differentiation (OB Diff) media or control media + 45C-202 or OB Diff
media + 45C-202. (B) Representative images of the plate wells in A under 10x objective magnifica-
tion. (C) Quantitative results of Alizarin Red S staining in all 4 groups in A. **** p < 0.0001 (two-way
ANOVA with Tukey method). Data are presented as mean (SD).

3.6. In Vitro 4SC-202 Treatment Revises Global Transcriptomic Profiling and Induces Distinct
Gene Expression Signatures in Human Osteosarcoma Cells

To assess 45C-202-induced alterations in global mRNA expression and gene signa-
ture, we performed whole transcriptomic profiling using an unbiased next-generation
sequencing approach for SJSA-1 and hFOB cells. For this purpose, total RNA was ex-
tracted from cells treated for 24 h with 1 uM 4SC-202 or 0.1% DMSO and then subjected
to shotgun RNA sequencing (RNA-seq) analysis. All samples showed an RNA Integrity
Number (RIN) higher than 9.1 on a bioanalyzer, confirming the RNA integrity and quality
(Figure S4A,B). Principle component analysis of RNA-seq data revealed a marked sepa-
ration of gene expression changes between the control and 45C-202 treatment groups for
each cell line (PC1, 97% for both) and a low level of variability among biological repli-
cates (in triplicate) (PC2, 1% and 2% for SJSA-1 and hFOB, respectively) (Figure S5A,B).
Heatmaps of Euclidean distances between samples further substantiated the similarity
of gene expression between samples from the same group (i.e., treated or untreated) as
well as the differences between samples from different groups (i.e., treated versus un-
treated) (Figure S6A-C). 45C-202 treatment profoundly changed the global transcriptome
of the SJSA-1 and hFOB cells, as indicated by the total number of significant differentially
expressed genes (DEGs) given in Tables S1 and S2. Approximately half of DEGs were
common to the two cell lines (Figure S5E). Among them, the top 20 differentially expressed
genes with the smallest p-value are labeled with gene symbols (Figures 7A and S6A). The
top 200 significantly upregulated or downregulated genes in the drug-treated groups are
highlighted in Figures 7B and S6B. Ingenuity pathway analysis (IPA) of the differentially
expressed genes in the 45C-202-treated compared to control cells highlighted that the
human OS cells and transformed osteoblasts shared altered canonical signaling pathways,
including Wnt/beta-catenin, cAMP-mediated signaling, calcium signaling, eNOS signal-
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ing, VDR/RXR activation, bladder cancer signaling, tumor microenvironment pathway;,
breast cancer regulation by Stathmin1, synaptogenesis signaling, pathway regulation of the
Epithelial-Mesenchymal Transition (EMT) pathway, and the role of osteoblasts, osteoclasts,
and chondrocytes in rheumatoid arthritis (Figures 7C, S5F and S6C, Tables S3 and S4).
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Figure 7. Differentially expressed genes and pathways in human OS cells. (A) A volcano plot of gene expression from RNA-
seq analysis between the vehicle control and 45C-202-treated SJSA-1 OS cells. The top 20 significantly differentially expressed
genes are labeled. (B) Unsupervised hierarchical cluster analysis and heatmap representation of differentially expressed
genes in SJSA-1 cells treated with either 1 pM 45C-202 or DMSO for 24 h. Intensity of color indicates expression levels
(red, high; blue, low). Each column indicates a distinct sample, and each row indicates an individual gene. (C) Ingenuity
pathways analysis (IPA) of cancer canonical signaling pathways associated with significantly regulated genes (p < 0.05) in
45C-202-treated samples compared to the vehicle-treated samples.

On the other hand, we uncovered that the Notch signaling pathway was significantly
altered only in SJSA-1 cells (Figure 7C). Because Notch and Wnt signaling are two of the
most deregulated cancer signaling pathways in our data, we investigated individual genes
that were significantly regulated upon 45C-202 treatment. We found that Wnt antagonists
WIF1 and FRZB were upregulated but WNT5A was downregulated. We also found that
JAG2 and NOTCH4 mRNA and protein levels were significantly decreased upon the drug
treatment (Figure 8B,C). Although NOTCH3 mRNA levels were not significantly altered,
we found a significant decrease in its protein levels upon increasing concentrations of 45C-
202 (Figure 8B,C). Interestingly, we observed several significantly dysregulated key genes
involved in cellular processes and cancer treatment, including cell cycle (GADD45A and
GADD45B in Figure 8D), apoptosis (BCL2L1 and CFLAR in Figure 8E), stem-cell renewal
and drug resistance (SOX2 and ABCB1 in Figure 8F), and immunotherapy (MICA and
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ULBP1 in Figure 8G). This implies that 45C-202 induces distinct gene expression signatures
in treated SJSA-1 OS cells.
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Figure 8. Candidate genes regulated by 45C-202 in human SJSA-1 OS cells. Selected differentially expressed genes in (A) the
Wnt/B-catenin signaling pathway and (B) the Notch signaling pathway. (C) Representative Western blot analysis of JAG2,
NOTCH4, NOTCHS3, and 3-ACTIN in OS cells treated with or without 45C-202. Selected differentially expressed genes in
(D) cell cycle, (E) apoptosis, (F) cancer stem cells (CSCs) and multidrug resistance (MDR), and (G) immunotherapy. Average

FPKM values from RNA-seq analysis were used. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 . Data are presented as
mean (SD) of triplicate samples treated with or without 4SC-202.

3.7. In Vivo 45C-202 Treatment Reduces the Tumor Growth of Osteosarcoma in Mice

To assess the therapeutic potential of 45C-202 on established human tumor xenografts
in immune-compromised mice, we implanted SJSA-1 cells into the flanks of athymic nude
mice and allowed tumors to grow for about two weeks until detectable (Figure 9A). The
mice were then randomly divided into two groups and treated daily with either vehicle
or 45C-202 for 16 days (Figure 9A). Consistent with the observed in vitro effects, gross
observation of the harvested tumors indicated a lessened tumor size in the 45C-202-treated
group (Figure 9B). Compared to the vehicle mice, the average tumor mass of the treated
group was significantly reduced by 70.56%. At the same time, no obvious body weight loss
or pathological changes were observed during this treatment period with this dosage of
50 mg/kg, which was used in a previous study in treatment of bile duct cancer [86]. It is
also worth noting that, consistent with another previous study using the SJSA-1 OS model
in nude mice [109], no metastasis was observed in either group of mice.
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Figure 9. 45C-202 reduces the tumor growth of SJSA-1 cell in vivo. (A) Illustration of in vivo experimental procedure using a
xenograft model of nude mice. (B) Photographs of SJSA-1 xenografted tumors at harvest from nude mice. (C) Quantification
of tumor burden of xenografted tumors treated with or without 45C-202 (n = 7 for vehicle and n = 9 for 45C-202 treated
mice, *** p < 0.001, data are presented as mean (SD)). (D) Proposed future studies on tumor cell behaviors of osteosarcoma.

4. Discussion

Similar to “oncogene addiction,” the hypothesis of “epigenetic vulnerability of cancer
cells” is evolving into a new axiom, which has been endorsed by increasing evidence from
studies on HDACs and HDACI [6,20]. Compared with normal cells that have multi-tiered
and redundant compensating epigenetic pathways or factors, some cancer cells mainly rely
on specific epigenetic pathways or factors such as class | HDACs to sustain the function of
key genes to maintain cell survival, growth, invasion, metastasis, and drug resistance. This
study on the use of a selective HDACIi, 45C-202, against HDAC1-3 provides new evidence
to support this hypothesis in osteosarcoma.

Previous studies have shown that 45C-202 has an anti-tumor effect against several
types of hematologic malignancies and solid tumors [83-93]. Our study adds osteosar-
coma to this catalog. Figures 1C and 2C align with the previous findings that 45C-202
effectively targets HDAC1-3 but not LSD1 [83,94,110]. Consistent with the significantly
increased expression in primary human osteosarcoma tissues [32,33], this study reports
higher expression of HDAC1-3 in human SJSA-1 OS cells (Figure 1A). A study using
pan-HDACi (panobinostat) and a HDAC1/2 selective inhibitor (romidepsin) demonstrated
that the combined functions of HDAC1 and HDAC2 may contribute to the maintenance of
osteosarcoma growth and metastasis [11]. Other studies using a HDAC2 selective inhibitor
(CAY10683) and a HDAC1/3 selective inhibitor (MS-275) further showed that individual
HDAC2 or HDAC3 may also contribute to OS behaviors [74,77,111]. Moreover, HDAC1
may have additional unique roles in OS progression and drug resistance [47,53,72]. Our
findings support the aforementioned studies on the role of HDAC1-3 in OS cell prolifer-
ation, invasion, metastasis, and cancer stem cell (CSC) maintenance (Figure 9D). If the
essential roles of HDAC1-3 in OS cells hold true, it is assumed that 45C-202 may supersede
the aforementioned pan-HDACI, which have systemic toxicity [57], and some selective
HDAC: with a narrower selection, which may have limited clinical utility [81]. Indeed, a
study showed that the cardiotoxicity by aselective class I HDACi may be less than that
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of pan-HDAC] and other selective HDACi due to fewer alterations in the expression of
heart-specific genes [112]. However, there are 11 HDACs from classes I, II, and IV. The
substrate specificity of each HDAC and the requirements for pan-HDACi and/or selective
HDACI are still contestable. The HDACi that can achieve the safest and most effective
therapeutic effects still needs to be determined. However, some concerns remain in consid-
ering the clinical use of highly selective HDACi, including 45C-202, in OS patients given
the yet unclear roles of HDAC1-3 as putative tumor suppressors in human osteosarcoma
formation and their well-defined roles in the maintenance of in vivo bone mass and home-
ostasis [32,113]. Nevertheless, results from this in vitro and in vivo study using 45C-202
imply an oncogenic role of HDAC1-3 in OS cells and suggest future preclinical studies
for its combination therapy with other molecular-targeted agents such as inhibitors of
signaling pathways (Figure 9D).

Across all HDAC inhibitors, induction of G1/S phase cell cycle arrest is dominant over
a G2/M arrest [26]. We found that 45C-202 induced G2/M cell cycle arrest and apoptosis
in SJSA-1 OS cells, which is consistent with the latest studies in other cancer types using
this agent [83-85,93]. A G2/M cell cycle arrest is reported to be highly dependent on the
upregulation of GADD45s, whereas a G1 arrest is considered to be highly dependent on
the upregulation of p53/CDKNI1A [48]. Our finding that 45C-202 significantly increased
mRNA levels of GADD45A and GADA45B, whereas p53 expression was significantly de-
creased, provides a potential molecular mechanism of action of 45C-202 (Figure 8D and
data not shown). We further provide a molecular basis for treatment-induced apoptosis of
OS cells by showing a decrease in well-known anti-apoptosis genes (BCL2L1 and CFLAR/c-
FLP) (Figure 8E). This is consistent with previous studies that reported that expression of
these two genes can be suppressed by various HDACi] in cancer cells [76,78,82,114].

Notably, some studies using SJSA-1 OS cells and the non-cancerous cell line hFOB as
benign control cells found that they are not sensitive to a pan-HDACi, SAHA [37,46,98].
In this study, we observed a strong inhibition of proliferation, colony formation, invasion,
migration, cell cycle, and cell survival after treatment with 45C-202 in both cell lines at
comparable concentrations (Figures 1-5 and Figures S1-53). In keeping with our obser-
vations, this phenomenon was reported in 45C-202-treated urothelial cancer cells and
HEK-293 cells, a urothelial benign control cell line [85]. Indeed, more recent studies have
shown that both SJSA-1 and hFOB cells are very sensitive to the pan-HDACi panobinostat
(10-15 nM) [57,59]. It is not surprising that hFOB cells immortalized by SV40 TAg (large T
antigen) behave like mesenchymal-stromal cells (MSCs) [115,116]. Furthermore, low-dose
panobinostat has been shown to act predominantly as a potent “differentiating” agent that
drives terminal osteoblast-like differentiation in OS cells [57]. Nevertheless, we showed
that 45C-202 cannot initiate and enhance osteoblastic differentiation of OS cells, indicating
that 45C-202 and panobinostat may have different effects and/or targets on osteoblast-like
differentiation preprogram (Figure 6). Together, our data support the concept that 45C-202
is a strong inhibitor of proliferating cells but may be not a “differentiation agent”.

Different mechanisms have been proposed for how 4SC-202 exerts its effects on tumor
growth and survival. These include suppressing oncogenic hedgehog-GLI signaling in
medulloblastoma cells [89,117], inhibiting NF-«B pathway signaling in myelodysplastic
syndrome cells [84], activating the ASK1/Cyp-D mitochondrial pathway in hepatocellular
carcinoma cells [92], promoting epithelial gene expression of BRD4 and MYC nuclear cofac-
tors in pancreatic cells [88], disabling microtubules and thereby directly affecting mitotic
spindle formation [83], and restoring immunogenic HLA class I surface gene expression
on Merkel cell carcinoma cells [93]. Our findings suggest that 45C-202 has the potential
to impair tumor growth and metastasis by directly suppressing Wnt and Notch signaling
pathways in OS cells (Figures 8C and 9A-C). Previously, our study and others have sug-
gested that dysregulated Wnt and Notch pathways contribute to osteosarcoma initiation,
progression, and metastasis [5,8,99,109,118-121]. Notably, a recent study highlighted the
essential roles for HDAC1-3 in chromatin regulatory complexes of rhabdomyosarcoma
pediatric tumors, and that HDACi-induced hyperacetylation disrupts key interactions at
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super enhancers, resulting in decreased transcription at super enhancer core regulatory
transcription factor genes. It is possible that this is a conserved HDACi mechanism, and
thus that this is occurring with 45C-202-induced hyperacetylation as indicated by protein
levels of acetylated histone 3 (Figures 1C and 2C, and S2). Further studies are needed in
order to unravel the core regulatory transcription factor circuitry in OS and how 45C-202
may deregulate these phenomena.

Earlier studies using various OS cells found that treatment with a pan-HDACi or
selective HDACI affects the gene expression of many components in Wnt and Notch path-
ways, such as 3-catenin and Notch1 [41,42,59,60,122,123]. In this study, we uncovered
that 45C-202 significantly affects several key components in Wnt and Notch pathways
by either restoring (e.g., WIF1 and FRZB) or suppressing their expression (e.g., WNT5A,
JAG2, NOTCH4 and NOTCHB3) in OS cells (Figure 8A,B). Interestingly, we previously
showed that WNT5A is highly expressed in most human OS tissues [99]. Other in vitro
studies also proposed a crucial role of WNT5A in promoting OS cell invasiveness and
migration [124-127]. An earlier study showed that Wnt inhibitory factor 1 (WIF1) is epige-
netically silenced in human osteosarcoma and that targeted disruption in mice accelerates
osteosarcomagenesis [120]. These studies suggest that the Wnt pathway may be an impor-
tant target to treat OS. Moreover, Jag2 and Notch4 are highly expressed in some murine
osteosarcomas [109], and NOTCHS3 has somatic copy-number alterations in about 10% of
human osteosarcoma samples [7]. However, the roles of these Notch genes in osteosarcoma
are still unclear, although they have been studied in other cancers [128,129]. Interestingly,
we found that 45C-202 may contribute to NOTCH3 protein degradation but has little
effect on its mRNA transcription (Figure 8B,C). Indeed, a study showed that NOTCH3
acetylation instructs its ubiquitination and proteasome-mediated degradation [130], and
our previous study showed that Notch proteins can form a nuclear complex with HDAC1
in OS cells [131]. Together, our data suggest that inhibition of Wnt and Notch signaling
may contribute to 45C-202's effect on cell invasion and migration in vitro, although our
model did not provide direct in vivo evidence (Figure 9D).

Emerging evidence implies that the epigenetic state is associated with drug resistance,
maintenance of cancer stem cells (CSC), and metastasis [132]. This may apply to resistance
mechanisms of monotherapy using HDAC] or in combination with standard-of-care ther-
apy (MAP, consisting of methotrexate, adriamycin (doxorubicin), and platinol (cisplatin))
for OS patients. Several studies have proposed a mechanism of drug resistance using
HDAC: agents for osteosarcoma in which the multidrug resistance protein 1 (MDR1) en-
coded by the ABCB1 gene is upregulated in doxorubicin-resistant OS cells, which are also
resistant to HDACi agents [80,82]. Consistent with the aforementioned studies, we report
upregulation of ABCB1 by 45C-202, implying that 45C-202-treated OS cells may survive
through this mechanism (Figure 8F). Furthermore, similarly to the MAP therapy, certain
HDACI are powerful agents that kill highly proliferating OS cells but fail to suppress CSCs.
In contrast, some HDACi may expand SOX2-positive CSC population [65]. Interestingly,
we found that 45C-202 downregulates expression of SOX2 (Figure 8F). So far, the mech-
anism by which HDACi affect the CSC population has not been fully studied. However,
the inhibitory effect of 45C-202 on SOX2-positive OS cells warrants future research on
how type I HDACs regulate the maintenance of OS CSC by regulating SOX2 function.
Additionally, we also found that 45C-202 upregulates expression of MICA and ULBP1,
which encode ligands for an activating receptor—NKG2D, expressed on natural killer
(NK) cells—and stimulate the NK cell-mediated cytotoxicity against cancer cells, indicat-
ing that 45C-202 may provide favorable immune-modulatory effects on cancer treatment
(Figure 8G) [77,133]. In summary, our in vitro and in vivo results are promising, but further
research on the potential effects of 45C-202 alone and in combination with other drugs in
the context of patient-derived xenografts (PDXs), which are assumed to closely resemble
the original human tumor samples, is necessary and important [60,134-136]. The potential
partners of 45C-202 in combination therapy should favor agents that target autophagenesis,
which promotes cancer cell survival, CSC signaling pathways such as Wnt and Notch,
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drug-resistant genes such as ABCB1, key components of the proteasome, and immune cells
for immunotherapy.

5. Conclusions

We have demonstrated that 45C-202 inhibits osteosarcoma cell growth in vitro and
in vivo, and advanced our understanding of the key roles of HDAC1, HDAC2, and HDAC3
in the biological behaviors of osteosarcoma. The anti-tumor effects were featured by com-
bined induction of cell-cycle arrest at the G2/M phase, the apoptotic program, and a
reduction in the invasive and migratory ability of osteosarcoma. 45C-202 has little capac-
ity to promote osteogenic differentiation. 45C-202 revised the global transcriptome and
induced distinct signatures of gene expression in osteosarcoma cells in vitro. In vivo, 4SC-
202 decreased tumor growth in established human tumor xenografts in immunodeficient
mice. Mechanistically, we revealed key targets regulated by 45C-202 that contribute to cell
cycle, apoptosis, CSC stemness, drug resistance, immunotherapy, and canonical signaling
pathways associated with the progression and metastasis of osteosarcoma. Furthermore,
our data provide a rationale for further preclinical studies to access the efficacy of 45C-202
as a second-line therapy to improve treatment options for metastatic osteosarcoma.
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