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The presence of prosodic anomalies in autistic is recognized by experienced clinicians
but their quantitative analysis is a cumbersome task beyond the scope of typical pen
and pencil assessment. This paper proposes an automatic approach allowing to tease
apart various aspects of prosodic abnormalities and to translate them into fine-grained,
automated, and quantifiable measurements. Using a harmonic model (HM) of voiced
signal, we isolated the harmonic content of speech and computed a set of quantities
related to harmonic content. Employing these measures, along with standard speech
measures such as loudness, we successfully trained machine learning models for
distinguishing individuals with autism from those with typical development (TD). We
evaluated our models empirically on a task of detecting autism on a sample of 118 youth
(90 diagnosed with autism and 28 controls; mean age: 10.9 years) and demonstrated
that these models perform significantly better than a chance model. Voice and speech
analyses could be incorporated as novel outcome measures for treatment research and
used for early detection of autism in preverbal infants or toddlers at risk of autism.

Keywords: voice, speech analysis, autism spectrum disorder, harmonic model, prosody, machine learning

INTRODUCTION

Autism spectrum disorder (ASD) comprises a range of developmental impairments affecting social
communication and patterns of play and behaviors (American Psychiatric Association, 2013).
Symptoms emerge in early life and often lead to long-lasting impairments over the life span
(Mubashir et al., 2020). Although language delays and structural language deficits are frequently
observed in the development of individuals with autism, language delays are not necessary
diagnostic criteria. However, pragmatic impairments of verbal and non-verbal communications are
a key feature of autism at different developmental stages. About 10% of school-age children are non-
verbal and an additional 20% are minimally verbal. Lack of language development in childhood
predicts long term negative outcomes in adult life. Reflecting the critical importance of language,
early intensive behavioral interventions target communication skills, whether verbal or non-verbal,
to improve developmental trajectories of young children with autism.

In addition to the language deficits, prior studies have well established the impact of ASD on
prosodic aspects of speech (Sheinkopf et al., 2000; Shriberg et al., 2001). Prosody refers to the set
of speech variables including rhythm, loudness, stress, rate of speech, pitch, and intonation that
modulate human communications (Waibel, 1988). For example, emotional state of the speaker is
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conveyed through prosodic elements of speech. Also, the form
of a sentence, such as declarative (statement) and interrogative
(question) sentences, are often expressed through varying pitch
and intonation. Additionally, acoustic and prosodic properties
may provide considerable insight into human health (Asgari
and Shafran, 2018). In children with ASD, atypical patterns in
prosodic elements such as monotonous pitch (Sharda et al., 2010),
reduced stress (Shriberg et al., 2001), odd rhythm (Trevarthen
and Daniel, 2005), flat intonation (Cooper and Hanstock, 2009),
and even differences in harmonic structure of their speech
(Bonneh et al., 2011) are among the earliest signs of the disorder.
Prior research has shown a strong relationship between prosodic
abnormalities in individuals with ASD and their social and
communicative abilities (Shriberg et al., 2001; Paul et al., 2005;
Fusaroli et al., 2017). In addition, prosodic abnormalities have
been shown to be familial and to index genetic liability to ASD
(Patel et al., 2020). Recent reviews of prosody studies in ASD can
be found in the published literature (Loveall et al., 2021; Zhang
et al., 2021).

These findings highlight the importance of fine-grained
assessment of prosodic elements for detecting, diagnosing,
and monitoring of ASD. Despite a continued interest in
characterizing acoustic and prosodic abnormalities in ASD
to potentially exploit them in objective evaluations, their
measurement in clinical settings has been notoriously difficult.
To give an example, only one item of the Autism Diagnostic
Observation Schedule (ADOS-2; Lord et al., 2003) Module 3
(item A2) specifically rates “Speech abnormalities associated with
autism (Intonation/Volume/Rhythm/Rate)” on a 0–2 scale where
an abnormal score of 2 represents a composite of abnormal
features crudely lumped together. Likewise, only one item from
the Social Responsiveness Scale (SRS; Constantino and Gruber,
2005) evaluates a limited aspect of voice quality [item 53: talks
to people with an unusual tone of voice (for example, talks like
a robot or like he/she is giving a lecture)]. Furthermore, there is
no reference to speech or voice quality in any of the 7 diagnostic
criteria laid out in the fifth version of Diagnostic and Statistical
manual of Mental disorders (DSM-5; American Psychiatric
Association, 2013). To improve on observational ratings, use
of voice recording and voice analysis is therefore necessary.
Recently, speech researchers have proposed automated methods
for assessment of prosody (van Santen et al., 2009; Hönig et al.,
2010; Truong et al., 2018; Truong et al., 2018). Despite their
potential benefits, a major challenge in these systems is the
lack of computational algorithms that could extract robust and
accurate prosodic measures, such as pitch. There are several pitch
detection algorithms (PDAs) in the literature (Talkin et al., 1995;
Boersma and Weenink, 2001; de Cheveigné and Kawahara, 2002;
Sun, 2002; Kawahara et al., 2008; Drugman and Alwan, 2011)
that produce accurate results for highly periodic signals recorded
in noise-free environments. Yet, due to the physical structure of
the vocal tract and to the noise factor observed in disordered
speech, the speech signal is not perfectly periodic and often
described as quasi-periodic signal. Thus, false detection [“octave
errors” (Kumaraswamy and Poonacha, 2019)] often occur that
result in estimating the pitch by half or double the true value.
Another limitation of existing PDAs for analyzing pathological

speech is the lack of sufficient time-frequency resolution for
capturing fine perturbation of pitch and amplitude of voiced
speech –a common phenomenon of disordered speech. One
notable exception for estimating key prosodic measures is the
harmonic model (HM) of speech described in the next section.
However, the straight forward application of this model leads
to certain drawbacks such as “octave errors” in pitch estimation
problem (Asgari and Shafran, 2013).

In our prior work, we mitigated these drawbacks by modifying
the HM and introduced an improved version of HM, known as
time-varying harmonic model (TV-HM) of speech, that achieves
more accurate and reliable estimation of acoustic and prosodic
measures of speech (Asgari and Shafran, 2018). We successfully
adapted TV-HM for characterizing speech impairments in
clinical populations including Parkinson’s disease (Asgari and
Shafran, 2010a,b) and clinical depression (Asgari et al., 2014). In
this study, we extended these methodological improvements of
the TV-HM to youth with autism in order to better characterize
the atypical patterns of prosodic properties in their speech. By
comparing speech samples collected with standardized ADOS-
2 (Lord et al., 2003) procedures in youth with or without ASD,
our study objectives were to: (1) examine if analysis of voice and
speech quality only could predict diagnostic membership better
than the chance model; and (2) test if speech samples collected
in specific ADOS-2 tasks were or not equivalent in differentiating
the 2 groups of children and adolescents, and if the combination
of speech samples across tasks was improving performance over
single tasks samples.

MATERIALS AND METHODS

Participants
Participants with either ASD or typical development (TD)
were recruited by community outreach and referrals from
OHSU specialized clinics to participate in neuroimaging study.
All participants came in for a screening visit to determine
if they qualified for the study. Informed written consent or
assent was obtained from all participants and their parents
who also had to be fluent in English. All youth in the ASD
group had their diagnosis confirmed (using DSM-5 criteria)
by a research diagnostic team that included an experienced
child psychiatrist and a clinical psychologist, after review of
standardized diagnostic assessments (both videos and scored
protocols) and using best-estimate procedures. ASD was ruled
out in TD youth based on ADOS-2 and SRS scores supplemented
by expert clinical review. Exclusion criteria for all groups
included the presence of seizure disorder, cerebral palsy, pediatric
stroke, history of chemotherapy, sensorimotor handicaps, closed
head injury, thyroid disorder, schizophrenia, bipolar disorder,
current major depressive episode, fetal alcohol syndrome,
Tourette’s disorder, severe vision impairments, Rett’s syndrome,
currently taking psychoactive medications, and an IQ below 70.
A total of 132 subjects with ASD and TD were recruited for
the neuroimaging study. Of the 104 participants with ASD, 14
participants were excluded due to poor recording quality, leaving
a total sample size of 118 for analysis (90 ASD, 28 TD).
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Diagnostic, Cognitive and Behavioral
Assessments
Autism Diagnosis Observation Schedule
The ADOS-2 (Lord et al., 2003) is a semi-structured, standardized
assessment in which a trained examiner engages participants in
activities that are designed to elicit social and communication
behaviors indicative of symptoms of ASD as defined in the DSM-
5. In this study, all participants were administered the Module
3 of the ADOS-2 that is suitable for children and adolescents
with fluent speech. Module 3 comprises 14 tasks that are generally
administered in sequence although the tester has some flexibility
to change the task order if clinically indicated. The Social Affect
(SA) score (10 items; range 0–20), the Restricted and Repetitive
Behavior (RRB) score (4 items; range 0–8), the overall score (sum
of the SA and RRB scores) and the Calibrated Severity Score
(CSS; Gotham et al., 2009) (range 1–10) were used to describe
the sample, with higher scores indicating more severe ASD
symptoms. All ADOS-2 were administered by research assistants
or a senior clinical psychologist trained to research reliability
level. ADOS-2 were videotaped and the recordings were used for
this study (see below).

Autism Diagnostic Interview-Revised Interview
The Autism Diagnostic Interview-Revised interview (ADI-R;
Rutter et al., 2003) is a standardized semi-structured interview
used in the diagnosis of ASD. It is designed for use with a
parent or caregiver who is familiar with the developmental
history and current behavior of individuals older than 2 years.
The diagnostic algorithms rely on scores derived for 3
major developmental domains (language and communication,
reciprocal social interaction, and restricted, repetitive, and
stereotyped behaviors and interests) and for a fourth criterion
establishing evidence of first developmental abnormalities before
age 3. Only caregivers of the ASD group were interviewed with
the ADI-R. Interviews were administered by trained interviewers.
Data were reviewed by the diagnostic team and integrated in the
best estimate clinical procedures used to confirm diagnoses.

Social Responsiveness Scale
The SRS was designed to measure autistic symptomatology
and traits, and the severity of the associated social impairment
(Constantino, 2012). It is applicable to 4-to 18-year-old and
can be completed in about 15–20 min by a parent or any
other informant knowledgeable about the child’s behavior across
contexts and over time. The SRS comprises 65 items each
scored on a Likert scale ranging from 1 (not true) to 4
(almost always true), with 17 items being reverse-scored. Using
data from a general population non-clinical sample, t-scores
derived from the U.S. population can be employed for individual
testing and clinical interpretation. Total t-scores were used to
describe the sample.

Intellectual Level
Intellectual level of participants was estimated with a short form
of the Wechsler Intelligence Scale for Children -4th Edition
(Wechsler, 2003). Three subtests were administered: Information
Block Design and Vocabulary allowing a full-scale IQ to be

estimated from the sum of scaled scores of the three subtests
according to formula set out by Sattler and Dumont (2004).

Language Profile
Language skills and linguistic pragmatic abilities were assessed
using the parent- completed Children Communication Checklist
second edition (CCC-2; Bishop, 2013). CCC-2 is a widely
used 70-items standardized checklist of pragmatic and social
communication behaviors applicable to children aged 4–17 years.
Caregivers are asked to make a frequency judgment about how
often behaviors occur on 4-point scale (0, less than once a
week; 1, at least once a week; 2, once or twice a day; 3,
several times a day). CCC-2 is divided in 10 subscales (7 items
each, including 5 weaknesses and 2 strengths items) measuring:
(A) speech, (B) syntax, (C) semantics, (D) coherence, (E)
inappropriate initiation, (F) stereotyped language, (G) the use of
context, (H) non-verbal communication, (I) social relationships
and (J) interests. Each subscale raw score is converted to
age-standardized scores (mean = 10; SD = 3). A General
Communication Composite (GCC) is derived by summing scores
from scales A to H (mean = 100; SD = 15). The Social Interaction
Difference Index (SIDI) score is calculated as the difference
between the sum of the four pragmatics (E through H) and the 4
structural (A through D) language subscores, with more negative
values indicative of autism.

Data: Speech Samples
In this study, we used ADOS-2 recordings from 4 tasks that are
conversational in nature: “emotions conversation” (EC), “social
difficulties and annoyance conversation” (SDAC), “friends and
marriage conversation” (FMC), and “loneliness conversation”
(LC). These four tasks occur in the second half of the ADOS-
2; they do not require objects, books or images, and are
purely conversational. The focus is on the understanding by the
participant of the nature of emotions and social relationships.
The examiner uses some preset interview questions that are
open-ended and designed to facilitate the flow of conversation.
Follow-up probes are discretionarily used by the examiner to
maintain that flow.

Data Analysis
Harmonic Model
Voiced speech is a quasi-periodic signal with slowly time-varying
amplitudes and harmonically related frequencies. Thus, a HM
is a suitable choice to characterize voiced speech (Stylianou,
2001). This model decomposes the voiced speech into a periodic
component and a non-periodic component related to noise.
The periodic component is modeled by a weighted combination
of sines and cosines terms (harmonic terms), with frequencies
that are multiples of the fundamental frequency (i.e., pitch).
Analyzing the noise-free periodic component of speech increases
the chance of more accurate pitch estimates for monophonic
sounds. This model is tailored to capture the rich harmonic
nature of voiced segments in speech and has applications
in speech synthesis, voice conversion, speech enhancement,
and speech coding.
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Model Expression
Adopting notations from Stylianou (2001), we express the model
as follow. Let y = [y(t1), y(t2),..., y(tN )]T denote the N speech
samples in a voiced frame, measured at times t1, t2,..., tN . The
samples can be represented with a HM with an additive noise,
n = [n(t1), n(t2),..., n(tN )]T, modeled by a Gaussian distribution
[N (µ, σn

2)] as follows:

s (t) = a0 +

H∑
h=1

cos
(
2πf0ht

)
+ bhsin(2πf0ht) (1)

y (t) = s (t)+ n(t) (2)

where H denotes the number of harmonics and 2πf 0 stands for
the fundamental angular frequency. The harmonic signal can be
factorized into harmonic components that include coefficients of
sinusoidal functions, αh, βh, the angular frequency, 2πf 0, and
the model order, H. Assuming the noise component is Gaussian,
unknown parameters of the model ([a0, αh, βh, f 0, σn

2, H])
can be estimated using a maximum likelihood (ML) estimation
method (Tabrikian et al., 2004). However, the straightforward
application of this model leads, too, to “octave errors” (Asgari
and Shafran, 2013). In our prior work, we mitigated these errors
by modifying the HM using a local smoothing function while
estimating the pitch candidates (Asgari and Shafran, 2013) and
reformulating the parameter estimation using a maximum a
posteriori probability (MAP) framework to prevent overfitting
due to the model complexity (Asgari and Shafran, 2018).
Our experimental results showed a significant improvement in
accuracy of pitch detection against three widely used PDAs (de
Cheveigné and Kawahara, 2002; Sun, 2002; Kawahara et al.,
2008), especially in adverse noisy conditions (Asgari and Shafran,
2013).

Speech Processing
To automatically extract acoustic/prosodic measures of speech
samples, we first found and grouped those speech segments on
each conversational activity that belong to a given participant.
This created an audio profile of four conversational activities,
each consisting of participant’s speech segments. The length of
speech segments varied across participants depending upon the
content and the length of the conversation. Next, we represented
voice characteristics of each participant with a global feature
vector of acoustic and prosodic measures using speech processing
algorithms. Our speech analysis framework comprises a cascade
of three short-term, segment-level, and subject-level analyses of the
speech signal as described in the next section.

Short-Term Speech Analysis
According to the articulatory model of speech production (Deng,
1999), speech signal is inherently a non-stationary process and
its characteristics vary over time; therefore, it cannot be analyzed
by common digital signal processing (DSP) methods such as
Fast Fourier transform (FFT) algorithm (Proakis and Manolakis,
1988). However, as vocal folds slowly move relative to the
frequency of voice signal, the voice properties can be assumed
stationary in short period of times (e.g., 10 ms) commonly known

as a short-term frame. Assuming the short-term stability of voice
over 10 ms long frames, we first sliced every segment of speech
into 25 ms long overlapping frames at a rate of 100 frames
per second. Next, we removed silence parts from the speech
segment using an energy-based silence detection algorithm.
Then, using the HM of speech, we detected voiced and unvoiced
speech frames and subsequently extracted the four quantities
from voiced frames related to harmonic content: pitch, jitter,
shimmer, and harmonic-to-noise ratio (HNR). Pitch-related
statistics convey considerable information about the emotional
state of speakers (Busso et al., 2009). We used the HM of
speech for detecting pitch candidates as described in our prior
work (Asgari and Shafran, 2013). Note that pitch variations are
inherently limited by the motion of the articulators in the mouth
during speech production; hence, they cannot vary arbitrarily
between adjacent frames. We enforced a smoothness constraint
on successive frames of a speech segment using a first order
Markov model and detected the pitch contour over the segment
using a Viterbi algorithm (Asgari and Shafran, 2013). The refined
version of HM, known as TV-HM, allows the amplitude of the
harmonics to vary smoothly over the duration of the frame and
thus it is able to follow perturbations associated with shimmer
and jitter. We used TV-HM to quantify cycle-to-cycle frequency
(jitter) and amplitude (shimmer) variations in pitch frequency.
Finally, we augmented our acoustic/prosodic measures with HNR
derived from the HM. We refer the reader to our prior work
(Asgari and Shafran, 2013) for more computational detail on
extracting these measures. Those measures derived from HM
and TV-HM were combined with the following standard speech
measures computed across both voiced and unvoiced frames: (1)
loudness that measures the amount of speaking volume (energy)
based on the square root of average of squared value of the
signal’s amplitude; (2) cepstral coefficients that are widely used
to characterize the dynamics of speech articulation. Shape of the
spectral envelop is extracted from cepstral coefficients. Thirteen
cepstral coefficients of each frame were augmented with their
first- and second-order time derivatives; and, (3) spectral entropy
that produce useful proxy for cues related to voicing quality.
Spectral entropy can be used to characterize “speechiness” of
the signal and has been widely employed to discriminate speech
from noise. Therefore, we computed the entropy of the log power
spectrum for each frame, where the log domain was chosen to
mirror perception.

Segmental Speech Measures
The short-term measures computed at the frame-level were
summarized into a feature vector of fixed dimension for each
speech segment sliced from a conversation. Features extracted
from voiced regions tend to differ in nature compared to
those from unvoiced regions. To preserve these differences,
we separately summarized each frame-level measure across
all frames from the voiced and unvoiced segments in terms
of standard distribution statistics such as mean, median,
variance, minimum and maximum. The resulting segment-
level voice quality and prosody feature vector was later
augmented by duration-related statistics. Duration and frequency
characteristics of speech provide useful cues about speaking rate
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and fluency (Healey and Adams, 1981; Andrews et al., 1982) and
were computed based on the number and duration of voiced and
unvoiced segments.

Subject-Level Speech Measures
The frequency of speech segments collected over the course
of four ADOS-2 conversational activities, was different across
participants. For the purpose of training machine learning
models, we needed to summarize segment-level feature vectors
into a global feature vector of a fixed dimension across
all participants. Using the same statistical function used for
summarizing frame-level measures, we summarized segment-
level feature vectors of each conversational activity into an
activity-level feature vector. Finally, we augmented four activity-
level feature vectors and constructed a global subject-level feature
vector representing the voice characteristics of a participant.

Statistical Analysis
The utility of extracted acoustic/prosodic measures was evaluated
using machine learning algorithms in detection of ASD from
TD group. From an open-source toolkit, Scikit-learn (Pedregosa
et al., 2011), we adopted a support vector machine (SVM) model
for our classification task. All experimental results, presented
in the next sections, were based on the linear SVM as it
outperformed the non-linear SVM. We also used a L1-norm
regularization term that is well-known in applications requiring
sparse solutions, assigning zero values to useless regression
coefficients (Tibshirani, 1996). Additionally, we repeated the
experiment using a “Chance” classifier which randomly assigned
participants into ASD and TD classes. Prior to training a
SVM model, we scaled the range of computed features into a
constrained range using Scikit-learn’s RobustScaler. This step was
necessary in our computational framework as we noticed that the
range of derived features greatly differed from each other.

Evaluation Metrics
To evaluate the performance of the proposed classifier, we
computed the sensitivity and specificity of detecting ASD using
the receiver operating characteristic (ROC) approach. Area under
the curve (AUC) of ROC were compared across SVM models. We
also calculated the %95 confidence intervals of the area under
the curve of receiver operating characteristics (AUC-ROC) for
a meaningful comparison between classifiers. To validate results
and establish their independence from our specific data sets, and
also to reduce the overfitting problem, we used five-fold cross-
validation (CV) techniques (Kohavi, 1995) in which the training,
development, and test sets are rotated over the entire data set.
With this approach, the optimal parameters of SVM models were
only learned from the training examples (four out of five sets),
totally blinded from the test examples, and the fifth one only used
for reporting the performance estimates.

Imbalanced Data
A common issue often encountered in a binary classification
task raising a concern on the validity of evaluation results
is disproportionate distribution of training examples amongst
classes. We tackled this potential issue through an iterative
process using an under-sampling technique. At each iteration, we

first randomly drew 28 samples from the majority class (ASD)
to match the sample size with the TD class. Next, we evaluated
the five-fold CV on the matched samples and accumulated
averaged scores across test folds. This iteration repeated until the
overall performance converged to a steady state. Our experiments
showed that randomness effects were reduced by repeating the
process until average scores across all iterations had converged
after about 100 times.

Ethical Approval
This study was reviewed and approved by the Institutional
Review Board of OHSU.

RESULTS

Sample characteristics are summarized in Table 1. There was
no statistically significant difference for age, race, and ethnicity
between the groups. As predicted, all autism measures (ADOS-
2, SRS) differed significantly between groups. Participants with
ASD had significantly lower language and IQ scores than
controls although the mean IQ for the ASD group was
close to the population mean. Voice-related abnormalities of
ASD can be associated with different dimensions of speech.
To understand the contribution of the different measures,
we broadly categorized them into two groups: prosodic and
articulation. The group of features included pitch, jitter, shimmer,
HNR, and loudness, and the articulation group was derived
from spectral entropy and cepstral coefficients. For this purpose,
speech prosodic measures were extracted from all ADOS-2
activities. We then independently trained three SVM classifiers
using subject-level feature vectors constructed from these
two groups of measures (prosody, articulation, and both).
Table 2 reports the performance of SVM models measured
in terms of averaged Sensitivity, Specificity, and AUC-ROC
over 100 repetitions of CV. Note that speech measures in
these experiments were extracted from all ADOS-2 activities.
The results indicate that prosodic features more accurately
distinguished ASD subjects from those with TD in comparison
to features of articulation due to better specificity of prosody
over articulation. Combining both measures also improved
overall accuracy through an additional gain of specificity whereas
sensitivity remained constant, similar to that of prosody or
articulation alone. Due to the specificity of articulation measures,
we only used prosodic measures for the rest of our experiments.

Effectiveness of ADOS-2 Activities
In our initial experiment, we concatenated subject-level feature
vectors extracted from all ADOS-2 conversational activities for
learning SVM models. The four types of ADOS-2 conversational
activities evoke different emotional states and may translate
into varied speech/voice outputs. To examine the influence of
conversational content, we extracted our prosodic measures
separately from each activity and using those, we trained four
classification models. The results are reported in Table 3 for the
SVM model with the linear kernel and L1-norm regularization
term. Comparing the AUC-ROC of SVM classifiers, it is observed
that prosodic measures extracted from “FMC” more strongly
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TABLE 1 | Sample characteristics.

ASD (N = 90) TD (N = 28) P-value

Male sex, N(%) 75 (80.6) 12 (40.0) <0.001

Age in years, X (SD) 10.84 (2.20) 10.96 (1.54) 0.807

range 7.8, 15.3 7.0, 15.0

Hispanic, N(%) 13 (14.4) 5 (18) 0.768

Race white, N(%) 80 (86.0) 24 (85.7) 1.000

Clinical profiles

WISC-IV full scale IQ 99.0 (20.00) 113.4 (12.3) 0.005

ADOS-2 total SA score 9.40 (3.57) 1.04 (1.86) <0.001

ADOS-2 total RRB score 3.59 (1.56) 0.52 (0.71) <0.001

ADOS-2 total score 12.99 (3.50) 1.56 (2.29) <0.001

ADOS-2 CSS score 7.55 (1.44) 1.22 (1.04) <0.001

SRS total t-score 77.35 (10.93) 43.96 (4.14) <0.001

Language scores

CCC2 GCC 45.49 (15.28) 91.89 (8.48) <0.001

CCC2 SIDI −7.51 (9.13) 3.07 (5.14) <0.001

ADOS-2, Autism Diagnosis Observational Schedule; SA, Social Affect; RRB,
Restricted Repetitive Behavior; CSS, Calibration Severity Score; SRS, Social
Responsiveness Scale; CCC2, Children’s Communication Checklist, 2nd; GCC,
General Communication Composite of the CCC2; SIDI, Social Interaction
Difference Index of the CC.

TABLE 2 | Diagnostic classification derived from speech prosodic or articulation
features, and their combination.

Speech
Measures

ROC AUC Sensitivity Specificity Accuracy

Prosodic 82.23% (81.11%,83.35%) 69.67% 76.83% 73.30%

Articulation 67.98% (66.62%,69.35%) 62.63% 62.53% 62.58%

Prosodic
+ Articulation

78.52% (77.30%,79.73%) 69.43% 70.74% 70.02%

Chance 49.90% (48.17%,51.63%) 50.13% 50.87% 49.63%

ROC, receiver operating characteristics; AUC: area under the curve.

TABLE 3 | Prosodic measures performance in predicting diagnosis, with four
ADOS-2 tasks and their combination.

ADOS-2 activity ROC AUC Sensitivity Specificity Accuracy

FMC 83.04% (82.00%,84.09%) 70.02% 79.17% 74.52%

EC 81.63% (80.51%,82.76%) 70.82% 75.28% 73.05%

SDAC 81.21% (80.06%,82.37%) 70.39% 72.50% 71.35%

LC 78.15% (76.97%,79.34%) 64.97% 74.90% 69.82%

FMC + EC 82.69% (81.63%,83.76%) 70.20% 77.35% 73.82%

FMC + EC + LC 81.92% (80.77%,83.07%) 70.52% 76.85% 73.64%

FMC + EC + LC
+ SDAC

81.65% (80.52%,82.77%) 70.23% 76.41% 73.42%

ADOS-2, Autism Diagnosis Observational Schedule; ROC, receiver operating
characteristics; AUC, area under the curve; FMC, friends and marriage
conversation; EC, emotions conversation; SDAC, social difficulties and annoyance
conversation; LC, loneliness conversation.
Correlations between subject-level prosodic features (pitch and loudness) to clinical
ratings of language profile and autism severity.

differentiated ASD from TD participants in comparison to
other ADOS-2 activities. FMC achieved overall better accuracy
due to superior specificity. When examined together, the

TABLE 4 | Correlationsa between subject-level prosodic features (pitch and
loudness) to clinical ratings of language profile and autism severity.

Prosodic
Measures

CCC2 – GCC CCC2- SIDI score ADOS-2 CSS SRS-T-score

Pitch 0.274 0.295 −0.312 −0.264

Loudness −0.386 −0.170 0.324 0.323

aNon-parametric partial Spearman coefficients (adjusted on WISC IQ scores); italics
indicate 0.05 < p < 0.10; bold indicate 0.01 < p < 0.05; bold and underlined
indicate p < 0.01.
CCC2, Children’s Communication Checklist, 2nd; GCC, General Communication
Composite of the CCC2; SIDI, Social Interaction Difference Index of the CC; ADOS-
2, Autism Diagnosis Observational Schedule; CSS, Calibration Severity Score;
SRS, Social Responsiveness Scale.

combination of prosodic measures across two tasks (FMC and
EC) achieved the best overall accuracy with comparable and
satisfactory levels of both sensitivity and specificity. However,
when compared to FMC alone, overall accuracy was similar; FMC
alone would provide an adequate sampling context and could
be selected in circumstances where reducing the false positive
rate is required.

As the samples in above classification tasks were different
in terms of subjects’ IQ level (see Table 1), we repeated
these analyses on a sub-sample of 28 subjects with ASD
closely matched for IQ with 28 TD controls. In these
28 matched pairs (mean IQ = 113.4; p-value = 0.98),
a similar pattern of results was obtained for FMC with respect
to both overall accuracy (77.6%) and discriminant ability
(ROC AUC = 88.27%).

Most Informative Prosodic Measures
Not all the extracted measures are expected to be useful, and
in fact many are likely to be noisy. From the Scikit-learn
toolkit (Pedregosa et al., 2011), we chose a feature selection
technique known as recursive feature elimination with cross-
validation (RFECV), which ranks the importance of features
based on a given scoring function and returns a subset of optimal
features. Applying the RFECV method, we evaluated several
models trained on a subset of prosodic features. Experimental
results revealed that the combination of pitch and loudness
measures constructed the optimal subset of prosodic measures
in this ASD vs. TD classification task. To further investigate the
relationship between these two measures (pitch and loudness)
and clinical ratings of the subjects, we computed partial
Spearman correlation coefficients controlling for WISC IQ scores
(Table 4). Both pitch and loudness had a consistent significant
association with autism severity when assessed by independent
informants (professional for the ADOS-2 and parent for SRS).
The prosodic measures showed a moderate correlation with
CCC2 language scores although loudness was unrelated to the
SIDI score (r = −0.170, p = 0.13) that measures pragmatic
problems specifically.

Probability distributions of the pitch and loudness features,
depicted in Figure 1, show that the pitch values are lower
in ASD participants than in controls but that the dispersion
is comparable across the 2 groups. In contrast, the loudness
means in ASD subjects exceeded those in TD subjects across
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FIGURE 1 | Distribution of pitch and loudness measures across four Autism Diagnosis Observational Schedule (ADOS-2) activities, by clinical group. The name in
y-axis combines both feature name and the name of ADOS-2 activity in the format “{feature name}_{ADOS-2 activity name}.” We have two features: pitch and
loudness. The ADOS-2 activities are friends and marriage conversation (FMC), emotions conversation (EM), social difficulties and annoyance conversation (SDAC),
and loneliness conversation (LC). Two diagnosis labels are included: typically developing (TD) and autism spectrum disorder (ASD). The dynamic range of features
have been normalized according to the RobustScaler approach. The dotted lines from left to right indicate 25, 50, and 75% quantiles. The dynamic range of features
have been normalized according to the RobustScaler approach. The dotted lines from left to right indicate 25, 50, and 75% quantiles. ADOS-2, Autism Diagnosis
Observational Schedule; ASD, autism spectrum disorder; TD, typically developing; F0, pitch; RMS, loudness; FMC, friends and marriage conversation; EC, emotions
conversation; SDAC, social difficulties and annoyance conversation; LC, loneliness conversation.

all ADOS-2 tasks with much larger variability. We further
looked at combination pitch and loudness features across both
ASD and TD classes. The resulting 2-dimensional visualization
extracted from the optimal sampling context, i.e., FMC, is
shown in Figure 2. As it is observed in this plot, two
separate clusters of ASD and TD subjects can be noticed
and participants with ASD are associated with lower pitch
value with wider loudness range compared to those with
TD. The plot also indicated the discriminatory power of
combined pitch and loudness measures in discriminating ASD
from TD subjects.

DISCUSSION

Acoustic and prosodic aspects of speech have been shown to
be biomarkers of ASD (Fusaroli et al., 2017). However, most
speech processing algorithms are not suitable for characterizing
these biomarkers as they do not have the necessary time-
frequency resolution to capture the fine fluctuations observed in
impaired speech. In this proof of concept study, we proposed
automated methods for characterizing the abnormal prosodic
pattern of autism that succeeded in distinguishing subjects with
ASD from TD controls. Our proposed method is novel and

Frontiers in Psychology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 665096

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-665096 August 31, 2021 Time: 12:3 # 8

Asgari et al. Voice Characteristics of ASD

FIGURE 2 | Visualization of two-dimensional feature space (pitch and
loudness) for “friends and marriage conversation” activity. The histogram on
x-axis shows the value distribution of pitch and the one on y-axis is the
distribution of loudness. Two diagnosis labels are included: TD and ASD. ASD,
autism spectrum disorder; TD, typically developing.

utilizes pitch as a key feature in describing atypical prosodic and
vocal features. Pitch-related features play an important role in
characterizing pathologies such as Parkinson’s disease, clinical
depression and autism spectral disorder (ASD). Of the available
pitch estimators, only the HM exploits the inherent harmonic
structure of the voiced speech and has model parameters
which can be estimated in an unsupervised manner without
the need to learn a model on training data. We recently
developed a TV-HM of speech (Asgari and Shafran, 2018)
to address a few drawbacks of the HM and demonstrated
improvements in accuracy and robustness of pitch estimation
over several pitch trackers, including those employed in similar
studies for characterizing abnormal prosody of autistic children
(Bonneh et al., 2011; Santos et al., 2013). Using TV-HM
of speech, we extracted a set of voice measures of natural
speech samples (NSSs) to capture atypical patterns of autistic
speech and voice that can discriminate children with ASD from
those with TD. Dividing our proposed speech measures into
two sets of prosodic and articulation measures, we examined
the efficacy of each set in distinguishing ASD from TD
controls. The experimental results showed the superiority of
prosodic measures in comparison to those that characterize the
articulation features. In keeping with inconsistent results from
previous studies (e.g., Shriberg et al., 2001), articulation measures
alone only achieved a modest AUC-ROC curve (≈68%). By
contrast, prosodic measures achieved a higher level of AUC-
ROC (≈82%) that rose to 83% when the voice sampling context
was optimized. This confirms results from several prior studies
of prosodic aspects in ASD where overall accuracy levels in

multivariate models were comparable (Bonneh et al., 2011;
Fusaroli et al., 2017).

Additionally, we separately extracted our voice-based
measures from each ADOS-2 activity in order to examine
their influence in the classification tasks. Results showed that
the ADOS-2 “FMC” task is better than three other ADOS-2
tasks in distinguishing subjects with ASD. This pattern of
differential performance according to voice sampling context
is important to appreciate. Prior studies of pitch have shown
some inconsistencies due to the variability of methods used
across investigations. One source of heterogeneity was the voice
sampling conditions that varied from natural recordings at home
(Oller et al., 2010; Gong et al., 2018), with or without structured
social interactions with caregivers or other partners, or recorded
professional evaluations employing tasks with varying social
and cognitive demands (Bonneh et al., 2011; Santos et al., 2013)
that in turn affected the pitch discriminant ability. Finally, we
employed a feature selection method in order to pick out the
most informative prosodic measures. Our results showed that
the combination of pitch and loudness measures resulted in
the best performance. Further analysis showed associations
between pitch and loudness with language scores and autism
severity, a noticeable result since it was established with separate
informants. Despite the small sample size available for this pilot
analysis, we found highly significant differences indicating that
the magnitude of differences between groups was very large
which is very encouraging for future research.

These results were not adjusted for multiple comparisons and
should be viewed as preliminary. They require replication in
larger samples, more balanced with respect to IQ and gender
composition, that we are planning to perform in the near
future. Nevertheless, several research implications of our findings
and future directions are worth noting. First, using natural
language processing approaches, our group has generated several
automatic discourse measures that, when applied to transcripts of
ADOS-2 in the same sample have shown an ability to differentiate
youth with ASD from controls, both in isolation and when taken
in combination (Salem et al., 2021). A logical next step will be for
us to compare the levels of accuracy that can be achieved, on the
same subjects, by voice analysis or language analysis only, and to
evaluate if combining voice and language analysis would result
in gains of accuracy of predicting diagnostic status. Preliminary
evidence from a prior study (Gong et al., 2018) that analyzed
acoustic and linguistic features simultaneously suggested that
acoustic measures were more powerful than linguistic ones to
discriminate between ASD and controls. Second, there is a
recognized dearth of outcome measures available for treatment
research in autism (Anagnostou et al., 2015). The methodologies
that we are using to detect atypical voice and language patterns
are easy to deploy, user-friendly, objective and cost-effective, and
they can be implemented in natural settings and repeated often
without risking jeopardizing their validity. Moreover, new tools
have recently been made available through smart phone and
other technologies (Xu et al., 2014; Yatawatte et al., 2016) that
provide inexpensive and reliable ways to collect large amounts of
data in naturalistic settings. To qualify for measures of outcome
in treatment studies, it is necessary to demonstrate their ability
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to reliably capture change which could be demonstrated in
longitudinal studies (Schoen et al., 2011) or ongoing randomized
clinical trials. Third, as was already explored previously (Paul
et al., 2011; Schoen et al., 2011; Santos et al., 2013) use of voice
analysis in preverbal children at risk of developing autism could
be beneficial to early detection in preverbal toddlers. Likewise,
identification of atypical voice patterns might enhance diagnostic
procedures in young children with minimal or no language.
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