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Abstract: A force-invariant feature extraction method derives identical information for all force
levels. However, the physiology of muscles makes it hard to extract this unique information. In this
context, we propose an improved force-invariant feature extraction method based on nonlinear
transformation of the power spectral moments, changes in amplitude, and the signal amplitude
along with spatial correlation coefficients between channels. Nonlinear transformation balances
the forces and increases the margin among the gestures. Additionally, the correlation coefficient
between channels evaluates the amount of spatial correlation; however, it does not evaluate the
strength of the electromyogram signal. To evaluate the robustness of the proposed method, we use
the electromyogram dataset containing nine transradial amputees. In this study, the performance is
evaluated using three classifiers with six existing feature extraction methods. The proposed feature
extraction method yields a higher pattern recognition performance, and significant improvements in
accuracy, sensitivity, specificity, precision, and F1 score are found. In addition, the proposed method
requires comparatively less computational time and memory, which makes it more robust than other
well-known feature extraction methods.

Keywords: EMG pattern recognition; force-invariant features; nonlinear features; correlation coefficients

1. Introduction

Electromyography (EMG) measures the electrical activity of muscles, which possess
information related to their movement [1,2]. Generally, two techniques are widely used
for EMG signal acquisition: surface EMG and needle EMG [3]. Recently proposed nonin-
vasive and contactless capacitive EMG is also very promising for the acquisition of EMG
signals [4–7]. However, a feature extraction method evaluates the information indicating a
unique movement. Consequently, EMG signals are widely used as a control strategy in
myoelectric pattern recognition [8]. However, myoelectric prosthetic hand users are not
satisfied with the performance and the degree of freedom of available prosthetic hand [9].
The performance of myoelectric pattern recognition is highly influenced by wrist orienta-
tion [10,11], arm positions [12,13], electrode shift [14–16], non-stationarity characteristics of
the signal [17], mobility of subject [18], and muscle force variation [18–21]. Among these
crucial parameters, force variation is one of the vital physiological behaviors of skeletal
muscle, which plays a key role in varying the amplitude and frequency characteristics of
the EMG signal [22,23]. Therefore, researchers tried to resolve the force variation problem
in myoelectric pattern recognition.

Diagnostics 2021, 11, 843. https://doi.org/10.3390/diagnostics11050843 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-5226-0547
https://orcid.org/0000-0003-0772-0556
https://www.mdpi.com/article/10.3390/diagnostics11050843?type=check_update&version=1
https://doi.org/10.3390/diagnostics11050843
https://doi.org/10.3390/diagnostics11050843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11050843
https://www.mdpi.com/journal/diagnostics


Diagnostics 2021, 11, 843 2 of 24

Tkach et al. [24] studied the stability of EMG pattern recognition performance of
eleven time-domain features with low and high force levels using linear discriminant
analysis (LDA). They observed that the individual pattern recognition performance of each
of the time-domain features degraded when the testing force level was not used in the
training phase. In addition, they observed that the autoregression coefficient (AR) feature
showed better performance with the variation in muscle force. The AR along with the root
mean square (RMS) feature were reported by Huang et al. too [25].

Scheme et al. [20] investigated the problems associated with force variation on the
EMG pattern recognition performance. In that study, they involved intact-limb subjects
with ten hand movements. They collected EMG data for a wide range of force variation,
i.e., ranging from 20% to 80% of the maximum voluntary contraction (MVC) with a step
size of 10%. They observed a high error rate ranging from 32% to 45% with the LDA
classifier; in that study, the LDA was trained with a single force level and was tested with
all force levels. In their training scheme, a 50% training force level achieved the lowest error
rate. However, the classifier improved its performance with an error rate of 16% when the
classifier was trained with all force levels.

Al-Timemy et al. [19] proposed the time-dependent power spectrum descriptors
(TDPSD) feature extraction method; it was based on an orientation between a set of spectral
moments and a nonlinear map of the original EMG signal. In that study, they involved nine
amputees to collect EMG data associated with three force levels; each amputee performed
six hand gestures. In that study, the TDPSD achieved significant improvements from ≈6%
to 8% in the averaged values of classification performance in comparison with that of
well-known four feature extraction methods when the LDA classifier was trained with all
force levels. Furthermore, Khushaba et al. [26] proposed the temporal-spatial descriptors
(TSD), where they evaluated seven temporal features from a window and spatial corre-
lation between channels, i.e., Cx-Cy. They evaluated the performance on five datasets,
where amputees were involved in three datasets. TSD achieved a significant improvement:
at least 8% in the averaged value of classification performances for all subjects.

Most of the authors proposed their feature extraction methods to improve force-
invariant EMG pattern recognition performance, and they utilized multiple force levels for
training purposes to achieve performance at a satisfactory level. However, an ideal force-
invariant feature extraction method is such that a single force level is used for the training
purpose but is capable of recognizing the gestures at the force level used in training
and the gestures at other force levels [27]. Moreover, less time for feature extraction
and smaller memory sizes are highly desired, so that the system is implementable in a
microcontroller [28–31].

He et al. [27] proposed a feature extraction method based on discrete Fourier transform
and muscle coordination. In this study, they involved intact-limb subjects with a specific
location for electrode placement. The subjects performed eight gestures associated with
three force levels, where low, medium, and high force levels were defined as 20%, 50%,
and 80% of the MVC, respectively. Their proposed method achieved an improvement
of 11% in an average performance in comparison with those of time-domain features.
In addition, they achieved 91% force-invariant EMG pattern recognition performance when
a medium force level was used for training purpose. However, the major constraint of this
work is that it requires a specific electrode position on the forearm, which is quite hard to
ensure for all amputees. A short overview of the different feature extraction methods is
shown in Table 1.
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Table 1. Different feature extraction methods.

Paper Subject
Type

Muscle
Force Level Feature Classifier Training

Force
Accuracy

(%) Comment

Tkach et al.
[24] Intact Low and

high

Mean absolute value,
zero crossings,

slope sign change,
waveform length,

Wilson amplitude, variance,
v-order, log detector, EMG

histogram, AR,
and cepstrum coefficients.

LDA Low and
high 82 with AR

Time-domain features are
not stable with muscle

force variation.

Huang
et al. [25] Intact —

Mean absolute value,
zero crossings, slope sign
change, waveform length,

AR, and RMS

Gaussian
mixture
model

— 96
AR + RMS

AR and RMS can be
grouped for better EMG

pattern recognition
performance.

Scheme
et al. [20] Intact

20% to 80%
of MVC at

10% interval
Time-domain features LDA 20% to

80% 84
Time-domain features are
not reliable with muscle

force variation.

Al-
Timemy
et al. [19]

Amputee
Low,

medium,
and high

TDPSD includes root squared
zero-order, second-order,

and fourth-order moments;
sparseness; irregularity factor;

and waveform length ratio

LDA All 90
TDPSD improves the

performance with muscle
force variation.

Khushaba
et al. [26]

Intact
and

amputee
—

TSD, which includes root
squared zero-order,

second-order,
and fourth-order moments;

sparseness; irregularity factor;
coefficient of variation;

and Teager–Kaiser
energy operator

LDA —

99
(128

channel
EMG)

TSD improves the EMG
pattern recognition

performance

He et al.
[27] Intact

Low,
medium,
and high

Global normalized
discrete Fourier

transform-based features
LDA Medium 91

Force-invariant EMG
pattern recognition

performance is satisfactory,
but the electrode position

is specific.

Khushaba
et al. [32]

Intact
(driver
drowsi-

ness
detec-
tion)

—

Symmlet-8
decomposition-based Wavelet

features including energy,
variance, standard deviation,

waveform length,
and entropy

LDA — 97

Performance is better in
another field, so the

features may be applicable
for force-invariant EMG

pattern recognition.

Du et al.
[33] Intact —

Time-domain features (TDF)
including the integral

of EMG, waveform length,
variance, zero-crossing,

slope sign change,
and Wilson amplitude

Grey
relational
analysis

— 96

Performance is better,
so these features may be

utilized for force-invariant
EMG pattern recognition.

Hudgin
et al. [34]

Intact
and

amputee
—

Mean absolute value,
mean absolute value slope,
zero crossings, slope sign

change, and waveform length

Neural
Network —

91.2 for
intact

subject and
85.5 for

amputee

Performance is not
satisfactory for amputees,

but the features are
fundamental.

In this context, we attempt to improve the force-invariant EMG pattern recognition per-
formance of transradial amputees. It is more challenging than that for intact-limb subjects
since the muscle structure of the amputee is not perfect as for intact-limb subject [35,36].
In this study, we propose an improved force-invariant feature extraction method. It is the
extension of the pilot work of Khushaba et al. [26], where the authors used higher-order
moments as a feature [13,19,26]; however, they did not use frequency information of the
corresponding higher-order moments. However, Hudgin et al. [34] suggested that fre-
quency information along with EMG signal strength obtain better performances. Therefore,
to determine the higher-order spectral moments along with frequency information, we em-
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ploy the time derivative of the signal [26]. Moreover, all considered features are nonlinearly
transformed, which associates the EMG signal with a low force more discriminable than
that of the high force level. Thus, this transformation balances the forces associated with
different gestures and enhances the separation margin among those gestures. In addition
to these nonlinear features, we consider the correlation coefficient (CC) for all channel pairs;
it requires less computational time since only a single parameter is calculated instead of cal-
culating all of the features, which are mentioned in [26]. An interesting salient characteristic
of the CC is that it determines the correlation between channels placed on the underlying
muscle groups except for the amplitude of the EMG signal, which is proportionally varied
with respect to the muscle force level. Therefore, it is expected that the CC would perform
well in force-invariant EMG pattern recognition performance.

In this study, we use an EMG dataset containing transradial amputees to evaluate
force-invariant EMG pattern recognition performance when the proposed feature extraction
method is used. In addition, we compare the performance and robustness between the
proposed feature extraction method and the existing six well-known feature extraction
methods with respect to three different classifiers.

The remainder of this paper is structured as follows. Section 2 describes the proposed
feature extraction method, EMG dataset, and EMG pattern recognition method. Section 3
shows the force-invariant EMG pattern recognition performance, where the resulting
performances are compared with those of other considered well-known feature extraction
methods. Section 4 investigates the reasons behind the obtained improved performance,
and Section 5 summarizes the overall experimental results.

2. Materials and Methods
2.1. The Proposed Feature Extraction Method

A discrete EMG signal can be expressed for window size N as x[iT], i = 0, 1, 2, 3, . . . . ., N− 1,
with a sampling frequency of fS Hz, where T = 1

fS
. However, x[iT] is also expressed as x[i].

Parseval Theorem in Equation (1) states that the sum of the square of a function is identical
to the sum of the square of its Fourier transform.

N−1

∑
i=0

x[i]2 =
1
N

N−1

∑
k=0

X[k]X∗[k] =
N−1

∑
k=0

P[k] (1)

where X∗[k] is the conjugate of X[k] and P[k] is the corresponding power spectral density
with a frequency index of k. The following equation relates the derivative of the time-
domain signal to the frequency-domain signal.

F[∆nx[i]] = knX[k] (2)

where F is the discrete Fourier transform operator and n is the order of derivative. Therefore,
the proposed features using Equations (1) and (2) are as follows:

Zero-order power spectrum (P0): The zero-order power spectrum measures the signal
strength in the frequency domain [13,19,26]. According to Equation (1), P0 can be defined
in the following way.

P0 =
N−1

∑
i=0

x[i]2 (3)

Second-, fourth-, and sixth-order power spectra (P2, P4, and P6): Hjorth et al. [37]
defined a second-order moment as the power of the signal. Therefore, according to
Equation (2), it is defined as follows:

P2 =
N−1

∑
k=0

k2P[k] =
1
N

N−1

∑
k=0

[kX[k]]2 =
N−1

∑
i=0

[∆x[i]]2 (4)
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Therefore, the higher-order power spectrums are defined by repeating the process.

P4 =
N−1

∑
k=0

k4P[k] =
1
N

N−1

∑
k=0

[k2X[k]]
2
=

N−1

∑
i=0

[∆2x[i]]
2

(5)

P6 =
N−1

∑
k=0

k6P[k] =
1
N

N−1

∑
k=0

[k3X[k]]
2
=

N−1

∑
i=0

[∆3x[i]]
2

(6)

The odd-order power spectrums are zero. As a result, only effective even order power
spectra P2, P4, and P6 are considered.

First- and second-order average amplitude change (AC1 and AC2): Unlike in [34],
the average of changes in amplitude denotes indirect frequency information. A higher
change in amplitude implies higher frequency and vice versa.

AC1 =
1

N − 1

N−1

∑
i=0
|∆x| (7)

AC2 =
1

N − 2

N−1

∑
i=0

∣∣∣∆2x
∣∣∣ (8)

Mean Value (MV): According to [34], the mean value represents the signal strength
that can be defined mathematically,

MV =
1
N

N−1

∑
i=0
|x[i]| (9)

EMG pattern recognition performance varies with respect to force variation [19].
In addition, EMG signals, when their amplitude values are small, also suffer from the
least separable margin among them. Some of the nonlinear functions, the square root,
and logarithm were used, which were described in [13,31]. Besides these, we additionally
employed the logarithm (logex) on the seven extracted features to obtain the final features,
f1, f2, f3, f4, f5, f6, and f7 as shown in Figure 1.

Correlation coefficients: The size of a motor unit and its firing rate change muscle
force, which in turn play a role in varying the EMG signal’s amplitude and its frequency
spectrum [22]. Consequently, the amplitude- and frequency-domain features extracted
from that EMG signal also fluctuate. Naturally, these fluctuations of the features highly
affect EMG pattern recognition performance [20,27]. However, this problem caused by the
force variation can be minimized if the features are made force independent.

The CC statistically determines the strength and direction of a linear relationship
between two variables. The most salient feature of CC is that it is independent of origin
and the unit of measurement of the two considered variables. In the case of multichan-
nel EMG signal acquisition, the CC between any two channels placed on the underlying
muscles varies with respect to the gestures since active muscles are unique for each ges-
ture. Additionally, the active muscles that change the strength of the EMG signal remain
unchanged for all forces [27]. Therefore, it is expected that the CC is a force-independent
feature. The linear correlation coefficient ρ(x,y) for the channels x and y is given by the
following formula.

ρ(x, y) =
Cov(x, y)

σxσy
=

N−1
∑

i=0
(xi − x)(yi − y)√

N−1
∑

i=0
(xi − x)2

√
N−1
∑

i=0
(yi − y)2

(10)

Where x,y, and N represent the mean of the channel x, the mean of the channel y, and
the number of samples in a channel, respectively. If there exists n number of channels,
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then the number of channel pair is nC2, which is equal to the dimension of the correlation
coefficient feature. The whole feature extraction procedure is as follows:
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Figure 1. The block diagram of the proposed feature extraction procedure.

2.2. Description of EMG Dataset

The EMG dataset of transradial amputees was collected from the dedicated website of
the second author [19]. The dataset contains nine transradial amputees, seven traumatic
(TR1–TR7), and two congenital (CG1 and CG2) amputees, where each amputee was asked
to perform six gestures during the process of data collection. The considered gestures were
thumb flexion, index flexion, fine pinch, tripod grip, hook grip (hook or snap), and spherical
grip (power). However, it was a very challenging task for transradial amputees to perform
an imaginary gesture. Therefore, the amputees employed the support of their intact hand to
perform an imaginary gesture. In addition to their intact hand, the amputees also used the
LabVIEW (National Instruments, Ostin, TX, USA) software to observe the visual feedback
for each channel. During this EMG data collection process, each amputee produced three
force levels; those were defined as low, medium, and high. They maintained different force
levels while watching real-time EMG signal displayed on the LabVIEW screen. However,
each transradial amputee performed five to eight trials with a duration of 8 to 12 s. Thus,
the total number of EMG signals collected from an amputee is equal to the product of the
number of forces, gestures, and trials. In this EMG signal acquisition process, a custom-
build EMG signal acquisition system was employed, where the EMG signal was sampled
at 2000 Hz. Additionally, the Ag/AgCl electrode (Tyco healthcare, Germany) was used.
In this data collection process, differential signal electrode pairs were placed around the
forearm of the amputee and their ground electrode was placed on the elbow joint (Figure 2).
In this dataset, the number of EMG signal channel varied (8 to 12) from one amputee to
another depending on the remaining stump length; however, the first eight channels are
common to all amputees and these electrodes were placed around their forearm only.
Therefore, we employed data collected from these eight channels to evaluate the EMG
pattern recognition [19]. In addition to the considered electrode position, we employed
the first five trials for the evaluation of EMG pattern recognition performance; each trial
collected at different times indicated the identical gesture. However, to maintain the 5-fold
cross-validation described in Section 2.3, we considered the first five trials.
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Figure 2. The position of electrodes for EMG data acquisition from an amputee. Source: Electromyo-
gram (EMG) repository (rami-khushaba.com) (accessed on 07 May 2021).

2.3. EMG Pattern Recognition

In this study, for the performance analysis of EMG pattern recognition, we used
the popular software MATLAB® 2017a (Mathworks, Natick, MA, USA). An overlapped
rectangular windowing scheme was used with a duration of 150 ms, and adjacent windows
were overlapped with a duration of 50 ms [19]. The required average delay between
successive prediction was 100+τ ms (τ is the required time for predicting a classifier);
therefore, the processing time or average system delay was set within the acceptable
limit of the real-time prosthetic hand [38]. Each window with a duration of 150 ms
for the EMG signal was preprocessed using cascaded digital filters, where a high pass
filter of 20 Hz, a low pass filter of 500 Hz, and a notch filter of 50 Hz were used to
remove movement artefact [39], high-frequency noise [28], and power line artefact [40],
respectively. In the feature extraction section, the proposed features, f1, f2, f3, f4, f5, f6, f7,
and CC, were evaluated with a feature dimension of 84 (number of features × number
of channels + nC2 correlation coefficients = 7 × 8 + 28 = 84). Therefore, we compared the
proposed feature extraction method against six well-known feature extraction methods
associated with three different force levels. These include the following:

TSD [26] describes seven features, the root squared zero-order, second-order, and fourth-
order moments; sparseness; irregularity factor; coefficient of variation; and the Teager–
Kaiser energy operator. Additionally, these seven features were evaluated from each differ-
ence between pairs of channels, i.e., Cx − Cy. Therefore, TSD provides 252 dimensional fea-
tures (number of features× (number of channels + nC2 pair of Cx − Cy) = 7 × (8 + 28) = 252).

TDPSD [19] defines six features that are extracted from the time-domain EMG sig-
nal. TDPSD features include the root squared zero-order, second-order, and fourth-order
moments; the sparseness; the irregularity factor; and waveform length ratio. Hence,
TDPSD provides a 48-dimensional feature space.

Wavelet features [32] includes the energy, variance, standard deviation, waveform
length, and entropy computed from five levels of decomposition of the coefficients using
the Symmlet-8 wavelet family. The wavelet feature dimension is 240 (number of features ×
(decomposition level + original) × number of channels = 5 × (5 + 1) × 8 = 240).

Du et al. [33] used the six time-domain features (TDF), which were the integral of EMG,
waveform length, variance, zero-crossing, slope sign change, and the Wilson amplitude.
Therefore, the dimension of the TDF is 48.
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Huang et al. [25] used seven features, which were the six order of AR along with the
RMS value (AR-RMS). It created a 56-dimensional feature space.

Hudgin et al. [34] defined five features, with four of them (TD) being very popular
for myoelectric pattern recognition: the mean absolute value, waveform length, zero-
crossing, and slope sign change. Therefore, these four features produce a 32-dimensional
feature space.

To reduce the computational time, a higher dimensional feature space was reduced
to c− 1(c is the number of gestures) by using the spectral regression discriminant anal-
ysis [41]. In EMG pattern recognition, different classifiers are widely used. These are
convolutional neural networks (CNNs) [42,43], artificial neural networks (ANNs) [1,44],
linear discriminant analysis (LDAs) [45], support vector machines (SVMs) [46,47], and k-
nearest neighbors (KNNs) [48,49]. Among these classifiers, the CNN provides better EMG
recognition performance but requires a higher time for learning the model [50]. Therefore,
we employed widely used classifiers: the LDA with quadratic function [20,51], the SVM
with gaussian radian basis function [46], and the KNN with the number of neighbors equal
to three [13]. In this performance evaluation, four trials from the first five were used as
training data and the remaining one was used as testing data. Additionally, the process
was repeated five times so that each of the trials was used as testing data, which is called
5-fold cross-validation. In this performance evaluation, the performance (F1 score) of
each fold is found consistent with respect to other folds, which confirms that the data are
not overfitted. However, the number of the training sample is equal to the product of
the number of training force levels, training trials, gestures, and the number of samples
per trial. Similarly, the number of testing sample is the product of the number of testing
force levels, testing trials, gestures, and the samples per trial. In this dataset, the EMG
signal duration varies from 8 to 12 s. Hence, the number of training and testing samples
also varies slightly from one amputee to another. Finally, the EMG pattern recognition
performance was measured in terms of accuracy, sensitivity, specificity, precision, and F1
score [52,53]. These parameters are evaluated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

Precision =
TP

TP + FP
(14)

F1Score =
2× Precision× Sensitivity

Precision + Sensitivity
(15)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative value values, respectively.

2.4. EMG Pattern Recognition Performance with Training Strategies of Various Force Level

In daily life, we frequently change muscle forces as required for every movement.
Recent studies [19,20,27] illustrated the effect of training strategies with respect to various
force levels on EMG pattern recognition performance. Therefore, we study some training
and testing schemes for the proposed feature extraction method and considered well-
known feature extraction methods

Case 1: Training and testing the classifiers with the same force level.
Case 2: Training the classifiers with a single force level at a time and testing the

classifiers with all three force levels.
Case 3: Training the classifiers with any two force levels at a time and testing the

classifiers with all three force levels.
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Case 4: Training the classifiers with all three force levels and testing the classifiers
with all three force levels.

2.5. Statistical Test

To determine the significant difference between the proposed method and other
methods, the Bonferroni-corrected Analysis of Variance (ANOVA) test is utilized with a
significant level of 0.05. The obtained p-values below 0.05 imply that the performances of
the proposed method are significantly different. In this study, the EMG pattern recognition
performances of nine amputees for each training case (i.e., Case 1, Case 2, and Case 3)
are concatenated to construct a 27-dimensional vector (9 amputees × 3 training schemes
for each case), and then, the Bonferroni-corrected ANOVA is performed. Additionally,
only ANOVA is performed in Case 4, where the number of training case is one.

2.6. RES Index

To evaluate the clustering performance of a feature or a feature extraction method,
the RES (ratio of Euclidean distance to standard deviation) index is employed. The higher
RES index specifies a higher separation margin among the classes and vice versa. The RES
index can be evaluated as follows [54]:

RES Index =
ED
σ

(16)

where ED is the Euclidean distance between gesture p and q; it is defined mathematically,

ED =
2

K(K− 1)

K−1

∑
p=1

K

∑
q=p+1

√
(m1p −m1q)

2 + (m2p −m2q)
2 (17)

where m and K denote the mean value of a feature and the total number of gestures.
Dispersion of cluster p and q is given by

σ =
1

IK

I

∑
i=1

K

∑
k=1

Sik (18)

where I is the size of the feature vector.

3. Results
3.1. Signal Observation

To observe the impact of muscle force variation on a gesture, we considered thumb
flexion hand gesture. Figure 3a shows the raw EMG signal for three muscle force levels
(low, medium, and high) considering a window size of 150 ms. In addition to the raw
EMG signal, one feature (f1) was calculated and is shown in the spider plot (Figure 3b).
Both figures indicate that the EMG signal strength increases with respect to the increase in
muscle force level. Additionally, it is noticed from Figure 3b that, although the strength
of the EMG signal increases with respect to the increase in muscle force level, the muscle
activation pattern obtained throughout the channels is almost unique for all force levels.
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raw EMG signal and (b) presents normalized feature (f1).

3.2. Impact of Nonlinear Transformation

The impact of the nonlinear transformation (logarithm) on the 2D-feature space is
shown in the scatter plot (Figure 4). In this scatter plot, we employed 25 sample points
for each gesture from the dataset of amputee 1. Thus, the total number of sample points
on the scatter plot is equal to 450 (muscle force levels × gesture × number of sample
points for each movement = 3 × 6 × 25). The left (Figure 4a) and right (Figure 4b) scatter
plots indicate the original features (MV, P0, P2, P4, P6, AC1, AC2, and CC) and nonlinearly
transformed features ( f1, f2, f3, f4, f5, f6, f7, and CC). In these figures, each color indicates
a gesture. First, the 84-dimensional feature space for each force level is reduced to a 5-
dimensional feature space using the SRDA. Thereafter, among this 5-dimensional feature
space, the first two were normalized and were used for these scatter plots. The figures show
that there is an almost unique muscle activation pattern among the gestures associated with
all force levels. Additionally, the logarithm discriminates more for low amplitude values
and discriminates less for high amplitude values. Figure 4b shows a higher RES index than
Figure 4a, which means that the margin among the gestures is increased. In addition to an
improvement in separation margin, the nonlinear transformation also has a more compact
cluster among the forces for each gesture.
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Figure 4. The impact of the nonlinear transformation of seven features on a 2D-feature space:
(a) original feature space and (b) nonlinearly transformed feature space.

3.3. The Impact of Window Length on Clustering Performance

To determine the impact of variable window length on clustering performance,
we vary the window length from 50 ms to 400 ms with an equal interval of 50 ms. Then,
we observed the scatter plot and the RES index simultaneously, which is shown in Figure 5.
In this performance evaluation, the scatter plot visualizes the clustering performance and
the separation margin among the gestures, and the RES index indicates their quantitative
value. However, to evaluate the performance, we employed 25 sample points for each
gesture from the dataset of amputee 1. Thus, the total number of sample points on the
scatter plot is equal to 450 (muscle force levels × gesture × number of sample points
for each movement = 3 × 6 × 25). First, 84-dimensional feature space associated with
each force level was reduced to a 5-dimensional feature space using the SRDA. Thereafter,
among this 5-dimensional feature space, the first two features (SRDA feature 1 and SRDA
feature 2) were normalized and were used in scatter plots. The experimental results shown
in Figure 5 indicate that the clustering performance (RES index) decreases with respect
to the decrease of window length. It is also observed that there are some fluctuations in
performance (RES index) when the window length is higher than 200 ms. The stochastic
nature of the EMG signal may be a reason behind this fluctuation of clustering performance.
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Figure 5. The impact of window length on clustering performance, where (a–h) stand for window
lengths of 50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350 ms, and 400 ms, respectively.

3.4. Training and Testing the Classifiers with Same Force Level (Case 1)

Training and testing the classifiers with the same force level is a common strategy
found in many studies. In this training and testing scheme, the average EMG pattern
recognition performances across nine transradial amputees were evaluated by accuracy,
sensitivity, specificity, precision, and F1 score, which are shown in Appendix A (Table A1).
In addition, the performances are also graphically shown in Figure 6 using the F1 score,
since the F1 score is a combined outcome of sensitivity and precision. The experimental
results imply that the proposed feature extraction method yields the highest EMG pattern
recognition performance in terms of all performance evaluating parameters compared
to those of the considered existing feature extraction methods. In this comparison, the
recently proposed TSD yields the second-highest EMG pattern recognition performance.
The proposed feature extraction method improves the accuracy, sensitivity, specificity,
precision, and the F1 score by 0.58, 1.73, 0.32, 1.42, and 1.77, respectively, when the SVM
classifier is trained and tested with a medium force level. In addition, the proposed feature
extraction method shows a consistency in the performance improvement when the LDA
and the KNN are used. Moreover, the significant difference between the proposed feature
extraction method and each of the existing feature extraction methods is also confirmed by
the Bonferroni-corrected ANOVA. The obtained highest p-value is 1.55× 10−4 considering
each of the performance-evaluating parameters with each classifier, which strongly indicate
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that the performance achieved by the proposed feature extraction method is significantly
different from those of the other methods.
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Figure 6. The EMG pattern recognition performances when the training and testing forces are the
same, where Tr and Ts indicate training and testing, respectively.

3.5. Training the Classifiers with a Single Force Level at a Time and Testing the Classifiers with All
Three Force Levels (Case 2)

In this scheme (Case 2), the classifiers were trained with a single force level and then
those were tested with that known force level used in training along with two other un-
known force levels. The average performances for all performance evaluating parameters
with standard deviation across nine amputees are represented in Appendix A (Table A2).
The summary of Table A2 is also graphically shown in Figure 7, where the F1 score was
employed only for simplicity. The experimental results show that unknown forces degrade
the EMG pattern recognition performance compared to those obtained in Case 1. However,
an interesting finding is that the classifiers can predict the unknown force levels as being
low and high more effectively when the classifiers are trained with a medium force level.
Additionally, in this single force level training scheme, the LDA and SVM classifiers yield al-
most the same EMG pattern recognition performances, which are slightly better than those
obtained from the KNN classifier. However, even in the worst case, the proposed feature
extraction method yields the highest EMG pattern recognition performance considering
each performance evaluating parameters compared to those of other feature extraction
methods. In the best case, when a medium force level training scheme is used, the proposed
feature extraction method improves the accuracy, sensitivity, specificity, precision, and the
F1 score by 1.12, 3.35, 0.67, 2.86, and 3.30, respectively, when the proposed method is
compared with those of the TSD and the SVM classifier. Therefore, the obtained p-values
between the proposed method and the other methods considering each classifier are very
small, and its values are smaller than 9.27× 10−4, which ensures a significant improvement
by the proposed feature extraction method.
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Figure 7. The EMG pattern recognition performances when training the classifiers with a single force
level and testing with three force levels, where Tr and Ts indicate training and testing, respectively.

3.6. Training the Classifiers with Any Two Force Levels at a Time and Testing the Classifiers with
All Three Force Levels (Case 3)

The average EMG pattern recognition performances in terms of accuracy, sensitivity,
specificity, precision, and F1 score for the proposed feature extraction method and those of
the other well-known methods are shown in Appendix A (Table A3). In this case, the classi-
fiers are trained with any two force levels and tested with all force levels. The EMG pattern
recognition performances for different training pair of forces are graphically shown in
Figure 8, where only a single parameter, the F1 score, is used for simplicity. The experimen-
tal results imply that, when the number of training force level is increased, the classifiers
improve their pattern recognition performance in recognizing two known force levels used
in training and an unknown force level. In this training case, we achieved an improvement
in the F1 score by about 10% compared to that of Case 1. In this study, the proposed
feature extraction method improves the accuracy, sensitivity, specificity, precision, and the
F1 score by 0.57, 1.73, 0.36, 1.66, and 1.74, respectively, when the SVM classifier is trained
with low and high force levels and is tested with all force levels. In addition, the obtained
p-values between the proposed feature extraction method and each of the existing feature
extraction methods considering each classifier are very low and the values are lower than
4.50× 10−6, which shows a significant performance improvement by the proposed feature
extraction method.
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Figure 8. The EMG pattern recognition performances when the training forces are two and the testing
forces are three, where Tr and Ts indicate training and testing, respectively.

3.7. Training the Classifiers with all Three Force Levels and Testing the Classifiers with All Three
Force Levels (Case 4)

In this case, all force levels were used to train and test the classifiers. Then, the EMG
pattern recognition performances in terms of accuracy, sensitivity, specificity, precision, and
the F1 score were evaluated for all considered feature extraction methods, which are shown
in Appendix A (Table A4). The EMG pattern recognition performances are also graphically
shown in Figure 9 using the F1 score only. Following the previous trend, the proposed
feature extraction method improves the accuracy, sensitivity, specificity, precision, and
the F1 score by 0.57, 1.70, 0.33, 1.53, and 1.70, respectively, compared with those obtained
from the TSD using the SVM classifier. In this study, the proposed method yields the
highest F1 score of 89.06% with the SVM classifier. Therefore, ANOVA is performed
between the proposed feature extraction method and each of the existing feature extraction
methods for each classifier. The obtained p-values are very small, and the values are smaller
than 1.21× 10−2 considering all of the cases, which confirms the significant performance
improvement by the proposed feature extraction method.

Diagnostics 2021, 11, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 8. The EMG pattern recognition performances when the training forces are two and the 

testing forces are three, where Tr and Ts indicate training and testing, respectively. 

3.7. Training the Classifiers with all Three Force Levels and Testing the Classifiers with all Three 

Force Levels (Case 4) 

In this case, all force levels were used to train and test the classifiers. Then, the EMG 

pattern recognition performances in terms of accuracy, sensitivity, specificity, precision, 

and the F1 score were evaluated for all considered feature extraction methods, which are 

shown in Appendix A (Table A4). The EMG pattern recognition performances are also 

graphically shown in Figure 9 using the F1 score only. Following the previous trend, the 

proposed feature extraction method improves the accuracy, sensitivity, specificity, preci-

sion, and the F1 score by 0.57, 1.70, 0.33, 1.53, and 1.70, respectively, compared with those 

obtained from the TSD using the SVM classifier. In this study, the proposed method yields 

the highest F1 score of 89.06% with the SVM classifier. Therefore, ANOVA is performed 

between the proposed feature extraction method and each of the existing feature extrac-

tion methods for each classifier. The obtained p  values are very small, and the values 

are smaller than 21.21 10  considering all of the cases, which confirms the significant 

performance improvement by the proposed feature extraction method. 

 

Figure 9. The average performances when the classifiers are trained and tested with three forces. 

70

75

80

85

90

95

LDA SVM KNN LDA SVM KNN LDA SVM KNN

Tr Low & Med, Ts All Tr Low & High, Ts All Tr Med & High, Ts All

F
1 

S
co

re
 (

%
)

Proposed TSD TDPSD Wavelet TDF AR-RMS TD

75

77

79

81

83

85

87

89

91

93

95

LDA SVM KNN

F
1

 S
co

re
 (

%
)

Proposed TSD TDPSD Wavelet TDF AR-RMS TD

Figure 9. The average performances when the classifiers are trained and tested with three forces.

To compare the amputee-wise performance among all considered feature extraction
methods, we used the SVM classifier only since it provides better performance in most
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cases. The obtained results shown in Figure 10 implies that the proposed feature extraction
method yields the highest performance (F1 score) in most of the amputees (except for TR6).
However, in some amputees (TR1, TR7, and CG1), TSD yields a performance similar to
that of the proposed feature extraction method.
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Figure 10. The amputee-wise performance when the SVM is trained and tested with three forces.

3.8. Computational Time and Memory Size

To measure the computational load for each feature extraction method, we considered
computational time and memory size [30,31]. We measured the computational time of each
method using an Intel Core i3-7100U CPU with 2.40 GHz processor and 8 GB RAM; we used
the MATLAB® 2017a. The recorded computational times shown in Figure 11 demonstrate
that the proposed feature extraction method requires the lowest time except for the TD.
However, we know that TD offers a very low performance compared to those of the
proposed method in all the cases. In addition to the computational time, we also computed
the memory size used by each of the feature extraction methods; we used the MATLAB®

2017a function (whos) for this purpose. Figure 12 shows that the proposed feature extraction
method requires less memory than those required by TSD and Wavelet. Although TDPSD,
TDF, AR-RMS, and TD require less memory than that required by the proposed feature
extraction method, their EMG pattern recognition performances are lower than those of
the proposed method. Therefore, we claim that the proposed feature extraction method is
faster and requires less or compatible memory when recognition performance is taken into
account. Therefore, the proposed method is suitable for real-time operation.
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4. Discussion

Muscle force variation is a frequently used scenario in daily life. The amount of
muscle force for a particular activity is set by the central nervous system (CNS), which is
trained from our daily activities since childhood [27,55]. During muscle force variation,
the CNS varies the time- and frequency-domain characteristics of the EMG signal, which in
turn drastically varies the features that become unsuitable to achieve force-invariant EMG
pattern recognition performance. Thus far, it is found that the EMG pattern recognition per-
formance is significantly degraded when unknown force levels are used for testing [21–23].
The problem becomes more challenging when we consider amputees rather than intact-limb
subjects [35,36].

In this study, we propose an improved force-invariant feature extraction method
considering seven nonlinear features along with the CC, which is validated over nine
transradial amputees and is compared with those of the six existing feature extraction
methods considered. The proposed feature extraction method is an extension of the TSD
and the TD [26,34], but it provides improved force-invariant EMG pattern recognition
performance compared to those of the original works. In addition, the proposed feature
extraction method requires less computational time than those required by other feature
extraction methods except for the TD [19,25,26,32,33]. TD requires slightly less computa-
tional time than that of the proposed method, but the performance of the TD is very low
and it cannot meet the criteria of a satisfactory performance [20]. In addition, the proposed
feature extraction method also requires comparatively less memory than that required
by the TSD and the Wavelet. Therefore, the proposed feature extraction method may be
implemented using a microcontroller [30,31].

The proposed feature extraction method provides improved force-invariant pattern
recognition performance due to the use of the higher-order indirect frequency information
along with its moments, the nonlinear transformation of signals and the CC. The indirect
frequency information of the higher-order differential signal is an important issue since
the differential signal makes a nonlinear variation in frequency-domain, which in turn
emphasizes the high-frequency EMG signal. Additionally, the nonlinear transformation
balances the forces and enhances the separation margin among gestures. Finally, the CC
measures the correlation between any two EMG channels, which has a great contribution
to the improved force-invariant EMG pattern recognition obtained. The salient feature of
CC is that it does not depend on the signal strength of each channel; in fact, it depends on
the activity of the underlying active muscle. Hence, the CC values are varied with respect
to the gesture only.

It is a challenging task to train the classifier by employing all possible force levels for
each gesture such as how we utilize various force levels for each gesture in our daily activi-
ties [27]. In this context, the force-invariant EMG pattern recognition performance of our
proposed feature extraction method shows good performance when we test the classifier
with the gestures of an unknown force level (Case 2 and Case 3). The experimental results
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reveal that the proposed feature extraction method performs better in force-invariant EMG
pattern recognition (Case 2 and Case 3) in terms of all performance evaluating parameters,
i.e., accuracy, sensitivity, specificity, precision, and the F1 score. However, in this study, it is
also observed that the proposed force-invariant feature extraction method does not yield
EMG pattern recognition performance at a satisfactory level; this is due to the deformed
structure of muscle of amputees and the lack of their proper training [35,36]. Therefore,
the classifier is trained and tested with all force levels (Case 4); however, the robust charac-
ter of the proposed feature extraction method is that it also performs better than those of
existing feature extraction methods. In addition, the proposed feature extraction method
performs better for regular EMG pattern recognition performance, when the classifier is
trained and tested with one force levels (Case 1). In this training strategy, the performance
obtained is much better (about 3 to 4 in the F1 score) than that of the classifier when trained
and tested with all force levels (Case 4). The possible reason for degraded performance in
Case 4 may be that the muscle activation pattern for each gesture of transradial amputees
is not unique and is repetitive; that means that it does not follow the same manner among
the force levels. Therefore, an amputee should be trained properly to achieve an improved
EMG pattern recognition performance with respect to various force levels.

In this study, the performance of the proposed feature extraction method is evaluated
with the LDA, SVM, and KNN classifiers with different training and testing cases. In all
cases, the proposed feature extraction method shows consistently improved performance
compared to those of existing feature extraction methods, which proves its robustness.
Moreover, the lowest p-values between the proposed method and each of the methods
also demonstrate the statistical significance of the experimental results. In this research,
the LDA and the SVM classifiers show almost equal performances, which are slightly better
than that for the KNN. However, the SVM classifier yields the highest F1 score of 89.06%
with our proposed feature extraction method when the classifier is trained with three forces.
The achieved performance is much better than the original work of the TDPSD, the TSD,
and the recently proposed fractal feature set [19,26,56].

In this study, it is also observed that the classifiers yield the highest EMG pattern
recognition performance when only medium force level, and combined low and high force
levels are used to train the classifiers. It reveals that adjacent forces are highly interrelated,
which may privilege the classifier for achieving the highest EMG pattern recognition
performance. Therefore, it is suggested to train the classifier with such force levels that
each testing force level is highly interrelated.

Another important point to note is that the traumatic amputees provide slightly better
EMG pattern recognition performance than congenital amputees since they had intact
limbs before the trauma occurred, and for this reason, they have better control over their
muscle. However, regardless of the type of amputee, the proposed feature extraction
method is promised to provide the highest or very close to the highest performance in all
type of amputees.

In this study, we compared our proposed feature extraction method offline with
respect to standard datasets collected from [19]. Real-time analysis with other amputees
will be performed in future work.

5. Conclusions

In this research, a new time-domain feature extraction method is proposed to obtain
improved force-invariant EMG pattern recognition performance. The proposed feature
extraction method improves the performance across nine transradial amputees in terms
of accuracy, sensitivity, specificity, precision, and F1 score. In addition to improved per-
formance, it requires relatively less computational time and memory than others. In this
study, the recently proposed method, TSD, provides the second-best performance after the
proposed method, but it requires too much processing time and memory due to its high
dimensional feature space. Moreover, Bonferroni-corrected ANOVA implies significant
differences between the proposed method and the other methods. Therefore, the proposed
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feature extraction method is the best option to obtain improved force-invariant myoelectric
pattern recognition using a microcontroller.
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Appendix A. The EMG Pattern Recognition Performance for Different Training and
Testing Cases

Table A1. The EMG pattern recognition performances when the classifiers are trained and tested with the same force level.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD

Tr
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ng
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d

te
st
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g

w
it

h
lo

w
fo

rc
e Accuracy

LDA 97.86 ± 1.59 97.20 ± 1.65 96.97 ± 2.50 96.49 ± 2.73 95.88 ± 2.71 95.81 ± 2.69 95.17 ± 3.10
SVM 97.93 ± 1.70 97.36 ± 1.67 97.06 ± 2.57 96.41 ± 2.91 95.88 ± 2.83 95.80 ± 2.88 95.11 ± 3.19
KNN 97.78 ± 1.78 97.26 ± 1.86 96.87 ± 2.81 96.13 ± 3.13 95.55 ± 3.00 95.27 ± 3.28 94.69 ± 3.52

Sensitivity
LDA 93.57 ± 4.77 91.60 ± 4.96 90.91 ± 7.50 89.46 ± 8.20 87.65 ± 8.14 87.43 ± 8.06 85.52 ± 9.31
SVM 93.80 ± 5.09 92.09 ± 5.01 91.19 ± 7.72 89.22 ± 8.74 87.64 ± 8.48 87.39 ± 8.65 85.34 ± 9.56
KNN 93.34 ± 5.35 91.79 ± 5.59 90.60 ± 8.44 88.40 ± 9.39 86.64 ± 8.99 85.80 ± 9.84 84.06 ± 10.55

Specificity
LDA 98.71 ± 0.92 98.32 ± 0.96 98.21 ± 1.45 97.90 ± 1.60 97.56 ± 1.50 97.47 ± 1.59 97.14 ± 1.74
SVM 98.75 ± 1.00 98.42 ± 0.98 98.27 ± 1.52 97.86 ± 1.72 97.56 ± 1.62 97.46 ± 1.74 97.12 ± 1.79
KNN 98.65 ± 1.08 98.33 ± 1.12 98.12 ± 1.71 97.66 ± 1.89 97.32 ± 1.78 97.11 ± 2.04 96.82 ± 2.06

Precision
LDA 94.48 ± 4.18 92.47 ± 4.42 91.86 ± 6.83 90.52 ± 7.58 88.95 ± 7.33 88.81 ± 7.62 87.07 ± 8.48
SVM 94.46 ± 4.41 93.03 ± 4.62 92.09 ± 7.04 90.12 ± 8.14 88.83 ± 7.85 88.56 ± 8.08 86.91 ± 8.73
KNN 93.95 ± 4.78 92.68 ± 5.17 91.43 ± 7.97 89.29 ± 8.89 87.69 ± 8.60 86.91 ± 9.54 85.47 ± 10.29

F1 Score
LDA 93.30 ± 4.91 91.28 ± 5.06 90.69 ± 7.65 89.29 ± 8.32 87.39 ± 8.15 87.14 ± 8.07 85.01 ± 9.51
SVM 93.64 ± 5.18 91.89 ± 5.05 91.05 ± 7.87 89.07 ± 8.85 87.42 ± 8.52 87.25 ± 8.64 85.01 ± 9.76
KNN 93.22 ± 5.46 91.60 ± 5.69 90.44 ± 8.72 88.24 ± 9.55 86.39 ± 9.10 85.55 ± 10.0 83.67 ± 10.86

https://www.rami-khushaba.com/electromyogram-emg-repository.html
https://www.rami-khushaba.com/electromyogram-emg-repository.html
https://www.rami-khushaba.com/electromyogram-emg-repository.html
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Table A1. Cont.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD

Tr
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h
m

ed
iu

m
fo

rc
e

Accuracy
LDA 97.89 ± 1.05 97.30 ± 1.03 96.75 ± 1.68 96.21 ± 1.80 95.91 ± 1.79 96.00 ± 1.92 95.13 ± 2.21
SVM 97.91 ± 1.09 97.33 ± 1.06 96.96 ± 1.68 96.12 ± 1.85 95.95 ± 1.8 95.85 ± 1.98 95.10 ± 2.25
KNN 97.65 ± 1.20 97.17 ± 1.15 96.56 ± 1.87 95.75 ± 2.09 95.53 ± 2.17 95.53 ± 2.29 94.55 ± 2.52

Sensitivity
LDA 93.66 ± 3.16 91.90 ± 3.09 90.25 ± 5.03 88.62 ± 5.40 87.72 ± 5.38 88.00 ± 5.77 85.40 ± 6.62
SVM 93.72 ± 3.27 91.99 ± 3.19 90.87 ± 5.05 88.36 ± 5.55 87.84 ± 5.40 87.55 ± 5.94 85.31 ± 6.76
KNN 92.96 ± 3.61 91.52 ± 3.45 89.68 ± 5.61 87.24 ± 6.28 86.59 ± 6.50 86.58 ± 6.87 83.66 ± 7.57

Specificity
LDA 98.82 ± 0.64 98.50 ± 0.61 98.17 ± 0.99 97.82 ± 1.09 97.62 ± 1.08 97.71 ± 1.13 97.18 ± 1.32
SVM 98.81 ± 0.65 98.49 ± 0.63 98.29 ± 0.99 97.76 ± 1.12 97.61 ± 1.10 97.61 ± 1.16 97.14 ± 1.36
KNN 98.66 ± 0.72 98.41 ± 0.69 98.05 ± 1.09 97.53 ± 1.26 97.36 ± 1.32 97.42 ± 1.36 96.79 ± 1.53

Precision
LDA 94.25 ± 3.16 92.87 ± 3.08 91.24 ± 4.97 89.64 ± 5.43 88.88 ± 5.28 88.83 ± 5.76 86.77 ± 6.29
SVM 94.17 ± 3.21 92.75 ± 3.16 91.62 ± 4.96 89.33 ± 5.55 88.86 ± 5.35 88.49 ± 5.88 86.68 ± 6.57
KNN 93.45 ± 3.52 92.26 ± 3.45 90.51 ± 5.52 88.08 ± 6.26 87.57 ± 6.39 87.38 ± 6.90 84.97 ± 7.40

F1 Score
LDA 93.55 ± 3.21 91.70 ± 3.22 90.11 ± 5.07 88.51 ± 5.45 87.49 ± 5.42 87.87 ± 5.83 85.12 ± 6.69
SVM 93.62 ± 3.31 91.85 ± 3.33 90.81 ± 5.08 88.23 ± 5.62 87.65 ± 5.46 87.44 ± 5.96 85.12 ± 6.82
KNN 92.84 ± 3.67 91.39 ± 3.59 89.58 ± 5.67 87.07 ± 6.37 86.35 ± 6.57 86.44 ± 6.99 83.39 ± 7.65

Tr
ai
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ng
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d
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st
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g

w
it

h
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gh
fo

rc
e Accuracy

LDA 97.44 ± 1.10 96.69 ± 1.60 96.34 ± 1.75 95.56 ± 1.70 95.40 ± 1.98 95.69 ± 1.50 94.89 ± 1.88
SVM 97.32 ± 1.22 96.63 ± 1.67 96.32 ± 1.70 95.47 ± 1.77 95.36 ± 1.94 95.52 ± 1.50 94.89 ± 1.99
KNN 97.13 ± 1.25 96.44 ± 1.86 95.95 ± 1.90 95.10 ± 1.85 94.99 ± 2.16 95.07 ± 1.75 94.39 ± 2.17

Sensitivity
LDA 92.33 ± 3.30 90.07 ± 4.80 89.01 ± 5.24 86.69 ± 5.09 86.20 ± 5.94 87.07 ± 4.50 84.68 ± 5.63
SVM 91.97 ± 3.66 89.90 ± 5.01 88.96 ± 5.09 86.41 ± 5.31 86.08 ± 5.81 86.57 ± 4.50 84.68 ± 5.97
KNN 91.38 ± 3.75 89.31 ± 5.57 87.84 ± 5.69 85.30 ± 5.55 84.97 ± 6.49 85.21 ± 5.24 83.18 ± 6.51

Specificity
LDA 98.54 ± 0.65 98.11 ± 0.91 97.90 ± 1.01 97.43 ± 0.99 97.33 ± 1.17 97.52 ± 0.92 97.06 ± 1.14
SVM 98.48 ± 0.71 98.07 ± 0.97 97.90 ± 0.99 97.38 ± 1.03 97.31 ± 1.15 97.41 ± 0.92 97.07 ± 1.20
KNN 98.36 ± 0.72 97.94 ± 1.09 97.67 ± 1.12 97.14 ± 1.10 97.05 ± 1.32 97.13 ± 1.09 96.73 ± 1.33

Precision
LDA 92.97 ± 3.11 90.97 ± 4.29 90.11 ± 4.21 87.74 ± 4.73 87.35 ± 5.15 87.98 ± 4.38 86.06 ± 4.90
SVM 92.79 ± 3.52 90.79 ± 4.61 90.03 ± 4.13 87.51 ± 4.93 87.28 ± 5.06 87.46 ± 4.26 86.01 ± 5.36
KNN 92.24 ± 3.52 90.24 ± 5.11 88.93 ± 4.80 86.31 ± 5.25 86.09 ± 6.01 86.25 ± 5.06 84.48 ± 5.95

F1 Score
LDA 92.07 ± 3.40 89.77 ± 4.87 88.67 ± 5.12 86.37 ± 5.03 85.78 ± 5.87 86.75 ± 4.45 84.23 ± 5.53
SVM 91.67 ± 3.78 89.58 ± 5.08 88.61 ± 4.94 86.13 ± 5.28 85.70 ± 5.80 86.23 ± 4.41 84.26 ± 5.94
KNN 91.09 ± 3.84 88.96 ± 5.72 87.47 ± 5.61 84.94 ± 5.54 84.61 ± 6.46 84.89 ± 5.16 82.74 ± 6.53

Table A2. The EMG pattern recognition performances when the classifiers are trained with a single force level and tested
with all force levels.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD

Tr
ai

ni
ng

w
it

h
lo

w
fo

rc
e

Accuracy
LDA 89.07 ± 3.15 88.04 ± 2.61 88.48 ± 2.78 87.63 ± 2.91 86.52 ± 3.04 87.23 ± 2.71 86.18 ± 2.92
SVM 89.10 ± 2.79 88.01 ± 2.57 88.57 ± 2.73 87.70 ± 2.83 86.46 ± 3.00 87.28 ± 2.94 86.15 ± 2.87
KNN 89.02 ± 2.82 88.06 ± 2.64 88.55 ± 2.64 87.57 ± 2.86 86.84 ± 2.82 87.27 ± 2.84 86.50 ± 2.70

Sensitivity
LDA 67.22 ± 9.44 64.13 ± 7.84 65.43 ± 8.33 62.90 ± 8.74 59.57 ± 9.13 61.69 ± 8.12 58.55 ± 8.76
SVM 67.29 ± 8.38 64.03 ± 7.71 65.72 ± 8.19 63.11 ± 8.49 59.37 ± 8.99 61.83 ± 8.82 58.46 ± 8.60
KNN 67.07 ± 8.45 64.17 ± 7.91 65.64 ± 7.92 62.72 ± 8.58 60.53 ± 8.45 61.81 ± 8.51 59.50 ± 8.11

Specificity
LDA 93.72 ± 1.75 93.11 ± 1.49 93.34 ± 1.59 92.87 ± 1.68 92.17 ± 1.77 92.59 ± 1.58 92.00 ± 1.69
SVM 93.70 ± 1.64 93.11 ± 1.47 93.4 ± 1.53 92.91 ± 1.71 92.07 ± 1.85 92.62 ± 1.75 91.87 ± 1.75
KNN 93.65 ± 1.65 93.12 ± 1.54 93.36 ± 1.5 92.82 ± 1.69 92.30 ± 1.70 92.59 ± 1.76 92.11 ± 1.69

Precision
LDA 75.51 ± 5.90 72.35 ± 4.97 73.37 ± 7.31 70.74 ± 6.72 67.70 ± 7.93 69.21 ± 6.65 66.75 ± 7.87
SVM 74.63 ± 5.92 72.21 ± 5.51 73.21 ± 6.62 70.49 ± 6.57 67.55 ± 7.98 69.06 ± 7.45 66.55 ± 8.55
KNN 74.21 ± 5.94 72.06 ± 5.85 72.81 ± 6.96 69.84 ± 7.07 66.83 ± 7.42 67.49 ± 7.71 65.42 ± 8.22

F1 Score
LDA 67.04 ± 9.07 64.00 ± 7.31 65.10 ± 7.95 62.58 ± 8.48 59.23 ± 8.76 61.11 ± 7.90 58.05 ± 8.48
SVM 67.22 ± 8.12 64.02 ± 7.17 65.40 ± 8.05 62.85 ± 8.21 59.40 ± 8.49 61.52 ± 8.54 58.30 ± 8.30
KNN 67.07 ± 8.19 64.22 ± 7.41 65.35 ± 7.86 62.47 ± 8.39 60.16 ± 8.14 61.31 ± 8.31 58.96 ± 8.11
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Accuracy
LDA 91.99 ± 2.35 90.86 ± 2.05 90.66 ± 2.63 90.57 ± 2.41 89.20 ± 2.97 90.03 ± 2.40 88.96 ± 3.03
SVM 91.94 ± 2.44 90.82 ± 2.07 90.78 ± 2.56 90.45 ± 2.39 89.26 ± 2.82 89.91 ± 2.49 88.78 ± 2.90
KNN 91.89 ± 2.42 90.86 ± 1.92 90.76 ± 2.67 90.27 ± 2.56 89.22 ± 3.06 89.81 ± 2.65 88.76 ± 2.92

Sensitivity
LDA 75.97 ± 7.06 72.58 ± 6.14 71.97 ± 7.88 71.70 ± 7.22 67.61 ± 8.91 70.10 ± 7.20 66.89 ± 9.09
SVM 75.81 ± 7.33 72.46 ± 6.21 72.35 ± 7.68 71.34 ± 7.17 67.79 ± 8.47 69.74 ± 7.46 66.34 ± 8.70
KNN 75.67 ± 7.26 72.57 ± 5.77 72.27 ± 8.00 70.80 ± 7.68 67.67 ± 9.19 69.44 ± 7.95 66.29 ± 8.76

Specificity
LDA 95.29 ± 1.44 94.61 ± 1.30 94.49 ± 1.59 94.41 ± 1.49 93.55 ± 1.81 94.11 ± 1.44 93.38 ± 1.85
SVM 95.24 ± 1.50 94.57 ± 1.31 94.54 ± 1.57 94.34 ± 1.49 93.56 ± 1.74 94.02 ± 1.50 93.26 ± 1.78
KNN 95.21 ± 1.50 94.58 ± 1.23 94.52 ± 1.65 94.22 ± 1.61 93.52 ± 1.91 93.95 ± 1.62 93.23 ± 1.83

Precision
LDA 78.70 ± 5.93 75.77 ± 4.91 75.12 ± 6.73 74.03 ± 6.54 70.41 ± 8.26 72.37 ± 7.12 69.18 ± 8.73
SVM 78.57 ± 6.02 75.71 ± 4.76 75.05 ± 6.94 73.45 ± 6.49 70.63 ± 7.90 72.03 ± 7.17 69.03 ± 8.24
KNN 78.27 ± 6.10 75.55 ± 4.51 74.69 ± 7.39 72.77 ± 7.06 70.11 ± 8.51 71.31 ± 8.17 68.33 ± 8.51

F1 Score
LDA 75.83 ± 6.89 72.47 ± 5.94 71.75 ± 7.53 71.44 ± 6.92 67.42 ± 8.68 69.94 ± 7.08 66.64 ± 8.90
SVM 75.76 ± 7.08 72.46 ± 5.85 72.13 ± 7.55 71.09 ± 6.91 67.61 ± 8.18 69.61 ± 7.34 66.09 ± 8.46
KNN 75.61 ± 7.05 72.54 ± 5.48 72.08 ± 7.78 70.53 ± 7.47 67.52 ± 8.95 69.20 ± 7.98 66.01 ± 8.70
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Table A2. Cont.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD
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Accuracy
LDA 89.93 ± 2.26 88.76 ± 2.21 88.31 ± 2.70 88.11 ± 2.29 87.20 ± 2.47 87.92 ± 2.65 86.24 ± 2.90
SVM 89.72 ± 2.11 88.65 ± 2.03 88.21 ± 2.61 88.04 ± 2.10 87.32 ± 2.47 87.76 ± 2.44 86.40 ± 2.73
KNN 89.53 ± 2.38 88.47 ± 2.16 87.95 ± 2.76 87.55 ± 2.18 86.76 ± 2.55 87.19 ± 2.46 85.80 ± 2.63

Sensitivity
LDA 69.79 ± 6.79 66.28 ± 6.64 64.93 ± 8.09 64.32 ± 6.88 61.60 ± 7.42 63.76 ± 7.94 58.73 ± 8.70
SVM 69.17 ± 6.33 65.94 ± 6.09 64.64 ± 7.84 64.12 ± 6.29 61.95 ± 7.42 63.28 ± 7.32 59.21 ± 8.19
KNN 68.60 ± 7.13 65.42 ± 6.47 63.84 ± 8.27 62.64 ± 6.55 60.29 ± 7.66 61.57 ± 7.39 57.40 ± 7.88

Specificity
LDA 93.90 ± 1.32 93.18 ± 1.29 92.85 ± 1.63 92.75 ± 1.34 92.11 ± 1.57 92.61 ± 1.57 91.56 ± 1.69
SVM 93.77 ± 1.23 93.10 ± 1.20 92.76 ± 1.57 92.67 ± 1.28 92.12 ± 1.58 92.50 ± 1.46 91.59 ± 1.65
KNN 93.63 ± 1.41 92.97 ± 1.31 92.54 ± 1.68 92.35 ± 1.32 91.78 ± 1.66 92.12 ± 1.49 91.22 ± 1.60

Precision
LDA 74.84 ± 5.30 72.18 ± 4.89 70.51 ± 7.23 69.12 ± 6.66 66.68 ± 7.46 68.12 ± 7.14 63.70 ± 8.82
SVM 74.36 ± 4.89 71.89 ± 4.11 70.85 ± 6.47 68.84 ± 6.32 66.73 ± 7.20 68.17 ± 6.58 65.00 ± 8.29
KNN 73.82 ± 5.34 71.18 ± 5.10 70.60 ± 7.21 67.79 ± 6.46 66.36 ± 8.11 66.38 ± 7.18 63.85 ± 8.82

F1 Score
LDA 69.10 ± 6.63 65.67 ± 6.42 63.63 ± 8.51 63.35 ± 7.15 60.46 ± 7.70 62.99 ± 8.17 57.69 ± 8.79
SVM 68.43 ± 5.93 65.27 ± 5.57 63.43 ± 8.12 63.16 ± 6.51 60.99 ± 7.65 62.58 ± 7.43 58.42 ± 8.30
KNN 68.05 ± 6.80 64.86 ± 6.21 62.72 ± 8.54 61.80 ± 6.84 59.23 ± 7.91 60.77 ± 7.65 56.60 ± 8.07

Table A3. The EMG pattern recognition performances when the classifiers are trained with two force levels and tested with
all force levels.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD
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LDA 94.21 ± 1.83 93.30 ± 1.66 93.06 ± 2.34 92.80 ± 2.23 91.53 ± 2.69 92.06 ± 1.86 91.05 ± 2.52
SVM 94.20 ± 1.84 93.22 ± 1.63 93.12 ± 2.32 92.75 ± 2.26 91.76 ± 2.59 92.02 ± 2.16 91.12 ± 2.82
KNN 93.90 ± 1.97 93.03 ± 1.74 92.85 ± 2.47 92.37 ± 2.46 91.49 ± 2.81 91.72 ± 2.28 90.86 ± 2.90

Sensitivity
LDA 82.64 ± 5.50 79.90 ± 4.97 79.18 ± 7.03 78.40 ± 6.70 74.60 ± 8.07 76.18 ± 5.59 73.14 ± 7.57
SVM 82.60 ± 5.52 79.66 ± 4.89 79.37 ± 6.95 78.24 ± 6.79 75.28 ± 7.76 76.06 ± 6.48 73.36 ± 8.45
KNN 81.70 ± 5.90 79.09 ± 5.22 78.54 ± 7.42 77.11 ± 7.38 74.47 ± 8.44 75.15 ± 6.85 72.57 ± 8.69

Specificity
LDA 96.64 ± 1.05 96.07 ± 0.95 95.95 ± 1.37 95.79 ± 1.31 95.00 ± 1.60 95.32 ± 1.11 94.68 ± 1.50
SVM 96.63 ± 1.06 96.03 ± 0.92 95.97 ± 1.35 95.75 ± 1.34 95.12 ± 1.52 95.30 ± 1.26 94.72 ± 1.67
KNN 96.44 ± 1.14 95.90 ± 1.01 95.80 ± 1.46 95.51 ± 1.48 94.93 ± 1.71 95.09 ± 1.39 94.53 ± 1.76

Precision
LDA 84.45 ± 4.98 81.95 ± 4.49 81.28 ± 6.79 80.19 ± 6.37 76.89 ± 7.89 77.98 ± 5.72 75.26 ± 7.81
SVM 84.37 ± 4.96 81.8 ± 4.27 81.28 ± 6.70 80.03 ± 6.43 77.24 ± 7.44 77.90 ± 6.18 75.55 ± 8.14
KNN 83.29 ± 5.59 80.98 ± 4.93 80.24 ± 7.34 78.53 ± 7.41 75.91 ± 8.58 76.34 ± 7.18 73.94 ± 9.00

F1 Score
LDA 82.63 ± 5.40 79.91 ± 4.92 79.13 ± 6.96 78.30 ± 6.59 74.64 ± 7.85 76.11 ± 5.58 73.04 ± 7.57
SVM 82.60 ± 5.39 79.72 ± 4.75 79.36 ± 6.85 78.21 ± 6.65 75.26 ± 7.62 76.05 ± 6.36 73.34 ± 8.35
KNN 81.69 ± 5.83 79.10 ± 5.16 78.49 ± 7.37 77.02 ± 7.35 74.38 ± 8.38 75.02 ± 6.90 72.32 ± 8.85
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LDA 95.34 ± 1.70 94.80 ± 1.61 94.17 ± 2.12 93.39 ± 2.12 92.55 ± 2.64 92.81 ± 2.24 91.57 ± 2.86
SVM 95.37 ± 1.78 94.80 ± 1.70 94.25 ± 2.16 93.30 ± 2.17 92.49 ± 2.74 92.77 ± 2.35 91.60 ± 2.89
KNN 94.98 ± 1.92 94.41 ± 1.87 93.72 ± 2.40 92.58 ± 2.48 91.77 ± 2.95 91.92 ± 2.60 90.73 ± 3.16

Sensitivity
LDA 86.03 ± 5.10 84.41 ± 4.82 82.52 ± 6.35 80.18 ± 6.35 77.66 ± 7.93 78.43 ± 6.71 74.72 ± 8.58
SVM 86.12 ± 5.34 84.39 ± 5.11 82.74 ± 6.49 79.89 ± 6.52 77.47 ± 8.23 78.31 ± 7.06 74.81 ± 8.68
KNN 84.94 ± 5.75 83.23 ± 5.60 81.16 ± 7.21 77.74 ± 7.43 75.32 ± 8.84 75.75 ± 7.79 72.20 ± 9.47

Specificity
LDA 97.25 ± 1.00 96.90 ± 0.95 96.55 ± 1.24 96.07 ± 1.24 95.53 ± 1.61 95.67 ± 1.34 94.94 ± 1.71
SVM 97.26 ± 1.07 96.90 ± 1.02 96.58 ± 1.26 96.01 ± 1.29 95.49 ± 1.68 95.65 ± 1.42 94.97 ± 1.74
KNN 97.02 ± 1.16 96.66 ± 1.12 96.25 ± 1.42 95.57 ± 1.50 95.03 ± 1.83 95.12 ± 1.59 94.41 ± 1.93

Precision
LDA 86.81 ± 5.11 85.22 ± 4.78 83.61 ± 6.29 81.16 ± 6.36 78.61 ± 8.04 79.39 ± 6.60 76.00 ± 8.62
SVM 86.92 ± 5.37 85.26 ± 5.03 83.85 ± 6.31 80.84 ± 6.55 78.54 ± 8.25 79.33 ± 6.91 76.15 ± 8.63
KNN 85.69 ± 5.82 84.00 ± 5.73 82.11 ± 7.18 78.63 ± 7.55 76.30 ± 9.08 76.61 ± 7.81 73.37 ± 9.63

F1 Score
LDA 85.92 ± 5.17 84.27 ± 4.90 82.33 ± 6.43 80.06 ± 6.39 77.49 ± 8.02 78.31 ± 6.75 74.51 ± 8.74
SVM 86.05 ± 5.38 84.31 ± 5.15 82.62 ± 6.52 79.82 ± 6.53 77.43 ± 8.23 78.27 ± 7.06 74.79 ± 8.72
KNN 84.84 ± 5.84 83.11 ± 5.72 81.02 ± 7.26 77.63 ± 7.52 75.21 ± 8.95 75.64 ± 7.89 72.08 ± 9.63
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Accuracy
LDA 94.27 ± 1.83 93.20 ± 1.54 93.00 ± 2.23 92.57 ± 2.24 91.71 ± 2.87 92.06 ± 2.29 90.82 ± 2.78
SVM 94.18 ± 1.86 93.24 ± 1.49 93.16 ± 2.30 92.45 ± 2.29 91.95 ± 2.88 91.92 ± 2.29 91.11 ± 2.72
KNN 93.88 ± 1.91 92.95 ± 1.60 92.82 ± 2.34 91.97 ± 2.43 91.24 ± 3.06 91.23 ± 2.45 90.29 ± 2.93

Sensitivity
LDA 82.81 ± 5.50 79.60 ± 4.61 79.01 ± 6.70 77.72 ± 6.71 75.14 ± 8.62 76.18 ± 6.86 72.46 ± 8.33
SVM 82.53 ± 5.58 79.71 ± 4.48 79.49 ± 6.91 77.34 ± 6.87 75.86 ± 8.64 75.75 ± 6.87 73.33 ± 8.15
KNN 81.64 ± 5.72 78.86 ± 4.80 78.46 ± 7.01 75.91 ± 7.30 73.71 ± 9.18 73.68 ± 7.35 70.87 ± 8.78

Specificity
LDA 96.62 ± 1.09 95.95 ± 0.94 95.83 ± 1.33 95.55 ± 1.38 95.00 ± 1.80 95.24 ± 1.37 94.44 ± 1.72
SVM 96.55 ± 1.11 95.97 ± 0.91 95.92 ± 1.39 95.48 ± 1.41 95.13 ± 1.79 95.16 ± 1.38 94.61 ± 1.69
KNN 96.37 ± 1.15 95.79 ± 0.99 95.70 ± 1.42 95.18 ± 1.50 94.68 ± 1.93 94.71 ± 1.49 94.09 ± 1.83

Precision
LDA 84.54 ± 4.81 81.72 ± 3.94 80.95 ± 6.42 79.06 ± 6.72 76.90 ± 8.29 77.50 ± 6.83 74.29 ± 8.25
SVM 84.38 ± 4.70 81.79 ± 3.66 81.37 ± 6.51 78.77 ± 6.64 77.42 ± 8.33 77.17 ± 6.82 74.92 ± 8.24
KNN 83.43 ± 4.94 80.95 ± 4.05 80.12 ± 6.81 77.19 ± 7.17 75.29 ± 9.02 74.93 ± 7.62 72.51 ± 8.95

F1 Score
LDA 82.65 ± 5.47 79.42 ± 4.58 78.65 ± 6.85 77.41 ± 6.85 74.71 ± 8.75 75.86 ± 7.18 72.07 ± 8.49
SVM 82.40 ± 5.50 79.57 ± 4.41 79.18 ± 6.99 77.10 ± 6.92 75.49 ± 8.72 75.48 ± 7.09 72.96 ± 8.36
KNN 81.54 ± 5.61 78.71 ± 4.77 78.10 ± 7.13 75.64 ± 7.37 73.36 ± 9.32 73.34 ± 7.66 70.47 ± 9.07
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Table A4. The EMG pattern recognition performances when the classifiers are trained and tested with all force levels.

Parameter Classifier Proposed TSD TDPSD Wavelet TDF AR-RMS TD

Accuracy
LDA 96.30 ± 1.52 95.75 ± 1.38 95.28 ± 1.94 94.45 ± 2.03 93.69 ± 2.60 93.89 ± 2.02 92.71 ± 2.74
SVM 96.37 ± 1.60 95.80 ± 1.42 95.34 ± 2.03 94.37 ± 2.14 93.78 ± 2.62 93.98 ± 2.09 92.91 ± 2.77
KNN 95.88 ± 1.77 95.33 ± 1.68 94.79 ± 2.28 93.62 ± 2.51 92.95 ± 2.99 93.07 ± 2.48 91.88 ± 3.10

Sensitivity
LDA 88.89 ± 4.55 87.24 ± 4.13 85.83 ± 5.81 83.34 ± 6.10 81.07 ± 7.81 81.68 ± 6.06 78.12 ± 8.22
SVM 89.11 ± 4.80 87.41 ± 4.25 86.02 ± 6.09 83.10 ± 6.43 81.35 ± 7.87 81.93 ± 6.28 78.72 ± 8.30
KNN 87.63 ± 5.32 86.00 ± 5.04 84.36 ± 6.85 80.86 ± 7.52 78.84 ± 8.96 79.21 ± 7.43 75.65 ± 9.31

Specificity
LDA 97.82 ± 0.90 97.51 ± 0.81 97.22 ± 1.14 96.71 ± 1.23 96.24 ± 1.60 96.36 ± 1.22 95.63 ± 1.67
SVM 97.86 ± 0.95 97.53 ± 0.83 97.26 ± 1.20 96.66 ± 1.29 96.29 ± 1.59 96.41 ± 1.27 95.77 ± 1.67
KNN 97.56 ± 1.07 97.24 ± 1.01 96.91 ± 1.35 96.19 ± 1.54 95.76 ± 1.85 95.84 ± 1.52 95.11 ± 1.90

Precision
LDA 89.31 ± 4.50 87.85 ± 4.04 86.50 ± 5.79 83.86 ± 6.16 81.59 ± 8.02 82.20 ± 6.19 78.79 ± 8.44
SVM 89.54 ± 4.71 88.01 ± 4.13 86.71 ± 5.96 83.62 ± 6.46 81.90 ± 7.86 82.43 ± 6.31 79.36 ± 8.34
KNN 88.01 ± 5.31 86.51 ± 5.04 84.92 ± 6.86 81.21 ± 7.73 79.32 ± 9.12 79.56 ± 7.64 76.19 ± 9.59

F1 Score
LDA 88.81 ± 4.58 87.16 ± 4.17 85.69 ± 5.85 83.20 ± 6.16 80.86 ± 7.91 81.54 ± 6.15 77.90 ± 8.31
SVM 89.06 ± 4.81 87.36 ± 4.27 85.93 ± 6.09 83.00 ± 6.44 81.23 ± 7.89 81.85 ± 6.33 78.59 ± 8.35
KNN 87.56 ± 5.37 85.93 ± 5.09 84.24 ± 6.89 80.69 ± 7.64 78.67 ± 9.09 79.04 ± 7.58 75.44 ± 9.50
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