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As a biometric characteristic, electroencephalography (EEG) signals have the advantages of being hard to steal and easy to detect
liveness, which attract researchers to study EEG-based personal identification technique. Among different EEG protocols, resting
state signals are the most practical option since it is more convenient to operate than the other protocols. In this paper, a personal
identification system based on resting state EEG is proposed, in which data augmentation and convolutional neural network are
combined. The cross-validation is performed on a public database of 109 subjects. The experimental results show that when only
14 EEG channels and 0.5 seconds data are employed, the average accuracy and average equal error rate of the system can reach
99.32% and 0.18%, respectively. Compared with some existing representative works, the proposed system has the advantages of
short acquisition time, low computational complexity, and rapid deployment using market available low-cost EEG sensors, which

further advances the implementation of practical EEG-based identification systems.

1. Introduction

As society enters digital era, identification has become vital
in people’s work and life. Traditional identification tech-
nologies, such as password and hardware token, may be
forgotten, lost, or stolen, resulting in identity leakage or
identification failure [1]. Such problems can be avoided by
using biometric identification techniques, such as face,
fingerprints, and gait, which have been widely studied [2-4].
However, face image is easy to be captured, fingerprint may
attach to the surface of many objects unconsciously [5, 6],
and gait can be recorded and analysed unknowingly, which
may be exploited by malicious attacks. In addition, liveness
detection is not easy to achieve for these biometrics. The
brain signal represented by electroencephalography (EEG)
based biometric technique may solve such problems and has
become a prominent personal identification method [7].
EEG is a noninvasive imaging technique that records
brain electrical signals generated by neurons. First, EEG
acquisition requires special measuring devices and electrodes
are placed on the surface of the scalp of subjects. When
electrodes fail to touch the skin surface of the brain, the

quality of EEG signals degrades rapidly [8], which increases
the challenge to steal EEG. Second, the brain is one of the best
protected organs in the human body, so brain biometrics are
not easy to be damaged by external factors. Third, if subjects
died, their brain electrophysiological signals could not be
generated anymore, so EEG is one of the main clinical in-
dicators for detecting brain death [9]. Finally, brain bio-
metrics can be elicited by numerous distinct brain systems,
which makes it possible to change the stored EEG charac-
teristics using a distinct form of brain activity and response
[1]. In conclusion, EEG has the advantages of being difficult to
steal and damage, easy to detect liveness, and replaceability.
Meanwhile, low-cost EEG sensor systems provide an op-
portunity to implement practical EEG-based identification
systems. Compared with medical-grade sensor systems (e.g.,
Neuroscan 64-channel system, as illustrated in Figure 1(a)),
low-cost sensor systems (e.g., EMOTIV EPOC [10], as il-
lustrated in Figure 1(b)) has a gap in the accuracy [11], but
their smaller sizes make them more convenient to wear and
more acceptable to users. Besides, low-cost sensor systems
help to increase the size of subjects and thus avoid system
performance failures caused by a lack of sample diversity [12].
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F1GURE 1: Typical medical-grade EEG sensor and low-cost EEG sensor. (a) Typical medical-grade sensor, Neuroscan 64-channel Quick cap

and (b) typical low-cost sensor, EMOTIV EPOC.

The previously proposed identification schemes based on
EEG can be categorized into three groups according to EEG
protocols: resting states, cognitive tasks, and tasks with
external stimuli [13]. In resting states [14], subjects are
instructed to relax completely in a quiet environment, and
EEG signals of eyes-open or eyes-closed are recorded. In
cognitive tasks, such as motor imagery [15], mental work-
load [16, 17], and driving fatigue [18], subjects normally
need to be trained and are required to complete specific tasks
according to external cues while collecting their EEG signals
[19]. In the tasks evoked by external stimulation, such as
visual evoked potential [20] and acoustic stimuli [21], some
additional devices are usually necessary to create and collect
the appropriate stimulation. Compared with the other two
tasks, resting states basically do not need training for sub-
jects and are user-friendly, which has been favored by
researchers.

In the present identification study of resting state EEG,
most schemes are based on feature extraction. D. L. Rocca
et al. [22] proposed a novel approach that focused on
spectral coherence-based connectivity between different
brain regions and used a Mahalanobis distance-based
classifier to identify 10-second EEG signals in 2014.
M. Fraschini et al. [23] proposed a scheme that Phase Lag
Index was used to calculate a weighted connectivity matrix;
then, the nodal eigenvector centrality was computed, and
finally genuine-impostor matching scores were computed to
identify 12-second EEG signals in 2015. M. Garau et al. [24]
proposed the fusion of the above two by feature-level and
matching scores-level approaches in 2016, in which an equal
error rate of 1.42% was achieved on 12-second eyes-open
EEG signals. J.-H. Kang et al. [25] combined 10 single-
channel features (seven spectral and three nonlinear) and 10
multichannel features by conducting network analysis into a
set of EEG features, and finally a distance-based classifier for
authentication was built in 2018. With the rise of deep
learning, T. Schons et al. [26] applied CNN to learn the

features of resting state EEG in 2018, in which a sliding
window of 12seconds with a stride of 0.125seconds was
performed. The above scheme has two disadvantages in
practical applications. (1) The acquisition time is mostly 10
or 12 seconds, which is too long in real-time identification
[27]. (2) Recording 64-channel data relies on medical-grade
sensors, which have difficulty in user acceptance and cost
compared to low-cost sensors. To solve the above problems,
Y. Sun et al. [27] proposed a system based on 1D-Con-
volutional Long Short-Term Memory Neural Network (1D-
Convolutional LSTM) in 2019, which allowed only 16-
channel EEG signals and 1-second acquisition time. How-
ever, this scheme also has two problems. (1) Introducing
LSTM into the network will inevitably increase the com-
putational complexity, which has disadvantages in training
time and model loading time [27]. (2) Empirically selected
channels cannot match market available low-cost sensors,
which is not ideal to implement practical systems.
Recently, data augmentation is increasingly used with
EEG, which promises to increase the accuracy and stability
of EEG classification [28]. Data augmentation generates new
samples by transforming existing samples, including noise
addition, sampling, recombination of segmentation, Gen-
erative Adversarial Network, and so on. For resting state
EEG, the commonly used data augmentation algorithm is
sliding window, as depicted in Figure 2(a). Since there are no
trigger signals in resting state EEG, the fixed window is
normally applied to segment the data along the time
boundary to generate training samples, as depicted in
Figure 2(b). For example, fixed windows of 12 seconds and
1 second were, respectively, used in literature [23, 27]. The
sliding window is a generalization form of the fixed window,
which includes two attributes window length and stride, and
is also suitable for sample segmentation of resting state EEG.
For example, data augmentation based on a sliding window
of 12seconds with a stride of 0.125seconds was imple-
mented in literature [26]. Compared with the fixed window,
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FIGURE 2: The sliding window and the fixed window. (a) The sliding window and (b) the fixed window.

the sliding window approach creates more samples. How-
ever, the present studies on personal identification have not
reported the influence of sliding window on the
performance.

For identification applications based on resting state
EEG, a personal identification system using the CNN model
(referred to below as ICAConvNet) is proposed, which
applies a sliding window of 0.5seconds for data augmen-
tation and is validated on the PhysioNet dataset. Experi-
mental results show that the sliding window is effective.
When only 14 channels are used, the average Rank-1 ac-
curacy is 99.32% and the average equal error rate can be as
low as 0.18%, the performance of which is close to 64
channels. In summary, the proposed system has the ad-
vantages of short acquisition time, low computational
complexity, and rapid deployment using market available
low-cost sensors.

The rest of this paper is arranged as follows: the detailed
research methods of the proposed system are introduced in
Section 2, including dataset, preprocessing, data augmen-
tation, network architecture, and experimental setup; the
experimental results and discussion are given in Section 3;
some conclusions are drawn in Section 4.

2. Methodology

2.1. Overview. Figure 3 shows the overview of the pro-
posed identification system based on resting state EEG.
First, in preparation stage, the resting state EEG data are
preprocessed and augmented and then are divided into
training and testing sets. Second, in enrollment stage, the
training sets are trained by ICAConvNet, and the resting
state EEG characteristics of all subjects are learned and
stored in the system. Finally, in identification stage, test
samples are identified by the trained network model in
turn, and predicted identities are output. It is worth
mentioning that it requires only 0.5-second resting state
EEG to achieve rapid identification after enrollment
stage.

2.2. Data Preprocessing. In order to preserve the original
information and learn EEG features as much as possible, the
filtering operations are not performed in data preprocessing.

EEG data are commonly a multichannel time series with
several tens or even hundreds of sampling electrodes, which
are a two-dimensional matrix data structure. Since the
magnitude of EEG signals is usually small, in order to avoid
gradient explosion and improve the convergence rate in
deep learning, Z-score standardization is performed before
neural network training, where the mean y and standard
deviation ¢ of all signals are calculated for each subject
separately, and then a scaling is executed as indicated in the
following equation:

Output; ; = —Input;] #, (1)
where i, j, y, and o refer to the channel, the position in the
time dimension, the mean, and standard deviation of all
signals, respectively.

2.3. Data Augmentation Based on Sliding Windows. The
segmented EEG samples for network input can be viewed as
a two-dimensional matrix of Channels x Points. In our
work, a sliding window of 0.5seconds with a stride of
0.25seconds is adopted, and the data sampling rate is
160 Hz, so Channels and Points are set to 64 and 80, re-
spectively. In the experimental section, the impact of sliding
windows using different lengths and various strides on
system performance will be discussed. Sample segmentation
based on sliding window is provided in Algorithm 1.

2.4. Neural Network Architecture. Independent component
analysis (ICA) [29, 30] is applicable to the problem of blind
source separation and is widely used in the analysis of brain
signals. Therefore, the observed EEG signals can be separated
by ICA, and each separated signal may provide certain identity
features. ICA algorithm is based on the following assumptions:
the observed matrix X is linearly weighted by the independent
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FIGURE 3: Overview of the proposed personal identification system.

Input: resting state EEG data D that are a two-dimensional matrix of channels x points, window length L, stride S

Output: Samples

(1) Samples = &;

(2) index = 0;

(3) While index + L <len(D.Points) do
(4) sample,,, = index;

(5) sample,,; = index + L;

(6) Samples.append (D|: ,sample
(7) index = index + S;

(8) Return Samples;

stari

;2 sample,, ;1);//Create a sample

ALGORITHM 1: Sample segmentation based on sliding windows.

component matrix S and the mixed matrix A, as given in (2).
The goal of ICA is to obtain a separation matrix W according to
X so that the signal matrix Y obtained by W acting on X is the
optimal approximation of the independent component matrix
S, as expressed in the following equation:

approximate internal signal sources matrix Y, as shown in
equation (3). Taking Y as the input of the subsequent
convolution operations, the weights of W are iteratively
optimized via backpropagation. The ICA stage may be
regarded as a kind of implementation of ICA algorithm
using neural network.

X = AS, 2)

Y = WX = WAS, 2.4.2. Convolutzo'n Stage. A typ.lcal multllaye'r convolution
. (3)  neural network, including multiple convolution layers and

A = inverse(W). pooling layers, is expected to extract the biometric char-

Corresponding to EEG, the matrices X, S, and A refer to the
multichannel time series of subjects, the signal sources inside
the brain, and the relationship matrix between the internal
signal sources. Inspired by the above ICA algorithm, the
collected multichannel EEG signals can also be separated to
obtain the approximate original EEG signals of the internal
signal sources, and then convolution is used to learn the
biometric characteristics of the approximate internal signal
sources for identity identification. The details of neural network
architecture called ICAConvNet are as follows.

2.4.1. ICA Stage. A matrix with random initial weights is
provided as the separation matrix W, which is multiplied by
the neural network input (matrix X) to obtain the

acteristics of the signal sources inside the brain and com-
press the parameter scale. The convergent parameters of
convolutional kernels are obtained after several iterations of
optimization.

2.4.3. Output Stage. The EEG biometric features learned
during the convolution stage are combined and outputted.
First, the features are flattened and then selected by multiple
fully connected layers. Finally, the recognition results are
outputted by Softmax function. In order to improve the
generalization performance of the system, the dropout
function is added between the fully connected layers.

The idea of combining ICA and neural network has been
used in functional magnetic resonance imaging [31], but the
ICA stage is generally relatively independent from neural
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network, and the weight optimization of W has nothing to
do with network. The proposed system integrates ICA into
neural network architecture, and the weight optimization of
W depends on the back propagation of network.

The network architecture is plotted in Figure 4 and
implemented using PyTorch [32]. Hyperparameter tuning is
performed on the eyes-open session of PhysioNet dataset by
the grid search method, when a sliding window of
0.5seconds with a stride of 0.25seconds is adopted. After
comprehensive consideration of accuracy, complexity, and
training time, the main hyperparameters are finally selected
as follows. In the ICA stage, the number of internal signal
sources is 64. In the convolution stage, three 2-dimensional
convolution layers with ELU activation and three max pool
layers are adopted. In the output stage, two fully connected
layers are established and the dropout rate is 0.5. The final
output normalization function is Softmax. The loss function
is cross entropy loss, and the optimizer is Adam with a
learning rate of 3 * 10~ 3. The loss function of neural network
is shown in equation (4), where N represents the number of
samples, O represents the number of identity labels, y;; is a
function (if the true label of sample i is equal to j, take 1;
otherwise, take 0), and p;; represents the prediction prob-
ability that the label of sample i is j. All parameters of neural
network are shown in Table 1, where P, C, and O represent
the number of sample points, the number of sample
channels, and the number of identity labels, respectively:

N N
Loss = — Z Z yijlog(pij). (4)
ij

2.5. EEG Dataset and Channel Selection. The EEG signals
used to verify the proposed system are obtained from a
public database called PhysioNet EEG Motor Movement/
Imagery Dataset [33-35]. The dataset is available free of
charge and all data were collected using a 64-channel
BCI2000 system with a sampling rate of 160 Hz. 109 subjects
performed 14 different sessions, consisting of two resting
baseline sessions and three groups of four motor or motor
imagery tasks (T1-T4). Two resting state sessions are chosen,
one for 1 minute with eyes-open (EO) and one for 1 minute
with eyes-closed (EC).

In recent years, low-cost EEG sensors have made great
progress [11], which further increases the possibility that
EEG-based identification systems will be used in practical
applications. In order to evaluate whether the proposed
system works well on these commercial EEG sensors, a series
of experiments are conducted using 14, 32, and 64 channels,
respectively. The selected 14-channel and 32-channel are
based on the EMOTIV EPOC X 14 Channel Mobile
Brainwear® [10] and EMOTIV EPOC Flex EEG Brainwear®
system [36]. Note that the 14 channels of EMOTIV EPOC X
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and
AF4) are all contained in the original 64 channels of
PhysioNet dataset. Because the 32 channels of EMOTIV
EPOC Flex do not correspond precisely to the original 64

channels, four channels have been reselected (i.e., FT7, TP7,
TP8, and FT8). The selected channels in experiments are
highlighted in red in Figure 5.

2.6. Experimental Setup. To test whether the proposed
system can meet the requirements of identification, two
experiments were performed on PhysioNet datasets.

2.6.1. Data Augmentation Experiment. The first experiment
validates the importance of data augmentation on the system
performance. The segmented samples generated by sliding
windows with different lengths and strides are trained and
tested in turn. The data of the first experiment are all from
the eyes-open session, in which the first 48s are divided as
the training set and the last 12s as the testing set.

2.6.2. Channel Selection Experiment. The second experiment
examines the effects of 14, 32, and 64 channels on the system
performance using 5-fold cross-validation. In this experi-
ment, eyes-open session, eyes-closed session, and the union
of two resting state sessions are checked in turn.

It should be noted that in both experiments, a sliding
window is executed after the training set and testing set are
divided. After 1000 training epochs, the experimental re-
sults generally tend to be stable, so the termination con-
dition is set as 2000 epochs. The batch size of the training
sets is 64. The system performance is evaluated using Rank-
1 accuracy, false rejection rate (FRR), false acceptance rate
(FAR), and equal error rate (EER). Rank-1 accuracy is used
to evaluate the performance in identification scenarios,
which is the probability of correctly identifying a user’s
identity. FRR, FAR, and EER are used to evaluate the
performance in authentication scenarios, where the system
determines whether a user matches his or her claimed
identity [27].

3. Results and Discussion

3.1. Experimental Results. In the data augmentation ex-
periment, the performance of system using different sliding
windows is shown in Table 2. A sliding ratio of 0.5 means
that the overlap rate of window is 50%, and a sliding ratio of
1 means that a fixed window is used. When fixed windows
were applied, the Rank-1 accuracy of 0.25seconds,
0.5seconds, 1second, and 2seconds was 99.39%, 98.89%,
94.80%, and 60.86%, respectively. When sliding windows
with an overlap rate of 50% were used, the corresponding
Rank-1 accuracy was 99.40%, 99.51%, 99.04%, and 92.74%,
respectively, and the equal error rates were also improved to
0.15%, 0.06%, 0.19%, and 1.67%. The results show that
sliding windows achieved a better performance than fixed
windows. Interestingly, the performance of a sliding window
of 1 second with a stride of 0.5 seconds was like that of a fixed
window of 0.5 seconds, which may be because the number of
samples eventually generated by these two segmentation
schemes was almost the same. Test accuracy and training loss
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FIGURE 4: Neural network architecture.

TaBLE 1: Neural network parameters.

Layer Output shape Description

Input (None, 1, P, C) —

ICA (None, 1, P, 64) Linear, in_channels: C, out_channels:64

Conv_1 (None, 32, P/2, 64) Conv2d, in_channels: 1, out_channels:32, kernel: 5 x 3, stride: (2, 1), padding: (2, 1), activation: ELU
Pool_1  (None, 32, P/4, 64) MaxPool2d, kernel: 2 x 1, stride: (2, 1)

Conv_2 (None, 32, P/4, 64) Conv2d, in_channels: 32, out_channels: 32, kernel: 3 x 3, stride: (1, 1), padding: (1, 1), activation: ELU
Pool_2 (None, 32, P/4, 32) MaxPool2d, kernel: 1 x 2, stride: (1, 2)

Conv_3 (None, 32, P/4, 32) Conv2d, in_channels: 32, out_channels: 32, kernel: 3 x 3, stride: (1, 1), padding: (1, 1), activation: ELU
Pool_3 (None, 32, P/8, 32) MaxPool2d, kernel: 2 x 1, stride: (2, 1)

Flatten  (None, 32xP/8x32) Flatten

FC_1 (None, 512) Linear, in_channels: 32xP/8x32, out_channels: 512

Dropout (None, 512) Dropout, p: 0.5

FC_ 2 (None, O) Linear, in_channels: 512, out_channels: O

Softmax (None, O) log_softmax

FiGgure 5: Continued.
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(c)

F1GURE 5: Electrode positions on scalp and their corresponding channels (red represents selected channels, and white represents unused
channels). (a) 14 channels, (b) 32 channels, and (c) 64 channels.

TaBLE 2: Comparison of the performance of the proposed personal identification systems with different sliding windows.

Window (s) Sliding ratio Scale of training set Training time (min) Rank-1 (%) FRR (%) FAR (%) EER (%)

0.25 0.5 41747 560 99.40 0.15 0.15 0.15
’ 1 20928 309 99.39 0.17 0.17 0.17
05 0.5 20819 273 99.51 0.06 0.07 0.06
) 1 10464 136 98.89 0.19 0.19 0.19
1 0.5 10355 147 99.04 0.20 0.18 0.19
1 5232 74 94.80 1.38 1.38 1.38

2 0.5 5123 85 92.74 1.67 1.68 1.67
1 2616 43 60.86 10.55 10.55 10.55

Bold values indicate the best performance.
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FiGgure 6: Continued.
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FIGURE 6: Test accuracy and training loss curves for different sliding windows. (a) Testing accuracy and (b) training loss.

curves of different windows are plotted in Figure 6. After
2000 rounds of training, the first three augmentation
schemes were all in the first echelon and Rank-1 accuracy
can reach over 99%, which indicated that the scheme using a
window of 0.5seconds with a stride of 0.25seconds can
achieve excellent performance with less training time. Fig-
ure 7 shows the detection error trade-off (DET) curves of the
data augmentation experiment, that is, the relationship
between FAR, FRR, and EER, were represented by threshold
changes. The smaller EER meant a better performance in
authentication scenarios. The scheme using a window of
0.5 seconds with a stride of 0.25seconds also achieved the
best EER of 0.06%. To some extent, for ICAConvNet-based
identification system, more samples may bring certain
performance gains. In addition, sliding windows with the
same window length helped to reduce the acquisition time of
the enrollment stage. In summary, a sliding window of
0.5 seconds with a stride of 0.25 seconds is suitable for the
proposed system. If the window length is further reduced to
0.25seconds, the performance is not improved, and the
training time is significantly increased.

In the channel selection experiment, referring to com-
parison results of data augmentation experiment, a sliding
window of 0.5 seconds with a stride of 0.25 seconds was used.
The performance of 14, 32, and 64 EEG channels in different
sessions is shown in Table 3. The selected 14 channels and 32
channels are based on market available EMOTIV EPOC X
and EMOTIV EPOC Flex, as plotted in Figure 5. According
to the experimental results, the performance of 64 channels
was generally the best, followed by 32 channels and 14
channels slightly worse. However, although the number of
channels was as low as half or even less than a quarter, the

performance of the system did not suffer a significant
degradation. Therefore, the proposed system had an ex-
cellent identification performance even with very few EEG
electrodes and can be used to build a practical identification
system using low-cost EEG sensors. In addition, the average
Rank-1 accuracy can achieve more than 99% in the cross-
validation of different sessions, which indicated that the
proposed system was effective and robust.

3.2. Comparison with Related Works. Our work was com-
pared with the performance of other EEG-based identifi-
cation systems using PhysioNet dataset, as shown in Table 4.
It should be noted that the results selected were from the 14
channels of the union session in the channel selection ex-
periment. The specific result of 5-fold cross verification was
that Rank-1 accuracy was 98.152216%, 99.573588%,
99.599431%, 99.819098%, and 99.457294% and EER were
0.465176%, 0.155298%, 0.077230%, 0.064428%, and
0.144111%. The schemes proposed by M. Fraschini et al. [23],
M. Garau et al. [24], and T. Schons et al. [26] require 64 EEG
channels and 12-second signal segments, which may mean a
long wait during the enrollment and identification stages for
users. A similar situation exists in the approaches proposed
by D. L. Rocca et al. [22] and J.-H. Kang et al. [25]. In the
work of S. Yang et al. [37], the accuracy of 99% is achieved on
T1-T4 tasks with 9-channel data; however, the window time
is increased to 30seconds. In the 16-channel system pro-
posed by Y. Sun et al, only 1 second of EEG is needed to
complete the work, but introducing LSTM into network
architecture will inevitably increase the computational
complexity, thus increasing the training time required for
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FiGUre 7: DET curves for different sliding windows.

TaBLE 3: Comparison of the performance of the proposed personal identification systems with 14-, 32-, and 64-channel EEG signals
(positions of the electrodes are shown in Figure 5).

Session Channels Rank-1 (%) FRR (%) FAR (%) EER (%)
14 99.04 +£0.95 0.25+0.21 0.25+0.21 0.25+0.21
EO 32 99.29 +£0.81 0.19+0.16 0.19+0.16 0.19+0.16
64 99.29 +£0.85 0.21 +£0.22 0.21+£0.22 0.21 +£0.22
14 99.11 £0.85 0.18+0.15 0.19+0.16 0.19+£0.15
EC 32 99.31 +£0.90 0.15+0.23 0.17+0.24 0.16+0.23
64 99.44+0.75 0.16 +£0.19 0.16+0.19 0.16+0.19
14 99.32+0.60 0.18+£0.15 0.18+0.15 0.18+0.15
EO&EC 32 99.64 +0.35 0.09 +0.06 0.09 +0.06 0.09 +0.06

64 99.78 £0.23 0.06 £0.08 0.07 £ 0.08 0.07 £0.08
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TaBLE 4: Comparison with other EEG-based identification systems using PhysioNet dataset.

. . Sampling rate Window Stride o N
Reports Approach Session Subjects Channels (Hz) length (s) (s) Rank-1 (%) EER (%)
[22] PSD and spectral - p(y 4 EC 108 56 160 10 — 100 —

coherence
[23] Eigenvector EO and EC 109 64 160 12 — 96.90 4.40
[24] Eigenvector EO and EC 109 64 160 12 — — 1.42
[37] Wavelet coefficients T1-T4 108 9 160 30 15 99.00 4.50
[26] CNN EO and EC 109 64 160 12 0.125 — 0.19
[25] Eigenvector EO and EC 109 56 — 12 — 98.93 0.73
EO and EC,

[27] 1D-Conv. LSTM T1-T4 109 16 160 1 — 99.58 0.41
Proposed CNN EO and EC 109 14 160 0.5 0.25 99.32+0.60 0.18+0.15

The key parameters used in the proposed system are highlighted in bold.

TaBLE 5: Model loading time (Toqe1) and averaged execution time for batch testing (Tpaecn) for 1D-Convolutional LSTM and the proposed

approach.

Model Channels Tmodel () Thaten (8)
16 17.852 0.065

1D-Convolutional LSTM [27] (TensorFlow) 32 17.965 0.065
64 18.477 0.071
14 1.106 0.002

Proposed (PyTorch) 32 1.102 0.002
64 1.125 0.002

high identification performance [27], as shown in Table 5. In
contrast, the proposed system adopts a sliding window of
0.5seconds and selects 14 EEG channels based on the
existing low-cost EEG sensors, which still has certain ad-
vantages in Rank-1 accuracy and EER. Meanwhile, ICA-
ConvNet has a shorter loading time and a faster computing
speed, when the testing PC is equipped with an Intel 10700
CPU, a Nvidia 2080Ti GPU, and a Seagate 1TB HDD.
Theoretically, the proposed system has better practicability.
Through a combination of ICAConvNet and optimized
sliding window, our work has a better overall performance.

4. Conclusions

In this paper, a personal identification system using resting
state EEG is proposed, which is designed by combining ICA
and convolution computation. The number of channels in
the system can be as few as 14, and a sliding window of
0.5seconds is applied for data augmentation. Different
sliding window schemes were compared on publicly ac-
cessible PhysioNet database to select the optimal data
augmentation parameters. In the cross-validation of 109
subjects, Rank-1 of 99.32+0.60% and EER of 0.18 £ 0.15%
were achieved, respectively. Compared with related work,
our system has certain advantages in the accuracy, com-
putational complexity, and stability, which further advances
the implementation of practical EEG-based identification
systems.

The identification application of resting state EEG is
discussed in this paper. In the future, the characteristics of
nonresting state EEG can be further studied. In addition, the

challenges faced by EEG-based identification systems in
practical application are also worth exploring, such as the
permanence and stability of EEG.

Data Availability

PhysioNet EEG Motor Movement/Imagery Dataset can be
visited at https://physionet.org/content/eegmmidb/1.0.0/.
The code of the proposed system is publicly available at
https://github.com/hitfyd/Personal-Identification-System-
using-Resting-State-EEG.
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