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Axonal tracing techniques are powerful tools for exploring the structural organization of
neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus
vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through
analysis of large series of histological section images. We present a workflow for
efficient collection and analysis of tract-tracing datasets with a focus on newly developed
modules for image processing and assignment of anatomical location to tracing data.
New functionality includes automatic detection of neuronal labeling in large image series,
alignment of images to a volumetric brain atlas, and analytical tools for measuring
the position and extent of labeling. To evaluate the workflow, we used high-resolution
microscopic images from axonal tracing experiments in which different parts of the rat
primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a
set of representative images were used to automate detection of labeling in image series
covering the entire brain, resulting in binary maps of the distribution of labeling. For high
to medium labeling densities, automatic detection was found to provide reliable results
when compared to manual analysis, whereas weak labeling required manual curation
for optimal detection. To identify brain regions corresponding to labeled areas, section
images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain
(v2) by custom-angle slicing of the MRI template to match individual sections. Based on
the alignment, WHS coordinates were obtained for labeled elements and transformed to
stereotaxic coordinates. The new workflow modules increase the efficiency and reliability
of labeling detection in large series of images from histological sections, and enable
anchoring to anatomical atlases for further spatial analysis and comparison with other
data.

Keywords: axonal tract tracing, digital brain atlasing, neuroinformatics, quantitative image analysis, automated
image processing

INTRODUCTION

Axonal tract-tracing methods have been widely used over several decades for mapping the wiring
patterns of the brain. A large number of tracers are available to fulfill various experimental
requirements (see, e.g., Ohara et al., 2009; Thompson and Swanson, 2010; Carter and De
Lecea, 2011; Lanciego and Wouterlood, 2011; Lu, 2011; Ugolini, 2011; Rein and Deussing, 2012;
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Osten and Margrie, 2013) and a range of approaches have
been used to characterize neural connections at different spatial
scales (Bohland et al., 2009; Leergaard et al., 2012). These
scales range from synapses and microcircuits (Chklovskii et al.,
2010; Markram et al., 2015) to long range trajectories of
individual axons (Shinoda et al., 1992; Bourassa and Deschênes,
1995; Bolstad et al., 2007) populations of neurons and system
level organization (for references, see Brodal and Bjaalie, 1997;
Swanson, 2001; Leergaard and Bjaalie, 2002, 2007; Bjaalie
and Leergaard, 2006), and macroscale fiber tract organization
(Van Essen et al., 2013). Despite this, our knowledge about
neuroanatomical connections is limited and based on fragmented
data. The large majority of studies utilizing tract-tracing methods
have focused on analysis of limited regions of the brain in each
experiment, and data in most publications are typically only
available as images from selected parts of the material and as table
summaries listing regions containing labeling. Comparing and
combining such data across studies, with the aim of generating
more comprehensive overviews of wiring patterns, is possible but
demanding (Kotter, 2004; Bota et al., 2005, 2012, 2014; Van Strien
et al., 2009; Schmitt and Eipert, 2012).

For the purpose of mapping connectivity in a more
comprehensive manner, new approaches have recently been
discussed (Bohland et al., 2009; Leergaard et al., 2012) and
partially implemented. Thus, mapping of connections across the
entire brain, and sharing of underlying complete image datasets
with experimental metadata have been introduced (Marcus et al.,
2011; Zakiewicz et al., 2011; Hintiryan et al., 2012; Oh et al.,
2014). Efficient acquisition of large amounts of data requires
standardization of procedures at all levels of an investigation.
Workflows facilitate systematic management of data collection
and analysis by structuring the process, documenting each
step, and involving automation wherever possible. A workflow
provides a common framework for experimental procedures,
data acquisition and analysis.

An example of a workflow applied to brain-wide mapping of
neural connectivity has been provided by Zakiewicz et al. (2011).
This workflow begins with the tracing experiment and tissue
processing and continues through robotic image acquisition to
online sharing of large series of high-resolution section images
in a virtual microscopy environment. Analysis of the resulting
brain-wide image material typically involves identification and
measurements of injection sites and axonal labeling in the
section images, and assignment of anatomical location to the
labeled elements. Performing such analyses efficiently on large
amounts of high-resolution image data covering the entire brain
is, however, challenging and requires the use of automated
procedures.

In the present study, our aim is to expand the workflow
of Zakiewicz et al. (2011) with new functionality for detection
and quantification of axonal tracer labeling across large series of
section images, and for anatomical anchoring of section images
to standard brain atlases, allowing further spatial analysis and
comparison with other available data.

Building on commonly available elements for the NIH ImageJ
software (Schneider et al., 2012), we have implemented an
image processing module for automatic detection of biotinylated

dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin
(Pha-L) labeling in series of section images, as well as a module
performing measurements relevant for describing the extent and
location of plexuses and terminal fields of labeling and injection
sites. To support spatial analysis and integration with other
data we further extended the workflow toward assignment of
atlas coordinates to the labeling. Thus, we apply a registration
method that allows us to define the spatial location of each
section image relative to a volumetric atlas (for references, see
Osechinskiy and Kruggel, 2011). In this context, we demonstrate
the use of the Waxholm Space (WHS) atlas of the Sprague Dawley
rat brain (Papp et al., 2014; Kjonigsen et al., 2015) for spatial
registration, including transformation of WHS coordinates to
stereotaxic space for access to additional atlas information
and comparison to legacy data. The new workflow modules
increase the efficiency and reliability of brain-wide mapping of
neural connectivity, while providing access to both raw and
processed image data for further analysis and comparison across
experiments.

METHODS AND RESULTS

Overview of Workflow
The original workflow for brain-wide mapping of axonal
connectivity described in Zakiewicz et al. (2011) spans from the
axonal tract-tracing experiment to image acquisition, storage,
and online sharing (steps 1–4 below). We here provide additional
steps for analysis of labeling in images from axonal tracing
experiments (Figure 1). The new workflow modules extend the
functionality toward image processing, analysis, and alignment to
atlases (steps 5–7). Key metadata are collected at each workflow
step and stored along with the original (“raw”) and processed
image data. Steps 5–7 involve the use of software tools and
analysis procedures intended for integration in a common
application but currently managed as separate stand-alone tools.

(1) The first step of the core workflow (“Experiment”) includes
a series of procedures leading to the injection of an
axonal tracer into a target region of the brain of the
experimental animal, followed by the survival of the animal,
allowing axonal transport to take place before perfusion and
extraction of the brain from the skull.

(2) The second step (“Microtomy”) covers the preparation of
the fixed brain tissue, the sectioning of the brain, and the
storage (and possibly mounting) of sections before further
treatment.

(3) The third step is the histochemical processing of the
sections, often done on free floating sections, before
mounting on glass slides. Through this processing step, the
injected tracer and the elements (neuronal cell bodies or
axons) containing the tracer are labeled.

(4) The fourth step completes the core workflow at the level
of high-resolution image acquisition of the sections using
robotic microscopes or slide scanners. For brain-wide
mapping, extensive series of sections covering the entire
brain are collected and submitted to image acquisition.
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FIGURE 1 | Workflow for acquiring and processing of section-based
image data for brain-wide mapping of axonal connections. Steps 1–4
represent the core workflow for collection of experimental data (Zakiewicz
et al., 2011), extended by new modules for automated detection of labeling in
series of images (5), anatomical anchoring of images to a 3D reference atlas
(6), and spatial analysis of detected labeling (7). The logic and output of the
new modules are further explained in Figures 2–5. Metadata are collected at
each step and archived together with the original and processed image data.

(5) The fifth step provides automated processing of large series
of high-resolution images to detect neuronal cell bodies or
axons labeled with the injected tracers. Image processing
parameters are determined based on a set of representative
images, followed by processing of the full image series
producing binary maps of the detected labeling for each
section.

(6) The sixth step defines the spatial location of each section
relative to a volumetric brain atlas. First, the angle
of orientation (slicing angle) of the series of sections
is replicated and applied to the 3D atlas to generate
customized atlas plates with a corresponding angle and
spacing. These plates are then superimposed on the section
images by affine transformations, and used to extract
atlas coordinates for labeled elements identified in the
co-registered section images.

(7) The seventh step involves tools for analysis of the extent and
location of labeling in full image series, including automated
measurements of labeled area and centroid position for
injection sites, larger plexuses, or terminal fields.

Image Material
To evaluate the benefits and limitations of the new workflow
modules, we used high-resolution image series of histological
sections from axonal tracing experiments with injection sites
in the whisker or forelimb representations of the primary
somatosensory cortex of adult Sprague Dawley and Wistar
rats. Microscopic images and related experimental metadata are
available through the Whole Brain Connectivity Atlas1 provided
by Zakiewicz et al. (2011). All procedures, described in detail
in Zakiewicz et al. (2011), were approved by the institutional
animal welfare committee of the University of Oslo and the
Norwegian Animal Research Authority, and are in compliance
with European Community regulations on animal well-being.
Briefly, an anterograde axonal tracer (BDA or Pha-L), was
injected in the cerebral cortex of anesthetized rats. After 7 days,
animals were transcardially perfused with 4% paraformaldehyde,
and brains were removed for histological processing. Coronal
sections with a thickness of 50 µm were cut on a freezing
microtome, and every second or fourth section was processed
to visualize BDA (Veenman et al., 1992; Reiner et al., 2000) or
Pha-L (Gerfen and Sawchenko, 1984). Most sections were further
counterstained with thionine or Neutral Red. High-resolution
mosaic images were acquired in TIFF format using a motorized-
stage Olympus BX52 microscope with a 10× objective (Olympus
UPlanApo, NA 0.40), controlled by the Virtual Slide module in
Neurolucida 7.0 (MBF Bioscience Inc., Williston, VT, USA). The
images were assembled in an online data repository (Moene et al.,
2007; Zakiewicz et al., 2011).

Image Processing
Microscopic images resulting from steps 1–4 of the original
workflow are processed using a new workflow module (step 5)
to automatically detect labeling in each section (Figure 2).
Depending on the type of labeling and the presence and quality
of counterstaining in the images, different image processing
methods are used to extract labeled elements from the sections
using a combination of custom-made macros and modified
plugins for ImageJ (Rasband, W. S., U.S. National Institutes of
Health, Bethesda, Maryland, USA2, 1997–2015). Series of section
images from a single brain that share identical staining and
imaging history are processed in an identical way. In the first
phase of the image processing procedure, representative images
are selected from the series, and multiple image characteristics
are analyzed to determine the optimal set of processing steps
and parameters for the whole image series. In the second phase,
the entire image series is processed automatically based on the
previously determined setup without a need for further human
interaction. Image processing parameters can be adjusted and
reused for similar image series.

Native RGB images are stepwise converted to binary labeling
maps via intermediate grayscale images (Figures 2A–C). For
RGB images where the color and intensity of the labeling is
substantially different between labeling and background, the
image channel providing the best signal-to-noise ratio (Red,

1http://www.rbwb.org
2http://imagej.nih.gov/ij/
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FIGURE 2 | Image processing steps leading to detection of labeled elements in microscopic section images. Colour Deconvolution of the original image
(A) produces a grayscale image (B), binarized by thresholding (C). A median filter (r = 2 pixels) is applied on the binary image for noise reduction (D). Labeled
clusters of a specified size (E) are measured for labeled area and centroid position (∗ in F). Measurement results from series of processed images are automatically
registered in a table (F). Scale bar: 0.5 mm

Green, or Blue) is used for generating a grayscale image.
In cases where these parameters are close to the section
background or the counterstaining, a modified version of the
Colour Deconvolution plugin (Ruifrok and Johnston, 2001) is
used to produce a grayscale image from the primary output
channel (see also Figure 2). Customized parameter sets are
acquired for different types of staining combinations using
a parameter acquisition plugin. We acquired and added new
Colour Deconvolution parameters for BDA, BDA combined with
Neutral Red, Pha-L, Pha-L combined with thionine, and BDA
combined with cytochrome oxidase. These standard parameters
can be used as they are or further adjusted to fit individual image
series.

In the next step, multiple automatic thresholding methods are
tested to reach optimal signal to noise ratio when generating
binary labeling maps from the grayscale images (Figure 2C).
The binary images resulting from the thresholding operations
are optionally further enhanced by noise filtering using a
standard median filter with a typical radius of a few pixels.
Depending on the needs of further analysis, larger clusters of a
specified size (area) range of interest are automatically selected,
and all smaller background elements are removed. Clusters
are then automatically measured for labeled area and centroid
position (2F). The results are collected in a comprehensive table
for all images in the series. Binary labeling maps are saved

in compressed Graphics Interchange Format (GIF) allowing
significant reduction in image size without loss of image
quality.

Evaluation of Automatic Labeling
Detection
The aim of the image processing, referred to as automatic labeling
detection, was to detect labeled axons or cell bodies (referred
to as signal), and discard other entities including non-labeled
tissue elements and diffuse non-specific background (noise). We
tested the image processing workflow module on several series
of images with varying densities of BDA and Pha-L labeled
axons, with and without counterstaining for cytoarchitecture
(Neutral Red or thionine). We then compared the binary maps
generated by the automatic labeling method with the distribution
of labeling as observed in the original section images, and
with results obtained in a previously published study using
the same series of images but a rigorous manual mapping
approach (Zakiewicz et al., 2014). Labeling is divided into three
categories, in agreement with Zakiewicz et al. (2014): (1) High
amounts of labeling are defined as dense clusters of labeled fibers
located closely together so that individual cells or fibers cannot
be discerned. High amounts of labeling are typically found in
locations with terminal fields of fibers or at tracer injection sites
(Figure 3). (2) Modest amounts of labeling feature relatively
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FIGURE 3 | Results of automatic labeling detection in images of microscopic sections. Coronal sections from corresponding anteroposterior levels through
the pontine nuclei (PN) and the cerebral peduncle (ped) with BDA labeling and Neutral Red counterstain (A), and Pha-L labeling with thionine counterstain (B).
Processed images highlighting detected labeling are shown below the original sections (A’,B’). Dense clusters of labeled fibers are well preserved in the labeling
maps. Note that noise levels are higher in the BDA image compared to the Pha-L image. Scale bar: 1 mm

fewer fibers, separated but not readily counted. (3) Low amounts
of labeling comprise a countable number of single fibers. The
comparison of the binary maps with the results of the manual
analysis, taking into consideration the three categories (high,
modest, and low), allowed us to evaluate the automatic labeling
detection method with regard to the amount of undetected
labeling (false negatives), the detection limit for labeling, the
level of noise, and the consistency of the signal-to-noise ratio
throughout large series of images.

Table 1 provides an overview of findings in a case containing
BDA labeling3 (Whole Brain Connectivity Atlas; case R602; 322
images). Results from the extensive manual analysis performed by
Zakiewicz et al. (2014) are compared to the results obtained with
the present automatic labeling detection method. The manual
analysis revealed 29 brain regions containing axonal labeling,
evaluated separately for labeling on the ipsilateral and on the
contralateral side, resulting in a list of altogether 57 subregions,
excluding the injection site. Of the 57 subregions, nine contained
high amounts of labeling, 13 contained modest amounts, and
15 contained low amounts. The automatic method detected
presence of labeling in all nine subregions containing high

3http://www.rbwb.org

amounts of labeling and in all 13 subregions containing modest
amounts. For the 15 subregions containing low amounts, the
automatic method detected labeling in seven subregions. When
noise filtering was applied (median filter, r = 2 pixels), two of
the seven previously detected subregions remained detectable. It
should be noted that the detailed manual analysis by Zakiewicz
et al. (2014) has mapped a number of regions with very low
amounts of labeling, several at a level not typically detected in
classical neuroanatomical studies (see Table 3 in Zakiewicz et al.,
2014, for a comparison with legacy data provided through the
Brain Architecture Management System of Bota et al., 2014).

Fully reliable detection (no false negatives) for high and
modest amounts of labeling, for both tracers (BDA and Pha-L)
and independent of counterstaining method (Neutral Red or
thionine), was also seen in the other cases (Figures 3 and 4, case
R606). Low amounts of labeling could be detected at about the
same levels as reported for the case shown in Table 1. Thus, some
instances of very low amounts of labeling reported by Zakiewicz
et al. (2014) were not detected with the automatic method.

In the present material, we noted a higher level of noise in
images of BDA-labeled sections compared to Pha-L, both as a
non-specific background, and as a halo surrounding strongly
labeled areas. This resulted in relatively larger areas measured
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TABLE 1 | Results of brain-wide automatic labeling detection compared to an extensive manual analysis of case R602 from Zakiewicz et al. (2014).

S1-whisker Detection in labeling maps

Case# R602

Tracer BDA

Strain Wistar

Injection site volume (mm3) 0.87 Before noise reduction After noise reduction

CORTICOCORTICAL CONNECTIONS i c i c i c

Primary somatosensory cortex S1 IS 2 + + + +

Secondary somatosensory cortex S2 3 2 + + + +

Secondary motor cortex M2 1 1 + + + –

Primary motor cortex M1 2 1 + – + –

Cingulate cortex, area 1 Cg1 1 0 + 0 – 0

Posterior parietal cortex PtP 3 0 + 0 + 0

Insular cortex Ins 3 2 + + + +

Retrosplenial cortex RSD 1 0 + 0 – 0

Perirhinal cortex PRh 2 0 + 0 + 0

Ectorhinal cortex Ect 1 1 – – – –

Primary/secondary auditory cortex Au1/AuD 2 0 + 0 + 0

Primary/secondary visual cortex V1/V2 3 0 + 0 + 0

SUBCORTICAL CONNECTIONS

Basal ganglia

Claustrum Cl 2 0 + 0 + 0

Caudate putamen (striatum) CPu 3 0 + 0 + 0

Substantia nigra SN 1 0 + 0 + 0

Basal forebrain

Basolateral amygdaloid nucleus, anterior part BLA 1 0 – 0 – 0

Thalamus

Ventral anterior and ventrolateral thalamic nucleus VA/VL 2 0 + 0 + 0

Ventral posterolateral thalamic nucleus VPL 2 1 + – + –

Ventral posteromedial thalamic nucleus VPM 2 1 + – + –

Posterior thalamic nuclear group Po/PoT 3 0 + 0 + 0

Reticular thalamic nucleus Rt 2 0 + 0 + 0

Submedius thalamic nucleus, dorsal part SubD 2 1 + + + –

Zona incerta ZI 2 0 + 0 + 0

Subthalamic nucleus STh 1 0 – 0 – 0

Red nucleus R 1 0 – 0 – 0

Anterior pretectal nucleus APT 3 0 + 0 + 0

Superior colliculus SC 3 0 + 0 + 0

Pontine nuclei Pn 3 0 + 0 + 0

Trigeminal nuclei Tn 0 1 0 + 0 –

The binary results from the automatic labeling detection process are compared to manual assessment of the amount of labeled fibers in a microscopic image series
covering the whole brain. High amounts (3) and modest amounts (2) of labeling are consistently detected by the automatic method. Low amounts (1), including individual
fibers, are detected in around 50% of the regions where such labeling occur. The detection level for low amounts of labeling is very low (less than 15%) when filtering is
applied. IS, injection site; 0, not present; +, detected; –, not detected.

for BDA-labeled clusters compared to Pha-L clusters perceived
to be of the same size. Median filtering provided efficient diffuse
background noise reduction in the binary labeling maps.

The detection limit for individual fibers is determined
by image processing parameters for thresholding and noise
reduction. In our image processing module the threshold is set
automatically for each individual image based on a standard
thresholding method selected before processing. Thresholding

balances the amount of detected labeling with the level of noise in
the image. In return for moderate noise levels, some of the weakly
labeled fibers are not detected, or appear fragmented in the binary
maps. Fragments smaller than the filter size are eliminated in the
subsequent noise filtering step.

The binary labeling maps were generated from series of section
images using an identical set of image processing parameters and
methods for all images in the series to ensure consistent results.
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FIGURE 4 | Detection limits for weakly labeled fibers. Microscopic images of individual fibers labeled with Pha-L (A,B) and BDA (C,D). Labeling detected by the
automatic procedure is shown on corresponding labeling maps (A’–D’). In the original images, weakly labeled fibers are perceived as continuous, but with low
contrast against background tissue (B,D). After processing, most detected fibers appear fragmented (B’,D’) with the weakest parts not detected. Noise filtering
(active in image B’ but not in D’) eliminates fragments smaller than a specified size, preventing some of the weakly labeled fibers from reaching the detection limit.
Scale bar: 0.5 mm

In output from large series covering the whole brain, however, we
noted larger groups of consecutive sections showing higher noise
levels compared to the rest of the series. We observed a similar
difference in the hue and saturation of staining and background
in the corresponding original images. We attribute this to slight
variations in the histological processing of different batches of
sections. The effect was possible to eliminate by use of separate
image processing parameters for each batch of sections.

Registration of Section Images to Atlas
Space
We developed a new tool for registration of section images
(2D) to volumetric (3D) atlases (AligNII, Figure 5). The
main functionality of this tool is to generate arbitrarily
positioned, sized and oriented rectangular slices from NIfTI-1
volumes (Neuroimaging Informatics Technology Initiative4). Re-
slicing calculations are realized in platform-independent Java
code running on a Web server. Custom slices are produced
interactively using a Flash-based web interface allowing the user
to set the clip region while the selected microscopic section image
is co-visualized with the atlas volume. For this project, we used
the open access WHS atlas of the Sprague Dawley rat brain
which consists of a structural MRI and diffusion tensor imaging
(DTI) template (Papp et al., 2014) and associated anatomical

4http://nifti.nimh.nih.gov

parcellations (Sprague Dawley atlas v25; see also Papp et al.,
2014; Kjonigsen et al., 2015). In this version of the tool, affine
transformations are implemented. The alignment is a real-time
iterative process using anatomical landmarks appearing in both
images (Figure 5B). Briefly, (1) an approximate anteroposterior
position is determined; (2) the height and width, as well as the
in-plane rotation of the MRI slice is adjusted to fit the section
image; (3) MRI re-slicing angle and anteroposterior slice position
are adjusted to match the section image; and (4) optionally the
slice is moved in-plane to allow fine alignment of selected regions
of interest in the section image to corresponding regions in
the volumetric atlas (local alignment, Figure 5E). Once optimal
alignment parameters are acquired for the original section image,
the position, size, and orientation of this section is saved, and
concurrently processed versions of the same section, e.g., binary
labeling maps, can automatically be viewed in alignment with
the custom-angle atlas slice (MRI or delineations). To facilitate
alignment of large series of section images, propagation of
alignment parameters is provided between manually anchored
sections. First, 5–10 sections spread throughout the series are
aligned manually. The position of intermediate sections is then
interpolated, and a provisional alignment is applied to each
image. Manual adjustments are applied to complete alignment of
the full series.

5http://software.incf.org/software/waxholm-space-atlas-of-the-sprague-dawley-
rat-brain
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FIGURE 5 | Workflow module for assigning anatomical location to labeling. We demonstrate the alignment process by verifying the anatomical position of
terminal fields reported in Zakiewicz et al. (2014) in axonal tracing material with an injection in the whisker representation of the primary somatosensory cortex (case
R602, Zakiewicz et al., 2011). Dense clusters of BDA labeling are clearly visible in the thalamus in the original BDA-NR section (A); Global affine alignment of the
section to the Waxholm Space atlas using a custom-angle atlas plate matching the AP position and coronal angle of the section (B); 3D surface model of the
thalamus showing the position of the cluster indicated in B within the brain (front/side view; C,D); After fine-tuned local alignment of the thalamic region (E), WHS
coordinates are acquired for the centroids of the terminal fields (∗ in E), and transformed to stereotaxic coordinates (Paxinos and Watson, 2007; atlas plate
reproduced with permission from Elsevier) (F–G). AP, anteroposterior; ML, mediolateral; DV, dorsoventral. Scale bar: 0.5 mm.

Data Integration and Spatial Analysis
After alignment of the section images to a selected atlas, the final
step in the workflow is to acquire anatomical coordinates for
regions of interest such as labeled clusters. We here used the
2D centroid of labeled objects (i.e., clusters of labeled fibers) to
represent the location of each region of interest on a section.
Centroids are calculated and plotted in ImageJ for clusters of a
specified size (area) range measured in the binary labeling maps
(Figure 2F). Centroid coordinates are then obtained manually
for each region through the active cursor functionality in the
AligNII tool. In the current implementation, NIfTI coordinates
and Sprague Dawley rat WHS v1.01 coordinates (Papp et al.,
2014) under the cursor are displayed. Since multiple different rat
brain atlases, anatomical nomenclatures, and coordinate systems
are employed in the field (Swanson, 2004; Paxinos and Watson,
2007; Larson and Martone, 2013; Papp et al., 2014; Kjonigsen
et al., 2015), transformation across coordinate systems is an
essential part of this step that facilitates comparing results across
studies and relating findings to different atlas parcellations. We
demonstrate such a comparison by transferring information
about corticothalamic terminal field positions identified in WHS
(Figure 5E) to the stereotaxic atlas of Paxinos and Watson (2007)
which in contrast to the WHS atlas (v2) contains delineations

of thalamic subregions (Figure 5G). We used bregma as the
common reference point between the two atlases to transform
WHS coordinates to stereotaxic space. The transformation
takes into account the rotation between the two coordinate
systems (–4.085◦) and an overall size difference between the
WHS template and the Paxinos and Watson (2007) atlas
accommodated by a uniform scaling factor (1.057) determined
based on the anteroposterior distance of bregma and lambda in
the two atlases. The generated stereotaxic coordinates represent,
in compliance with the Paxinos and Watson (2007) atlas, (1)
mediolateral distance from the midline where positive values
are assigned to the right side, (2) anteroposterior distance
from bregma; and (3) dorsoventral distance from bregma where
negative values are assigned to coordinates ventral to bregma.

Sharing of Tools
The new software is shared under a Creative
Commons Attribution-Non-Commercial-ShareAlike (CC-BY-
NC-SA) license. The image processing modules are shared
on the ImageJ Documentation Wiki6. Tools for registration

6http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:autodetection_of_
neuronal_labeling_in_histological_image_series:start
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of histological images to brain atlas space are embedded
in an online data system (Moene et al., 2011; for access,
contact the corresponding author). A stand-alone version of
the tool producing custom-angle slices through rodent brain
volumetric atlases (CutNII) is shared on the INCF Software
Center7.

DISCUSSION

We have extended a workflow for brain-wide mapping of
axonal connectivity with automatic detection of labeling in
series of microscopic section images, semi-automatic alignment
of these images to a volumetric atlas, and assignment of
anatomical location to the detected labeling. Our results include
an evaluation of the possibilities and limitations of the image
processing methods applied for detecting axonal labeling,
and a demonstration of how the alignment and coordinate
transformation process facilitates data integration across 2D and
3D atlases.

We used publicly available standard histological material
originally produced to map axonal connections across the rat
brain (Zakiewicz et al., 2011) to test the labeling detection module
on large series of images. One of the advantages of automated
processing of such image series is that the output can be expected
to be relatively consistent and without subjective bias. Our
observation of noise level variations in the output from different
staining batches within a single series of images, however, has
revealed that the automatic procedure is sensitive to variations
in the input images. Although we were able to compensate
for this effect by adjusting parameters for individual batches,
doing so may potentially compromise quantitative measurements
for whole series and hinder comparisons across sections. This
highlights the importance of standardization of histological
processing steps to produce optimal input material for automated
image processing (Leong et al., 2010; Di Cataldo et al., 2012; Lin
and Chen, 2014).

Compared to the manual analysis (Zakiewicz et al., 2014),
which served as a reference for the validation of the new method,
the automatic method was found to be equally sensitive for
detecting presence of densely stained axons and plexuses of
stained axons (in the present study referred to as high and modest
amounts of labeling), while being less sensitive to detection of
incompletely or weakly stained, solitary fibers (low amounts of
labeling). It should be noted that variability among earlier reports
of connectivity mostly concern observations of weak labeling
(discussed in Zakiewicz et al., 2014), and further that solitary
labeled axons also are challenging to identify by conventional
microscopic examination, often requiring adjustments of optical
settings and observations at multiple focal planes, which
is not possible in digital section images. Thus, while it is
possible to manually identify labeled axonal fragments based on
observations of the characteristic elongated shape, trajectory, and
presence of boutons, automated detection of such complex signal

7http://software.incf.org/software/cutnii

parameters will require more advanced morphometric pattern
recognition image analysis algorithms.

We have set up the image processing procedure to detect
distinct light-microscopic labeling with BDA or Pha-L. The
same approach can also be adjusted for detection of other
combinations of axonal tracers and counterstaining. Fluorescent
tracers represent another tracer category potentially well suited
for automatic detection and quantification provided that
background fluorescence is sufficiently low.

Assignment of anatomical location to labeling is a key step
in the analysis of whole brain axonal connectivity data. In the
present study, we have taken the individual section images as a
starting point for registration to the volumetric atlas. A range of
other registration approaches and methods have been reported,
including reconstruction of an image series to form a volume,
followed by volume to volume registration (Schormann and
Zilles, 1998; for further references, see Osechinskiy and Kruggel,
2011). Automatic methods are available for 3D reconstruction
and correction of shape distortions induced by histological
processing (Ju et al., 2006; Dauguet et al., 2007; Gaffling et al.,
2015), as well as for volume to volume registration based on
image intensity (Johnson and Christensen, 2002; Kim and Fessler,
2004; Klein et al., 2010), mutual information (Wells et al., 1996;
Woo et al., 2015) or structural features (Kasiri et al., 2014;
Zakiewicz et al., 2015). These methods, however, work best on
complete or nearly complete series of images acquired from
sections showing high contrast between gray and white matter or
other characteristic features. In axonal connectivity material of
the kind used in the present study, often only a subseries (every
nth) of the sections is stained for cytoarchitecture in order not to
obscure labeling or interfere with quantification. Our registration
tool handles such images displaying limited structural contrast
without the need for complete series or even consistent angle of
sectioning. The interactive registration of individual sections is
complemented by propagation of alignment parameters, enabling
fast registration of large series of images. The precision of the
alignment and the subsequent coordinate transformation process
is constrained by affine registration of the WHS template to
individual section images and to the stereotaxic atlas. This can
be improved by local alignment of selected regions of interest on
the section images, and by using multiple in-brain landmarks or
non-linear methods to define the transformation field.

At the new workflow endpoint, histological image series
and associated maps of auto-detected labeling are assigned
anatomical reference, and basic quantitative measures of the
position and amount of labeling are provided. Subsequent
analytical options may include a wide range of approaches,
depending on the research questions asked. For studies of
topographical organization, it will be relevant to combine
labeling data from several different experiments to detect
changes in spatial distribution as a function of the size
and position of the tracer injection site (Leergaard and
Bjaalie, 2007). Investigations of spatial organization may further
include multivariate analyses of point population distributions
(Bjaalie and Diggle, 1990; Vassbø et al., 1999; Leergaard
et al., 2006). For group comparisons and interventional
analyses, quantitative analysis of the amount and density of
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labeling within anatomically defined regions of interest will be
relevant. The selection of available tools and options for further
analysis is extensive and will continue to grow. To build a
common framework for present and future workflow modules
and tools, we plan to integrate our workflow functionality into
a web-based data management system such as the Rodent Brain
Navigator (Moene et al., 2011). In addition to providing storage,
processing resources and an overview of the image analysis
process, such an environment will encourage data sharing and
collaborative analysis.
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