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Abstract

Housekeeping genes (HKGs) generally have fundamental functions in basic biochemical processes in organisms, and usually
have relatively steady expression levels across various tissues. They play an important role in the normalization of microarray
technology. Using Fourier analysis we transformed gene expression time-series from a Hela cell cycle gene expression
dataset into Fourier spectra, and designed an effective computational method for discriminating between HKGs and non-
HKGs using the support vector machine (SVM) supervised learning algorithm which can extract significant features of the
spectra, providing a basis for identifying specific gene expression patterns. Using our method we identified 510 human
HKGs, and then validated them by comparison with two independent sets of tissue expression profiles. Results showed that
our predicted HKG set is more reliable than three previously identified sets of HKGs.
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Introduction

A housekeeping gene (HKG) is typically a constitutive gene

which is required for the maintenance of basic cellular functions,

and generally has a steady expression level across various tissues

through all phases of cell development irrespective of environ-

mental conditions. This makes HKGs excellent controls for the

normalization of Gene Chip technology, and allows the sample

quality and consistency of sample quantity on chips to be assessed

[1]. The development of high-throughput gene analysis has

enabled more precise investigation of gene expression patterns

during various cell development phases and has identified some

putative characteristics of HKGs. Using the Affymetrix HuGen-

eFL chip, Warrington et al. [2] and Hsiao et al. [3] identified 533

and 451 HKGs, respectively, from about 7000 genes by sampling

11 and 19 different tissues. Eisenberg et al. [4] subsequently

identified a set of HKGs containing 575 genes using data from a

more advanced Affymetrix U95A platform based on 47 tissue

samples. However, these three HKG sets contain a total of 963

genes, but only have 158 genes in common. This lack of con-

sistency between datasets implies that there exist a number of false

positives and negatives within existing HKG sets, and is due to a

lack of agreement on the defining characteristics of HKGs. In

addition, high levels of background noise and reproducibility

problems are difficult to avoid in microarray experiments.

Eisenberg et al. [4] identified several characteristics of HKGs.

They proposed that HKGs usually have shorter introns, UTRs

and coding sequences, reasoning that a more compact gene

structure should facilitate more efficient transcription, particularly

in the case of ubiquitously expressed HKGs. A more compact gene

structure is consistent with the stable expression of HKGs across

tissues and developmental stages since, in comparison with tissue-

specific genes, HKGs likely do not require complex transcriptional

control. Vinogradov et al. [5] proposed that the intergenic regions

between HKGs are also shorter. However, results reported by Zhu

et al. [6] on comparisons of ESTs from HKGs and tissue-specific

genes suggest that HKGs do not have a compact gene structure,

creating some confusion on how the characteristics of HKGs

should be defined. Research on HKG gene sequences includes

analysis of the frequency of simple sequence repeats (SSR) in the

59-UTRs [7], content of repetitive sequences [8], and CG-abun-

dance [9]. Farre et al and Zhang et al worked on the evolution and

conservation of the gene sequence or the upstream sequence of

HKGs and tissue specific genes.

However, even if there was strong agreement on these defining

features of HKGs, these characteristics by nature are not powerful

or sufficient enough to decisively discriminate between HKG and

non-HKG genes. Thus, at present there is no effectual algorithm

for reliably predicting HKGs.

Existence of natural bio-rhythms implies that HKGs, which are

constitutively expressed in all cell types and phases, may have

certain expression frequency patterns. These spectral features can

be extracted using harmonic analysis of gene expression time

series and used for predicting HKGs. Here, in order to develop a
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method for discriminating HKGs on the basis of expression

features, we introduced discrete Fourier transform of finite length

time series [10] into gene expression data analysis, and classified

the spectral patterns obtained using machine learning methods.

We then constructed an HKG prediction process and obtained

and verified a set of 510 HKGs.

Methods

Selection of gene expression time-series data
Fourier analysis requires data with a long series length and high

sampling density. Unfortunately, this requirement is much too

rigorous for most standard biochemical experiments. In addition,

the length of a time series is not easily extended, for example,

cells synchronized by serum starvation gradually lose their phase

coincidence after several cycles of cell division, thus causing the

Gauss distribution to broaden. If cells continue to divide in an

unsynchronized manner, cell cycle phases will totally vanish and

information from an extended time series will be meaningless.

To satisfy these requirements, we selected a set of human Hela

cell gene expression time-series, each with 47 sampling points

which were spaced 1 hour apart, covering three cell cycles [11,12]

(http://genome-www.stanford.edu/Human-CellCycle/HeLa/).

Pre-processing of time-series data
It is almost inevitable that there will be some missing data points

in a gene expression time series. Here, we eliminated series which

had successive missing points or three or more separated missing

points, since non-uniform sampling is problematic in Fourier

analysis. Series that had one or two separated missing points were

interpolated with piecewise cubic Hermite interpolation, a relatively

conservative algorithm which does not overshoot and introduces less

oscillation (Figure 1), since the expression data were not smooth. In

this way we constructed a dataset which contained 32,786 uniform

sampling expression time series covering 15,261 genes.

Generally speaking, these time series were not stationary, i.e.

their mean values varied with time. In order to uncover the peri-

odical components of the data by Fourier analysis, we eli-

minated trends and seasonal components using the least squares

method with five variation bases, transforming the time series into

at least a first order stationary series. The principle of variation

used to fit the series with variation bases was to minimize the

grand total square errors (Figure 2).

Taking a series with p time points as a vector with p com-

ponents, X~(X (t1),X (t2),:::,X (tp))T , we can approximate the

vector with q base functions E~(E1,E2,:::,Eq)T . The approximate

error W~
Xp

i~1

½X (ti){
Xq

j~1

bjEj(ti)�2 is minimized when the

linear equations
LW

Lbj

~0 are satisfied.

Here we chose five base functions E1~t,E2~
ffiffi
t
p

,E3~t2,
E4~ ln (5zt),E5~et.

The logarithm term was derived from the Frobenius method for

second order differential equations which implies that the gene

expression time series were continuous and did not contain

singularities within the time intervals we concentrated on.

Frequency analysis before and after data pre-processing showed

the maintenance and enhancement of periodical components in

the residual series (Figure 3).

Interpretation of HKGs
Warrington [2], Hsiao [3] and Eisenberg [4] each reported sets

of HKGs based on the analysis of tissue microarray experiments.

In the Hela cell expression data used here, of the 32,786 effective

time series, 234 series corresponded to 158 genes which were

common to the above published HKG sets, 1217 series corres-

ponded to the 805 genes which were found in only one or two of

the published HKG sets, and 31,335 series corresponded to the

14,297 genes which were not present in any of the published HKG

sets (Figure 4). We defined these three collections of genes as

Standard HKGs, Putative HKGs and non-HKGs, respectively.

Identification and extraction of the features of HKG spectra
Discrete Fourier transform (DFT) was first applied to time series

that had been made stationary in order to enhance the gene

expression frequency components of the spectrum. As the time

series all contain 47 time points, each separated by 1 hour

intervals, we obtained 24 terms from the frequency spectra

obtained by applying DFT. The frequency components could be

obtained by the formula:

Xk~
XN{1

n~0

X (tn)e
{

2pi

N
kn
:

N~47 is the length of each time series. The complex numbers

Xk(k~0,1,2,:::,N{1) are the Fourier spectrum with frequency
k

N
cycles per sampling point and jXkj2 are the power spectrum. For

expression data are real numbers, the first 23 frequency terms are

conjugate to the last 23 terms, i.e. Xk~X �N{k. Thus there are only

24 independent components. We used the power spectrum of all

these 24 frequency components as our SVM features.

In order to test whether the frequency components of the time

series obtained were characteristic features which could be used

to distinguish HKGs from non-HKGs, we used a supervised

statistical learning method. Generally speaking, whether an HKG

expression spectrum has frequency characteristics or not is best

determined using Support Vector Machine (SVM). The SVM

performed classification by constructing an hyperplane that

optimally separates the data into two categories of HKGs and

non-HKGs. The goal of SVM modeling was to find the optimal

hyperplane that separates clusters of time series in such a way that

cases of the HKG category are on one side of the plane and cases

of the non-HKG category are on the other size of the plane.

Figure 1. Hermite interpolation. Hermite interpolation (pchip)
maintains the shape of the data better than cubic spline interpolation.
doi:10.1371/journal.pone.0021012.g001
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Figure 2. The effect of removing non-periodic trends from the data. The variation trend for the original time series is shown by a red line.
After elimination of this trend the data will be at least first order stationary.
doi:10.1371/journal.pone.0021012.g002

Figure 3. Fourier spectrum of the same time series as in the Figure 2. Meaningless long period terms were filtered out after the variation
process. The main periodical components in the original series are preserved in the processed time series.
doi:10.1371/journal.pone.0021012.g003
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Libsvm (Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a

library for support vector machines, 2001. http://www.csie.ntu.

edu.tw/,cjlin/libsvm) was used here to distinguish between the

genes, taking the 24 effective frequency components obtained by

Fourier transformation as features. The Gaussian radial basis

function (RBF) kernel was adopted with penalty parameter C~1
and exponent parameter c~0:07. The parameter pair (C,c) was

selected by the commonly used cross-validation.

Evaluation using tissue expression profiles
Two independent human tissue expression profiles: GSE2361

[13], expression profiling of 36 types of normal human tissues, and

GSE1133 [14], mRNA expression pattern of 79 human tissues,

were downloaded from NCBI. Probe intensity data was converted

to log2 ratios. Intensity data for different probes corresponding to

the same genes were then averaged to represent gene expression

levels. The standard deviation (SD) and mean value for each gene

across tissues were calculated for each dataset. The coefficient of

variation (CV; SD/mean) was obtained.

Gene ontology analysis
A human gene association file (GOC Validation Date: 08/27/

2010, CVS Version: Revision: 1.159) was downloaded from the

Gene Ontology website [15]. We used the WEGO web server [16]

to plot GO results by converting our predicted gene set to the

WEGO native format. Only GO level 2 was plotted.

Gene Conservation Analysis
Human hg18 conservation data for 28 vertebrate genomes

(phastCons28way) [17] and a hg18 gene table [18] were down-

loaded from the UCSC web site. The conservation score of each of

the HKG and non-HKG was calculated as the mean value of all

exon base phastcons scores of their mRNAs. If a gene had more

than one mRNA sequence, all mRNA scores were averaged to

give a final score.

For a brief summary of the entire process, please see the part 1

of Text S1.

Results

Gene expression frequency spectra can be used as
effective characteristics for discriminating HKGs

Since HKGs are genes that commonly have stable expression

levels at all growth stages in all organisms, there should be

conceivable differences in periodic expression features between

HKGs and non-HKGs. For this reason we hypothesized that

Figure 4. Distribution of the probe sets of genes in the three
published HKG datasets. The cyan area in the center represents 234
probes corresponded to genes common to all three HKG sets (Standard
HKGs). The green area represents 1217 probes corresponded to genes
only in one or two HKG sets (Putative HKGs). The outside grey area
represents probes corresponded to other genes not present in any of
the HKG sets (non-HKGs).
doi:10.1371/journal.pone.0021012.g004

Figure 5. Ability of the HN and NN models to discriminate between HKGs and non-HKGs. The models were replicated a total of 1024
times. SVM can recognize structural differences between the standard HKG and random non-HKG sets better than those of two random non-HKG
sets. The accuracy distribution of the NN model has two peaks, suggesting that the non-HKG time series has an intrinsic structure. This is not
surprising since the number of non-HKG genes is much larger.
doi:10.1371/journal.pone.0021012.g005
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frequency spectrum features could be used to discriminate be-

tween HKGs and non-HKGs. Here, we used Whitfield et al.’s

Hela cell dataset which contains the time expression series of

41508 probes. Spectral analysis was performed with Discrete

Fourier Transform (DFT), and periodical features were identified

and extracted from the frequency statistics obtained using SVM

(see Methods section). In order to test whether the Fourier spec-

trum of a gene is a distinct feature of an HKG, we established two

classification models based on 24 frequency components obtained

with Fourier analysis: the HN model (HKG/non-HKG; true

model) and the NN model (non-HKG/non-HKG; control model).

In the HN model, the 234 standard HKG probes were used as

positive cases and 234 non-HKGs were selected randomly and

used as negative cases for SVM. In the NN, or ‘‘control model’’,

234 random non-HKG probes were used as positive cases and 234

other non-HKG probes were selected randomly and used as

negative cases. Figure 5 shows that the efficiency of the NN model

in discriminating between HKGs and non-HKGs is markedly

lower than that of the HN model. It is thus evident that HKG

frequency components have characteristic structures that can be

detected by SVM, indicating that the frequency components of

gene expression can be used to effectively discriminate between

HKGs and non-HKGs. Computational details are given in the

Figure S1 and part 2 of the Text S1.

Prediction of HKGs
As discussed above, the lower than anticipated overlap between

the HKG collections published by Warrington [2], Hsiao [3] and

Eisenberg [4] indicates the presence of false positives and false

negatives within these datasets. The ability of the HN and NN

models to discriminate between HKGs and non-HKGs based on

frequency components of gene expression shows that prediction

and identification of HKGs is possible. In order to eliminate false

positives and false negatives from the set of 805 putative HKG

genes in the Hela cell dataset that overlapped with one or two of

the published HKG sets, and to further classify and predict HKGs

within the Hela cell dataset, we established classification models

using the 234 probes for standard HKGs that were common to all

three datasets as the positive set for the SVM classification

prediction model, and randomly selected 234 probes from the

31,335 non-HKG probes as the negative set. After a single round

of prediction, the genes which were classified as HKGs were

determined by the identity of the genes contained in the randomly

selected negative set, i.e. there was stochastic bias. This bias can be

eliminated with a bootstrap approach, i.e. genes classified as

HKGs were those which had the highest counts after repeated

rounds of model selection and classification. We performed

computer simulations using the same method to test whether this

method can reliably distinguish different kinds of time series. The

simulation details and results are shown in part 4 of Text S1. The

simulation results demonstrated that our method can identify

different frequency patterns. Figure 6 shows the distribution of

counts obtained after 4096 (212) rounds of classification. The

proportion of probes that had high counts in the set of putative

HKGs that overlapped with one or two of the published HKG

sets, was much greater than the proportion of possible non-HKGs,

once again showing the validity of frequency features. 299 genes

from the 805 putative HKG genes were selected as HKGs in this

way, using 3328 counts as the minimum cut-off point for selection

(81.25% ballot). 53 genes from the non-HKG set were also

selected since each of them was counted as an HKG more than

4085 times (99.73% ballot). Figure 7 and Figure 8 each shows the

detailed distribution of counts for probes with more than 3000 and

4000 counts. All 158 standard HKGs common to the three

published HKG datasets were selected as HKGs. In total our

method predicted 510 HKGs. See Table S1 for detailed gene lists.

Figure 6. HKG count distribution. 4096 rounds of stochastic SVM classification were performed, each round giving an estimation of whether
putative HKGs (black) and non-HKGs (red) were indeed HKGs. The greater the number of counts obtained, the more likely a gene is to be an HKG. The
distribution of counts shows that a larger proportion of putative HKGs have a high percentage of counts than non-HKGs, suggesting that there is a
larger proportion of HKGs in the putative HKG set than in the non-HKG set.
doi:10.1371/journal.pone.0021012.g006
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Figure 7. Distribution of counts for probes with more than 3000 counts. We chose 3328 counts as the minimum cut-off point for selection
from putative HKG set.
doi:10.1371/journal.pone.0021012.g007

Figure 8. Distribution of counts for probes with more than 4000 counts. Genes in this region are highly likely to be HKGs. It can be seen that
the percentage of putative HKGs is much greater than that of the non-HKGs from about 4085 counts, suggesting that 4085 counts is a suitable cut-off
criterion for predicting HKGs.
doi:10.1371/journal.pone.0021012.g008
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Validation and evaluation of HKG prediction results
Our prediction results were evaluated against two sets of tissue

expression profiles [13,14] which were not used in the prediction.

These profiles each contained 79 and 36 different tissues. The

distribution of the coefficient of variation (CV i.e. SD/mean), a

measure of whether a given gene is highly expressed across all

tissues and can therefore be considered as an HKG, is shown in

Figure 9 and Figure 10 for all the genes in the three published

HKG datasets and the 510 predicted HKGs. A comparison of the

CVs for our predicted HKGs and all the 15,261 genes in the tissue

expression profiles that overlapped with the Hela cell gene

expression dataset is shown in Figure S2. CVs of the predicted

HKGs tended to be small, suggesting that CV is an appropriate

parameter for evaluating HKGs [19].

The median CVs of the two tissue expression profiles are shown

in Table 1. The median CV of our predicted set of HKGs is

smaller than that of the three published HKG sets, indicating that

the genes in our predicted HKG set showed less fluctuation.

Gene Ontology Analysis
We performed a gene ontology analysis to classify the predicted

HKGs on the basis of their function (Figure 11). Genes in our pre-

dicted HKG set were distributed in several important biological

process functional classes including cellular processes, metabolic

processes and biological regulation. These terms represent the

basal functions that HKGs are responsible for.

Gene Conservation Analysis
Figure 12 shows the conservation of different gene sets among

28 species [17]. Genes in all three HKG sets and our predicted

HKG set tended to be more conserved than non-HKG genes from

the hg18 gene table. The conservation scores of the three HKG

sets and our predicted set of HKGs were similar.

Discussion

Features of HKGs
HKGs and non-HKGs differ in several statistical quantities such

as CG content and SSR density. However, these features are

parameters posteriorly-derived from statistical induction, and are

therefore not suitable for use in quantitative classification. Such

statistical induction is naturally incomplete because sampling

processes have unavoidable limitations which tend to result in the

choice of different collections of samples being used to address the

same problem, and thus in sharply different conclusions. For

example, Zhu et al. (2008), and Eisenberg and Levanon have quite

different, even opposite, opinions about whether the ESTs of

HKGs are compact. Thus, with respect to classification, it is not

appropriate to use these statistical quantities as features of high

significance and consistency. Classification using our HKG de-

finition and Fourier analysis avoids the use of parameters based on

statistical hypotheses. Results from such classifications can be

verified by other statistical measures such as differences in tissue

expression levels, which are independent of statistical learning and

modeling, making the classification more rational.

Some research has shown that expression levels of housekeeping

genes may vary depending on experimental conditions [20].

However, unless the cell state is severely disturbed by environ-

mental conditions in the experiments, the most conceivable

consequence of this disruption would be uniform upregulation

Figure 9. Distribution of CVs (1). Distribution of CVs for the three published HKG datasets and our predicted HKG set using tissue expression data
GSE2361 from Ge et al. [13].
doi:10.1371/journal.pone.0021012.g009
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(or downregulation), or gradual increase or decrease in the ex-

pression of some genes over the entire length of the experiment.

This type of experimental variation will be eliminated by norma-

lization of the data or by pre-processing to remove non-periodic

trends. The algorithm used here will be reliable as long as the

expression of HKG genes is steady and does not show periodic

expression under specific experimental conditions. In other words,

the Fourier spectra of two gene expression time-series which seem

quite different may be similar, unless they have very different

frequency components.

Different spectral methods
Fourier analysis is an approach which takes advantage of pat-

tern recognition to remove noise from microarray data. A require-

ment of the DFT method used here is that the data from time

series should be steady. The Fourier series expansion is a math-

ematical description of the physical fact that every linear periodic

phenomenon can be expressed by a series of simple harmonic

modes. The Fourier coefficient is the weighted mean over the

whole time domain, i.e. Fourier analysis shows the properties of an

entire time series, instead of being restricted to a small segment. So

it is only asymptotic to describe the partial features of time series

with it.

Several studies have already extract frequency features from

expression time series of cell cycle data using Fourier analysis. The

frequency features were further analyzed by functional clustering

methods and genes were classified according to different ex-

pression patterns across the stages in the cell cycle [21,22,23]. de

Lichtenberg. et al. [24] constructed an interacting network of cell

cycle related proteins by combination of frequency features with

physical interacting data. The clustering methods in these works

mainly used the most significant frequency components as

features. Rustici et al. [23] selected genes with significant power

spectrum peaks which were consistent with cell cycle duration.

Kim et al. [22] used three main frequency components of Fourier

series for clustering, omitting other components. However, house-

keeping genes are not related to the cell cycle, and have no

dominanting frequencies. We therefore considered all 24 frequen-

cy components in our classification. Since SVM is good at dis-

tinguishing fuzzy patterns, it is a suitable tool for this type of

Figure 10. Distribution of CVs (2). Distribution of CVs for the three published HKG datasets and our predicted HKG set using tissue expression
data GSE1133 from Su et al. [14].
doi:10.1371/journal.pone.0021012.g010

Table 1. Median CVs.

Median of CV Eisenberg et. al Hsiao et. al Warrington et. al Predicted HKGs

GSE2361 [13] 0.0785 0.0763 0.0730 0.0720

GSE1133 [14] 0.1462 0.1489 0.1582 0.1462

Our predicted set of HKGs has a smaller median CV than that of the three published HKG sets.
doi:10.1371/journal.pone.0021012.t001

Predicting Housekeeping Genes
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Figure 11. Distribution of gene ontology in our predicted HKG set. GO level 2 is shown. The horizontal axis represents different terms of GO
level 2, while the vertical axis represents how many genes or percent of genes in our predicted HKG set belong to each GO term.
doi:10.1371/journal.pone.0021012.g011

Figure 12. Gene conservation distribution. The horizontal axis represents gene conservation scores.
doi:10.1371/journal.pone.0021012.g012
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dichotomy problem. The simulation showed that SVM could

recognize various frequency patterns (Text S1 part 4). Our work

indicated that housekeeping genes, which are not related to cell

cycle, could also be identified from cell cycle data through

frequency analysis. However, Cell cycle data are not necessary in

the recognization of HKG. We chose these data because they

contained the longest available expression time series.

Instant Fourier analysis and wavelet analysis, which consider

both time and frequency, can deal with frequencies changing over

time. Kim et al. [25] reported a gene clustering work based on

wavelet analysis. In fact, when the time series are long enough,

wavelet analysis has advantages over traditional Fourier transform

for time dependent, non-stationary signals. As the accuracy of

microarray data improves and the size of datasets constantly

increases, instant Fourier analysis and wavelet analysis will be

more often used in biochip data analyses. Using instant Fourier

analysis and wavelet analysis, local features within a time series can

be identified, such as the response of gene expression to regulating

and controlling factors.

The selection of the threshold
We picked two distinct thresholds for the selection of putative

HKG and non-HKG sets. We reasoned that genes in the putative

HKG set of the three published datasets are more likely to be

HKGs, while those in the non-HKG set are less likely to be

HKGs, and thus chose a relatively loose threshold (3328 counts)

for genes in the putative HKG set. In fact, a stricter threshold

would make the CV of the selected set smaller, but more false

negatives would result. We set a much stricter threshold for the

non-HKG set (4085 counts), since the relative proportion of

suspect HKGs was much greater than that of non-HKGs from

about 4085 counts (Figure 8).

Validation of our predictions via gene function
Some genes from the putative HKG set were rejected by our

procedure. For example, TUBB3 was annotated as an HKG in the

Eisenberg set, but in fact it is a microtubule element expressed

exclusively in neurons, commonly used to identify neurons in

nervous tissue. The score for TUBB3 with our prediction method

was 2287, below the HKG threshold. In the same way, TUBB

scored 0 and was also below the HKG threshold. ILF2 encodes a

45 kDa subunit of NFAT (nuclear factor of activated T-cells), a

transcription factor required for T-cell expression of the

interleukin 2 gene that is probably only expressed in T-cells and

may not be an HKG. CES2 (carboxylesterase 2), expressed in the

intestine and liver, is a major intestinal enzyme and functions in

intestine drug clearance. It is tissue-specific rather than house-

keeping, and was also rejected by our method.

On the other hand, in the non-HKG set, ATG9A scored 4093

and was selected as an HKG. Yamada et al. [26] reported that it

is ubiquitously expressed in human adult tissues. The CAPN1

gene which encodes the large subunit of a ubiquitous enzyme,

calpain 1, scored 4096 in our study and was also selected as an

HKG. UBE2B (score: 4091), the ubiquitin-conjugating enzyme

E2B which is required for post-replicative DNA damage repair, is

100% identical to its mouse, rat, and rabbit homologs. UBE2K

from the non-HKG set also scored highly (score: 4089) in our pro-

cedure. It belongs to the ubiquitin-conjugating enzyme family, too.

Here we have proposed an HKG prediction method using

spectral analysis of gene expression time-series data. Our method

has proved effectual and we have predicted 510 HKGs using Hela

cell cycle data, including 54 genes not present in previously

reported HKG sets. Our predicted HKG set was then validated

using two independent tissue expression profiles. This method will

be further verified when more time series data providing in-depth

coverage of a sufficiently long time period become available.

Supporting Information

Figure S1 Organization of training and testing sets used
by SVM. Details in the supervised statistical learning process.

There are three selected sets used in learning and testing and they

are used to test whether the frequency features can be used to

recognize HKGs.

(TIF)

Figure S2 An overall distribution of CVs. A comparison of

the CVs for our predicted HKGs and all the 15,261 genes in the

tissue expression profiles that overlapped with the Hela cell gene

expression dataset, which suggests that CV is an appropriate

parameter for evaluating HKGs.
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