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Abstract

In a phase 2 trial of once-weekly tirzepatide (1, 5, 10, or 15 mg), dulaglutide (1.5 mg), or

placebo, the dual glucose-dependent insulinotropic polypeptide and glucagon-like

peptide-1 receptor agonist tirzepatide dose-dependently reduced HbA1c and body weight

in patients with type 2 diabetes. In this post hoc analysis, inflammation, endothelial dys-

function, and cellular stress biomarkers were measured at baseline, 4, 12, and 26 weeks to

evaluate the additional effects of tirzepatide on cardiovascular risk factors. At 26 weeks,

tirzepatide 10 and 15 mg decreased YKL-40 (also known as chitinase-3 like-protein-1),

intercellular adhesion molecule 1 (ICAM-1), leptin, and growth differentiation factor 15

levels versus baseline, and YKL-40 and leptin levels versus placebo and dulaglutide.

Tirzepatide 15 mg also decreased ICAM-1 levels versus placebo and dulaglutide, and high-

sensitivity C-reactive protein (hsCRP) levels versus baseline and placebo, but not dul-

aglutide. GlycA, interleukin 6, vascular cell adhesion molecule 1, and N-terminal-pro hor-

mone B-type natriuretic peptide levels were not significantly changed in any group. YKL-

40, hsCRP, and ICAM-1 levels rapidly decreased within 4 weeks of treatment with

tirzepatide 10 and 15 mg, whereas the decrease in leptin levels was more gradual and did

not plateau by 26 weeks. In this hypothesis-generating exploratory analysis, tirzepatide

decreased several biomarkers that have been associated with cardiovascular risk.
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1 | INTRODUCTION

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective

therapies for the treatment of type 2 diabetes. In addition to

improving glycaemic control and reducing body weight, they have

shown efficacy in reducing major adverse cardiovascular events

(MACE).1 While glucose lowering and weight loss probably contribute

to reduced cardiovascular risk, they do not account for the full
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effect,2 and additional mechanisms, including improvement in endo-

thelial dysfunction and reduction of inflammation, may also

contribute.3,4

Dual agonism of glucose-dependent insulinotropic polypeptide

(GIP) and GLP-1 receptors is a promising new approach currently in

clinical development for the treatment of diabetes, obesity, and asso-

ciated complications.5 Human genetics has shown protection against

coronary heart disease associated with a GLP1R variant, consistent

with the effect of GLP-1RAs on reducing MACE.6 GIP has also shown

anti-inflammatory and vascular protective effects in preclinical stud-

ies.7 However, in one study, short-term infusion of GIP in humans

was shown to increase monocyte chemoattractant protein-1 (MCP-1)

and interleukin 6 (IL-6) mRNA levels in adipose tissue, as well as circu-

lating plasma concentrations of MCP-1.8 It is thus critically important

to further understand the role of GIP in the context of dual GIP and

GLP-1 receptor agonism on key cardiovascular risk factors.9

In a phase 2b study of patients with type 2 diabetes, the dual GIP

and GLP-1 RA tirzepatide showed significantly better glucose control

and weight loss than the selective GLP-1RA dulaglutide.10 In this post

hoc analysis, we report circulating levels of biomarkers of systemic

inflammation, cytokines, adhesion molecules, the adipokine leptin, and

the cardiomyocyte stress marker N-terminal-pro hormone B-type

natriuretic peptide (NT-proBNP), to better understand the possible

effects of tirzepatide on cardiovascular risk.

2 | METHODS

2.1 | Trial design

In this phase 2b, double-blind (patient and investigator) study, partic-

ipants (aged 18-75 years) had type 2 diabetes for 6 months or longer

(HbA1c 7.0%-10.5%), which was inadequately controlled with diet

and exercise alone or with stable metformin therapy, and a body

mass index of 23-50 kg/m2.10 Overall, 318 participants were ran-

domized (1:1:1:1:1:1) to once-weekly subcutaneous 1 (N = 53), 5

(N = 55), 10 (N = 52), or 15 mg (N = 53) tirzepatide, 1.5 mg dul-

aglutide (N = 54), or placebo (N = 51), with 316 participants

included in the modified intention-to-treat population. Participants

were treated for 26 weeks after a 1-week screening and 2-week

lead-in period. The study (NCT03131687) was approved by the rele-

vant ethics committees and conducted in accordance with the princi-

ples of the Declaration of Helsinki, Council of International

Organizations of Medical Sciences International Ethical Guidelines,

and Good Clinical Practice guidelines. All participants provided writ-

ten informed consent prior to participation.

2.2 | Biomarker analysis

Biomarkers were quantified in serum or EDTA plasma collected in the

fasting state from patients at baseline, 4, 12, and 26 weeks and stored

at �80�C until analysis. High-sensitivity C-reactive protein (hsCRP)

(Roche, Indianapolis, IN); GlycA (LabCorp, Morrisville, NC); growth dif-

ferentiation factor 15 (GDF-15), YKL-40 (also known as chitinase-3

like-protein-1), MCP-1, and leptin (R&D Systems, Minneapolis, MN);

and IL-6, intercellular adhesion molecule 1 (ICAM-1), vascular cell

adhesion molecule 1 (VCAM-1), and NT-proBNP (MesoScale Discov-

ery, Rockville, MD), were measured by immunoassay. Additional bio-

marker descriptions, background information, and details of assay

methods, are provided in Tables S1 and S2.

2.3 | Statistical analysis

Analyses were performed on the modified intention-to-treat popula-

tion, excluding data after study drug discontinuation or rescue drug

initiation. Subjects included in analyses had non-missing baseline

values and at least one non-missing postbaseline value of the

response variable. Biomarker distribution was examined. Changes in

biomarkers were analysed using mixed model with repeated measure

for all biomarkers except GlycA, which was analysed using analysis of

covariance because of data only being available at baseline and

26 weeks. Biomarker at baseline was included as a covariate in the

models. Log-transformation for models was used for biomarkers with

a skewed distribution. To investigate the impact of changes in body

weight on changes in hsCRP, YKL-40, ICAM-1, and leptin, linear

regression analyses were conducted in each treatment group, as well

as a combined tirzepatide 10 + 15 mg group. A linear model selected

by a forward model selection analysis was conducted with biomarker

change from baseline at 26 weeks as the response and weight loss at

26 weeks as the independent variable. The forward model selection

analysis was run starting with the model with treatment, weight loss,

and their interaction using samples from all treatments. Potential

covariates for model selection were baseline body weight, age, sex,

baseline HbA1c, and baseline biomarker levels. The best model was

selected by the Akaike information criterion and this was used for

each treatment separately to calculate the contribution of weight loss

(type III sum of squares) to total variability (total sum of squares) in

change from baseline of the biomarker. Spearman correlation coeffi-

cients were computed between all biomarkers within the tirzepatide-

15 mg and dulaglutide groups. A two-sided P value of .05 was taken

to indicate statistical significance.

3 | RESULTS

Baseline demographics, clinical characteristics, and lipid profiles were

published previously and were similar across treatment groups.10,11

Baseline biomarker levels measured in this study were also similar

across treatment groups (Table 1).

Table 1 and Figure S1 present percentage change from baseline

at 26 weeks. Tirzepatide dose-dependently decreased hsCRP from

baseline levels, with statistical significance in the tirzepatide-15 mg

group (least squares mean [LSM] standard error [SE]: �36.2% [8.9]).

Tirzepatide 15 mg also significantly reduced hsCRP versus placebo,
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but not versus dulaglutide. A trend of reduction in GlycA levels

occurred in all tirzepatide dose groups, in contrast to increases in the

placebo and dulaglutide groups. However, differences between

groups were not statistically significant.

GDF-15 levels decreased in all tirzepatide dose groups (1 mg:

�11.6% [5.3], P < .05; 5 mg: �9.4% [5.1], P > .05; 10 mg: �12.1%

[5.2], P < .05; 15 mg: �12.9% [5.8], P < .05), and the dulaglutide

group (�15.4% [4.9], P < .05). The magnitudes of differences in

GDF-15 levels were not significant between any tirzepatide group

and placebo or dulaglutide. IL-6 levels were unchanged in all groups.

MCP-1 levels were increased from baseline in the 5-mg group and

decreased versus dulaglutide in the 10-mg group, with no other

significant differences.

Tirzepatide dose-dependently decreased YKL-40 levels with a sig-

nificant change in the tirzepatide 10-mg (�26.1% [5.0]) and 15-mg

(�30.8% [5.3]) groups (both P < .001). There was no significant

change in the placebo (10.8% [7.6]) or dulaglutide (�6.2% [6.1])

groups. YKL-40 levels were significantly decreased in the 5-, 10-, and

15-mg tirzepatide dose groups versus placebo and the 10- and 15-mg

groups versus dulaglutide.

Tirzepatide dose-dependently decreased ICAM-1 levels, with sig-

nificant decreases compared with baseline in the 5-mg (�4.5% [2.2]),

10-mg (�7.2% [2.3]), and 15-mg (�11.2% [2.5]) groups. ICAM-1 levels

were also significantly lower in the tirzepatide 15-mg group versus

placebo and dulaglutide. VCAM-1 levels did not change significantly

in any group and there were no differences between groups in

VCAM-1 levels.

Leptin levels significantly decreased in the tirzepatide 10-mg

(�28.2% [7.6]) and 15-mg (�34.1% [7.9]) groups compared with base-

line and the placebo and dulaglutide groups.

There were no significant changes in NT-proBNP levels in any

group and no differences between groups.
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Among the 10 biomarkers measured, four (hsCRP, YKL-40,

ICAM-1, and leptin) were significantly reduced in the high-dose

tirzepatide treatment group compared with the placebo group.

Changes over time in these biomarkers are presented in Figure 1.

Dose-dependent reductions in hsCRP, YKL-40, and ICAM-1 levels

occurred within 4 weeks of tirzepatide treatment. By contrast, in the

tirzepatide 10- and 15-mg groups, leptin levels decreased throughout

the study and did not plateau by 26 weeks.

Heatmap plots of Spearman's correlation coefficients for changes

from baseline at 26 weeks in the tirzepatide 15-mg and dulaglutide

groups are presented in Figure S2. Changes in ICAM-1 showed signifi-

cant correlations with changes in hsCRP, GlycA, and VCAM-1 in both

groups. Changes in YKL-40 levels correlated with changes in VCAM-1

and NT-proBNP, but only in the dulaglutide group. Interestingly,

changes in leptin levels did not correlate well with changes in other

biomarkers, except for a significant correlation with changes in GDF-

15 only in the tirzepatide 15-mg group.

Body weight change explained 23% and 20% of leptin variability in

the dulaglutide and tirzepatide (10 + 15 mg combined) groups, respec-

tively. The percentage of leptin variability explained by body weight

change generally increased with increasing tirzepatide doses (1 mg, 6%;

5 mg, 11%; 10 mg, 18%; 15 mg, 18%). Change in body weight with

tirzepatide (10 + 15 mg combined) also explained 4% of the variability

in ICAM-1 levels (vs. 1% with dulaglutide). Finally, body weight change

with dulaglutide explained 13% of hsCRP and 21% of YKL-40 variability

compared with 0% and 6% with tirzepatide, respectively.

4 | DISCUSSION

Patients with type 2 diabetes are at an increased risk of cardiovascular

disease. Mechanisms related to inflammation and endothelial dysfunc-

tion have been implicated, among others.12 In this post hoc analysis in

patients with type 2 diabetes, we show that tirzepatide treatment

reduces the circulating levels of several biomarkers associated with

cardiovascular risk compared with both placebo and dulaglutide

treatment.

Tirzepatide dose-dependently decreased hsCRP, YKL-40,

ICAM-1, and leptin levels after 26 weeks of treatment. The dose- and

time-dependent reduction in leptin levels with tirzepatide was more

gradual compared with rapid decreases in hsCRP, YKL-40, and

ICAM-1 at 4 weeks, and did not plateau after 26 weeks. This pattern

suggests an earlier direct effect of tirzepatide in suppressing inflam-

mation and improving endothelial function, independent of weight

loss. Leptin is a pro-inflammatory adipokine mainly secreted from the

adipose tissue,13 and circulating leptin levels correlate with the degree

of obesity. The decrease observed here is consistent with, although

not completely explained by, the effect of tirzepatide on body weight.

The rapid decline of the well-established systemic inflammation

marker hsCRP,14 the pro-inflammatory cytokine YKL-40,15 and the

endothelial dysfunction marker ICAM-1,16 are consistent with the

suppression of inflammatory responses in monocytes, macrophages,

and adipocytes and the overall vascular protective effects of GIP and

GLP-1 reported in preclinical studies.3,7 In epidemiological studies in

humans, these inflammatory biomarkers are positively associated with

atherosclerotic cardiovascular disease. High levels of hsCRP, YKL-40,

and ICAM-1 are associated with an increased risk of MACE. Pharma-

cological treatments that reduce hsCRP, including statins and anti-IL-

1β antibody, are associated with improved cardiovascular out-

comes.13-17 In the current 26-week study, we also observed a trend

for reduction in MCP-1 levels with the 10 and 15 mg doses of

tirzepatide, and no changes in IL-6 levels, thus suggesting that the

increase in MCP-1 concentrations and adipose tissue MCP-1 and IL-6

mRNA levels described following a 240-min infusion of synthetic

human GIP (1-42) is transitory.8 The decrease of leptin, YKL-40,

ICAM-1, and MCP-1 levels following treatment with tirzepatide

10 and/or 15 mg compared with dulaglutide suggests improved anti-

inflammatory activity of tirzepatide and could translate into a

favourable effect of this molecule in reducing cardiovascular risk.

This study is strengthened by comparison with both placebo and

dulaglutide, a GLP-1 RA with proven reduction in risk of MACE

events,1 the magnitude of which cannot be fully explained by its

effects on glucose, weight, or systolic blood pressure,2 suggesting that

inflammatory, endothelial function, or other mechanisms may be

involved. An inherent limitation of its post hoc design is that sample

sizes were based on power calculations for primary study endpoints,

participant flow through the trial, and stored sample availability, rather

than prespecified analyses or a prepublished protocol.10 The inclusion

of 10 cardiovascular risk biomarkers allowed exploration of possible

additional effects of tirzepatide treatment, but this study was

intended to be hypothesis generating, rather than to provide defini-

tive data on the effects of tirzepatide on cardiovascular outcomes.

In conclusion, in this 26-week study in patients with type 2 diabe-

tes, treatment with tirzepatide resulted in the reduction of several

biomarkers of inflammation and endothelial dysfunction associated

with cardiovascular risk. These findings will be explored further in

larger studies, such as SURPASS-4 (NCT03730662) and, particularly,

SURPASS-CVOT (NCT04255433). In the SURPASS-4 study, the effi-

cacy of tirzepatide versus insulin glargine in patients with type 2 diabe-

tes and increased cardiovascular risk is being investigated, while in the

SURPASS-CVOT, the effect of tirzepatide versus dulaglutide on major

cardiovascular events in patients with type 2 diabetes and established

cardiovascular disease is being assessed.
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