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Abstract

The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and

can be involved in multiple flammatory, compressive, or pathologies. The diffusion

magnetic resonance imaging (dMRI) tractography is now widely used to describe the

trajectory of the OCN. However, the complex cranial structure leads to difficulties in

fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest

(ROI) selection. Currently, the identification of OCN relies on expert manual opera-

tion, resulting in challenges, such as the carries high clinical, time-consuming, and

labor costs. Thus, we propose a method that can automatically identify OCN from

dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical

deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography

to describe the 3D trajectory of the OCN. Then, we rely on the well-established com-

putational pipeline and anatomical expertise to create a data-driven OCN

tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN

from the atlas, including the structures of three kinds of positional relationships (pass

between, pass through, and go around) with the red nuclei and two kinds of posi-

tional relationships with medial longitudinal fasciculus. Finally, we apply the proposed

OCN atlas to identify the OCN automatically from 40 new HCP subjects and two

patients with brainstem cavernous malformation. In terms of spatial overlap and visu-

alization, experiment results show that the automatically and manually identified

OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for

identifying OCN by avoiding the traditional selection strategy of ROIs.

K E YWORD S

data-driven, diffusion magnetic resonance imaging, fiber clustering, neurosurgery, oculomotor
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1 | INTRODUCTION

The oculomotor nerve (OCN) consists of somatic and parasympathetic

nerves and plays a key role in the eye movements and pupilJiahao Huang and Mengjun Li authors contributed equally to this work.
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contractions by controlling extraocular muscles, ciliary muscles, and

sphincter pupillae (Condos, 2021; Park, Rha, Lee, Chough, &

Joo, 2017). The intramesencephalic segment of OCN extends from

the oculomotor nuclear complex (ONC), which is ventral to the per-

iaqueductal gray, and travels to the interpeduncular fossa (Brazis,

Masdeu, & Biller, 2012; Condos, 2021). The cisternal segment of OCN

travels outward and downward to the cavernous sinus and enters the

orbits in the direction of the cavernous sinus parallel to the cavernous

part of the internal carotid (Liang et al., 2009; as shown in Figure 1).

OCN can be affected by many diseases, such as external brain injury

(Nakagawa, Toda, Shibao, & Yoshida, 2017), congenital OCN palsy

(Yang, Kim, & Hwang, 2020), and brain tumors (Inoue, Hashiguchi,

Moroki, & Tokuda, 2020; Li et al., 2018; Taniguchi et al., 2018).

Research (Tam, Lonngi, & Demer, 2018; Zhao, Li, Chang, Wang, &

Sun, 2021) suggested that identifying the location of OCN is impor-

tant in guiding diseases that involve the OCN.

Tractography based on diffusion magnetic resonance imaging

(dMRI) can reveal the trajectory of OCN in three-dimensional, includ-

ing the intramesencephalic and cisternal segments (Basser, Mattiello, &

LeBihan, 1994; Gong et al., 2009; Hodaie, Quan, & Chen, 2010;

Yoshino et al., 2016) which has been widely used in OCN identifica-

tion to obtain the three dimensional (3D) relationship with surround-

ing structures (Jacquesson et al., 2019; Li et al., 2018; Muhammad &

Niemelä, 2019). Hodaie et al. (2010) used dMRI data with the single-

region of interest (ROI) selection method (cisternal segment of OCN)

and diffusion tensor imaging (DTI) to reconstruct OCN. Results

showed that the OCN terminates in the ONC or extends down the

brainstem. Yoshino et al. (2016) used high-definition fiber

tractography and two-ROI selection method (fourth ventricle at the

level of upper pons and cisternal segment) to identify OCN fibers in

healthy subjects and patients with brain tumors and presented similar

results. Previous studies (Hodaie et al., 2010; Yoshino et al., 2016)

identified putative OCN fibers through manually placed ROIs. How-

ever, common tractography methods have difficulty in tracking the

complete OCN pathway because of the elongated structure of the

OCN, cerebrospinal fluid (CSF) where the cisternal segment of OCN is

infiltrated, and partial volume effect (Jacquesson et al., 2019; Maier-

Hein et al., 2017). Therefore, experts should place the ROI manually

to promote OCN tractography and identification. (1) The identification

of the OCN is sensitive to the ROI placement, and manual ROI selec-

tion methods suffer from imaging artifacts and/or noise and operator

bias. Thus, the selection of the best-performing ROIs remains a chal-

lenge (Wu et al., 2018; Zhang et al., 2020). (2) Manually placing ROIs

is laborious, time-consuming, and unfriendly to beginners who suffer

from lack of knowledge in anatomy (Jacquesson, Yeh, et al., 2019; Xie

et al., 2020).

Automatic identification methods are proposed to avoid the pit-

falls of traditional ROI selection methods. The automatic identification

based on cortical parcellation (Sporns, Tononi, & Kötter, 2005;

Wassermann et al., 2016) allows for highly specific identification but

leads to the low sensitivity of tract identification and effects from

individual anatomical variations (Bonilha et al., 2015). Many methods

based on atlas and shape models, which emphasize the use of statisti-

cal shape or statistical appearance, have been proposed to identify

cranial nerves (Sultana, 2017). However, these methods cannot iden-

tify the nerve course of the intramesencephalic segment. Another

type of method can identify by registering ROI templates in standard

onto individual information for tractography fiber selection (Malinsky

et al., 2013). However, such ROI-based methods rely on the accuracy

of the registration algorithm. When squeezed by tumors, cranial

nerves are displaced. Common ROI templates are no longer applicable,

resulting in recognition failure (Chen et al., 2011; Jacquesson, Yeh,

F IGURE 1 Schematic anatomical
overview of the oculomotor nerve (OCN).
(a) The transverse plane of the
T1-weighted MR image at the level of the
midbrain. (b) The details of (a). (c) The
sagittal plane of the T1-weighted MR
image. (d) The details of (c)
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et al., 2019). Moreover, ROI-based methods are sensitive to

tractography methods that require multiple ROIs to be constrained. In

contrast to other methods, the dMRI tractography atlas uses a distinct

white matter connectivity modeling assumption to group fibers with

comparable trajectories into clusters. These studies successfully dem-

onstrated the automated identification of anatomical white matter

fiber tracts (Wu et al., 2018; Zhang et al., 2020) (e.g., trigeminal never

and white matter tracts), which achieve in escape from individual dif-

ferences including objects, time, locations, and experimental condi-

tions (Fischl, 2012; O'Donnell et al., 2017), with several advantages as

follows. (1) Fiber tracts can be automatically identified with high con-

sistency across subjects and augmented with anatomical annotations

(Wu et al., 2018). (2) The automatic identification method uses only

dMRI data, obviating the need for inter-modality registration (Zhang

et al., 2020). (3) After the atlas creation, the subject-specific automatic

identification does not require the user to have extensive knowledge

of anatomy.

This article aims to enable the automated identification of the

OCN in new tractography data slipping the leash of ROI-based

methods. We have compared the performance of multiple

tractography methods and different parameters to find suitable strate-

gies for OCN tractography. Then, an anatomically curated OCN atlas

is created by relying on fiber clustering. We have used this fiber clus-

tering pipeline to identify common OCN structures in an atlas popula-

tion, including 40 subjects from the Human Connectome Project

(HCP; Van Essen et al., 2013). On the basis of the anatomical knowl-

edge of experts, we finally identify six clusters belonging to OCN.

Each cluster of OCN in the atlas represents a certain OCN anatomical

subdivision and variability in the population. The established OCN

atlas contains OCN fibers, which exist three kinds of positional rela-

tionships with the red nuclei and two kinds of positional relationships

with medial longitudinal fasciculus (MLF; the fibers that OCN con-

nects to MLF called OCNM fibers; Kwon, Kim, Kim, & Jang, 2013; Li

et al., 2021; Miller, Mark, Ho, & Haughton, 1997; Vitoševi�c

et al., 2013). Finally, we have applied the proposed atlas to identify

the OCN of the new 40 subjects. Results show that the automatic

identification of OCN by our proposed strategy is quantitatively and

qualitatively consistent with the findings of ROIs manually placed by

an expert. The OCN is dissimilar from the trigeminal never and white

matter tracts and is more elongated, resulting in the strict selection of

methods and parameters (including tractography parameters, ROI, and

similarity) in tractography and atlas generation. After creating the

atlas, we have successfully applied the OCN atlas to patients with

brainstem cavernous malformation (BSCM). We have accurately iden-

tified the OCN, which surrounds the BSCM and the 3D positional

relationship between OCN and surrounding tissues.

In the rest of this article, we describe our proposed methods, that

is, OCN atlas creation and automatic OCN identification. Then, we

demonstrate an application to dMRI datasets from two different

acquisition sites, including HCP dataset and two patient data with

BSCM. Finally, the OCN identification performance of our proposed

method is evaluated quantitatively and qualitatively and compared

with the method in which the expert selects the OCN.

2 | METHODS

2.1 | Data acquisition and preprocessing

Ninety HCP subjects are used in this work, 10 of which are to com-

pare multiple tractography methods and parameters, 40 to generate

OCN atlas, and the remaining 40 to validate the proposed method. In

addition, we apply the proposed method to two BSCM patients with

brainstem tumors. The follows are the detailed parameters and

preprocessing:

2.1.1 | HCP dataset

The HCP provides high-quality dMRI and T1-weighted (T1w) data, which

are approved by the local Institutional Review Board of Washington Uni-

versity. The dMRI acquisition parameters in HCP are as follows:

TR = 5,520 ms; TE = 89.5 ms; FA = 78�; voxel

size=1.25 � 1.25 � 1.25 mm3; FOV=210 � 180 mm2;b-values=1,000,

2,000, and 3,000 s/mm2; and 90, 90, and 90 diffusion sampling directions.

The T1w acquisition parameters in HCP are as follows: TR = 2,400 ms;

TE= 2.14 ms; and voxel size= 0.7 � 0.7 � 0.7 mm3. Detailed information

about the HCP data acquisition and preprocessing can be found in http://

www.humanconnectomeproject.org/ (Glasser et al., 2013).

2.1.2 | The BSCM patient data

The MRI data of the patient with tumor are acquired at Xuanwu Hospital

Capital Medical University by using the Siemens Skyra 3T scanner. dMRI

acquisition parameters in tumor patient data are: TR = 8,900 ms,

TE = 95 ms, b-values = 1,000 s/mm2, 60 diffusion sampling directions,

and voxel size = 2.2 � 2.2 � 2.2 mm3. The T1w image acquisition

parameters in the data of patient with tumor are as follows:

TR = 2,400 ms; TE = 2.27 ms; 192 slices; FOV = 250 mm2; and voxel

size = 1.0 � 1.0 � 1.0 mm3. Written informed consent forms are signed

by all subjects, and the ethics committee at Xuanwu Hospital, Capital

Medical University has given its permission before testing.

2.1.3 | Data processing

We design a series of processing pipelines, including motion correc-

tion, denoising, and eddy current correction. First, we apply denoising

and eddy correction on dMRI and denoising on T1w images (Tournier

et al., 2019).

Second, the automated reconstruction and labeling of cortical and

subcortical regions are performed using the Freesurfer (Fischl, 2012)

on T1w images. The seed imaging and regions of avoidance (ROAs)

are chosen by automatically extracting the corresponding numbered

brain area. We set the whole brainstem as the seed imaging (as shown

in Figure 2). In terms of anatomical considerations, the anatomical

pathway of the OCN originates from the ONC which is located in the

2166 HUANG ET AL.
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central and dorsal midbrain (Brazis et al., 2012; Condos, 2021). Then

OCN crosses the ventral midbrain and enters the cistern from the

outer edge of the interpeduncular fossa (Park et al., 2017). And the

rest of the brain regions (i.e., the whole brain excepts brainstem) are

used as (ROAs. Because the pathway of the cisternal segment of OCN

does not enter any other brain areas (Park et al., 2017).

2.2 | Comparison of multiple tractography and
parameters

Tractography methods are widely used in cranial nerve studies (Behan

et al., 2017; Castellaro et al., 2020; He et al., 2021; Hodaie

et al., 2010). To find a better method for OCN reconstruction, we

F IGURE 2 Oculomotor nerve (OCN) atlas generation. (a) OCN tractography performs under the constraints of region of avoidance (ROA) and
seed imaging. (b) Registration of 40 subject brainstem fibers to a common atlas space. (c) Spectral clustering for the generation of a fiber
clustering atlas by using the brainstem fibers from 40 atlas subjects. (d,e) Manual selection of OCN subjects through initial cluster selection on the
basis of expert anatomical experience. Six clusters, including OCN (four clusters) and OCNM (two clusters), are identified to belong to OCN on
the basis of expert neuroanatomical knowledge
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compare the performance of three different direction estimation

methods including constraint spherical deconvolution (CSD; Behan

et al., 2017; Tournier, Calamante, & Connelly, 2012), multi-shell multi-

tissue constraint spherical deconvolution (MSMT-CSD), and DTI

(Hodaie et al., 2010) to reconstruct the 3D trajectory of OCN. In con-

trast to CSD and DTI, MSMT-CSD is utilized to fit a five-tissue-type

segmented tissue image by using multiple b-values for the multi-type

tissue fiber orientation distribution (FOD; Castellaro et al., 2020;

Jeurissen, Tournier, Dhollander, Connelly, & Sijbers, 2014). To

describe the complete OCN pathway, we prepare a careful plan for

each method, including the seed imaging, ROAs, and parameters.

2.2.1 | Parameters

We conduct an experiment to determine the best-performing parame-

ters of each tractography method for OCN tractography. FA threshold

values of 0.05, 0.1, and 0.15 and angle threshold values of 30�, 60�,

and 90� are used. The remaining parameters are kept constant and set

as follows: number of streamlines = 500,000; step size = 0.5 mm; and

minimum length = 20 mm.

2.2.2 | The standards of OCN fiber selection

Experts manually identify OCN fibers and OCNM fibers from

tractography fibers generated by three tractography methods. The

first ROI (cisternal segment of the OCN as illustrated in Figure 3;

Hodaie et al., 2010) is used to confirm preliminary OCN fibers and

OCNM fibers. Then, OCN fibers and OCNM fibers are distinguished

by placing the ROI or ROA at the region of the tegmentum of pons as

illustrated in Figure 3. Finally, results are further identified separately.

Fibers with significantly different intramesencephalic segment of

OCN orientation from anatomical knowledge and fibers with incorrect

orientations of the cisternal segment are excluded.

2.2.3 | Anatomical assessment criteria of the OCN

We evaluate the multi-method multi-parameter tractography results

in the following two aspects. (a) The pathway of OCN fibers and

OCNM fibers goes through the correct anatomical location. (b) The

lengths of the cisternal segment of the OCN are sorted on the basis

of conforming to the anatomical position of OCN. A long cisternal

segment of the OCN indicates that the combination of parameters

and method has improved performance in OCN reconstruction. We

first determine the optimal parameters for each tractography method

and perform a cross-method comparison to determine the best com-

bination of method and parameters for OCN tractography perfor-

mance. Tractography methods and parameters are used as the basis

for subsequent atlas and test subjects.

2.2.4 | Reconstruction rate of OCN subdivisions

We assess the ability of each tractography method to reconstruct the

two subdivisions of the OCN successfully. Specifically, we consider

that the fiber pathway is successfully traced if at least one fiber is

retained on both sides and each OCN anatomical subdivision is suc-

cessfully reconstructed fibers after ROI selection (i.e., OCN and

F IGURE 3 Region of interest (ROI) and region of avoidance (ROA) for OCN and OCNM selection. (a) ROI (cisternal segment of oculomotor
nerve [OCN]) and ROA (tegmentum of the pons) for OCN selection. (b) OCNM selection differing from OCN selection only in the tegmentum of
the pons used as ROI. Note that, in order to show complete OCN, the location of the slice chose from T1 anatomical image maybe lower
(or further back) than the position of OCN
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OCNM). So, we compute the overall reconstruction rate for the full

OCN pathway (i.e., the percentage of subjects where both subdivi-

sions are successfully reconstructed).

2.3 | OCN atlas generation

We first determine the optimal parameters for each tractography

method and then perform a cross-method comparison to determine

the best combination of method and parameters for OCN

tractography performance. The tractography methods and parameters

are used as the basis for subsequent atlas and test subjects.

2.3.1 | Generation of OCN fiber clustering atlas

We learn a data-driven model of common OCN structure in humans

through the following processes:

OCN tractography of atlas subjects

We acquire pre-brainstem fibers from 40 atlas subjects. Each atlas

subject tractography is performed with the best-performance

tractography strategy (i.e., MSMT-CSD, angle threshold of 45, and FA

threshold of 0.05). Then individual brainstem fibers are produced after

removing invalid fibers passing through ROAs to reduce memory

space and computational cost as illustrated in Figure 2a.

Multi-subject fibers registration

In a multiscale way, we compute an unbiased entropy-based

groupwise tractography registration (O'Donnell, Wells, Golby, &

Westin, 2012; Zhang et al., 2020) of brainstem tractography from

each subject after individual OCN tractography, as illustrated in

Figure 2b. The registration employs 20,000 fibers from each subject

for a total of 800,000 fibers, with a minimum fiber length of 45 mm,

and affine then coarse-to-fine b-spline registration with multiscale

sigma values from 20 down to 2 mm and a final b-spline grid size of

8 � 8 � 8. After registration, an OCN tractography with high density

and good spatial correspondence is produced.

Spectral clustering

OCN tractography data are divided into K clusters by spectral clus-

tering to create a high-dimensional fiber clustering atlas

(O'Donnell & Westin, 2007), in which K is a user-supplied parame-

ter that defines the parcellation scale. First, many tractography

fibers are highly similar to their neighboring fibers on the basis of

anatomy (Presseau, Jodoin, Houde, & Descoteaux, 2015). Thus, we

perform a random sampling of 20,000 fibers from each subject

rather than analyzing all fibers across subjects and ensure that the

extracted number of fibers is sufficient to represent the anatomical

structure of the OCN in the population. Then, we implement

groupwise spectral embedding and clustering to divide OCN

tractography fibers. The groupwise spectral embedding creates an

independent spectral space that represents similarity information

between fibers. In addition, we use a random sampling method

called Nystrom (Fowlkes, Belongie, Chung, & Malik, 2004) to repre-

sent the space compactly and remarkably reduce the number of

fiber distance calculations in the subsequent steps. Four iterations

(over two standard deviations from the cluster's mean fiber affinity)

are performed to remove improbable fibers for cluster consistency

in the atlas (O'Donnell et al., 2017; O'Donnell & Westin, 2007).

We generate multiple OCN atlases (as shown in Figure S1) of dif-

ferent scales by setting different K values (K = 100, 200, 500, and

1,000). Our study does not consider an increased number of fiber

clusters because a detailed scale remarkably increases the computa-

tion time and complexity. It can sort out the fiber clusters of OCN and

OCNM when the atlas chooses a coarse classification scale (K = 100)

but contains many false-positive fibers. When we choose a small clas-

sification scale (K = 200), fiber clusters belonging to the OCN hardly

present false-positive fibers and differentiate the anatomical differ-

ences between the OCN and OCNM. In addition, when the classifica-

tion scale is K = 500 and 1,000, the lack of consistency in profiles

across subjects and increased computing time are observed. In the

end, we choose 200 clusters for the brainstem classification based on

three considerations: anatomical correctness, the structural integrity

of the OCN, and computational complexity.

2.3.2 | Supervision of OCN fiber clusters

Based on the experience of our previous work (Zeng et al., 2021), the

OCN is present in multiple fiber clusters, and the integration of these

fiber clusters can represent an anatomical subdivision of the complete

OCN. We obtain the fixed atlas by subdividing multi-subject regis-

tered brainstem fibers into 200 clusters (clusters are labeled as 1–

200). Then the professional anatomical expert (Mengjun Li) labels

whether each cluster belongs to OCN or OCNM with T1w images.

Another expert (Mingchu, Li who is a neuroanatomist) view the

curated OCN or OCNM clusters and confirmed their anatomical cor-

rectness. The results show that the 25th, 38th, 148th, and 166th clus-

ters from the atlas belong to the OCN, and 71st and 177th clusters

from the atlas belong to the OCNM as illustrated in Figure 2c.

2.4 | OCN atlas evaluation

We use the proposed atlas to identify subject-specific OCN from

80 HCP subjects (40 HCP atlas subjects and 40 HCP testing subjects)

and two BSCM patients. First, individual OCN fiber tractography is

performed after the seed imaging and ROAs are extracted from the

new data. Then, brainstem tractography of the new subject are regis-

tered to the OCN atlas space by using the affine and nonrigid trans-

formation with 45,000 fibers from individual tractography and

minimum fiber length of 45 mm as illustrated in Figure 4b. Third,

subject-specific fiber clusters are detected using the spectral embed-

ding of the registered tractography, and each fiber is assigned to the

closest atlas cluster (Guevara et al., 2016; O'Donnell et al., 2017;

HUANG ET AL. 2169



Zhang et al., 2020). After the tractography data of the new subject are

divided into multiple fiber clusters, two iterations are performed to

reject outlier fibers. In the end, OCN identification of the new subject

is conducted by automatically finding the subject-specific clusters that

corresponded to the annotated OCN clusters in the atlas (as shown in

Figure S2). The OCN is present in six fiber clusters, where we select

the 25th, 38th, 148th, and 166th clusters in the subject-specific atlas

to form anatomically OCN fibers, and the 71st and 177th clusters to

form anatomically OCNM fibers, as illustrated in Figure 4d,e. We per-

form the following work to evaluate the OCN identification perfor-

mance of our method.

2.4.1 | OCN identification

We report the average identification rate of different anatomical sub-

divisions (OCN and OCNM) in 82 subjects (including 80 HCP subjects

and 2 BSCM patients). First, two experts (Mengjun Li and Mingchu Li)

perform anatomical confirmation of the OCN in each subject and sub-

divide its anatomy into OCN fibers and OCNM fibers. Specially, we

define that if more than an OCN fiber or/and OCNM fiber of the sub-

ject is successfully identified, the atlas is valid for the subject. Then,

we calculate the average percentage of successfully automatically

identified OCN in HCP subjects.

F IGURE 4 Individual oculomotor nerve (OCN) identification. (a) New subject performing OCN tractography in the same way as atlas subjects.
(b) Registration of the individual OCN tractography data to the atlas space. (c) Fiber clustering of the individual tractography data in accordance
with the fiber clustering atlas. (d–e) Identification of OCN clusters in the new subject is conducted by finding the corresponding subject-specific
clusters to those annotated in the atlas
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2.4.2 | OCN spatial overlap

For spatial overlap, referring to the traditional segmentation task, we

use the Accuracy (ACC), Sensitivity (SE), and Precision (PR) (Taha &

Hanbury, 2015) to assess the ability of our method to identify correct

OCN fibers of individual HCP subject. ACC, SE, and PR are defined as

follows

ACC¼ TPþTN
TNþTPþFPþFN

ð1Þ

SE¼ TP
TPþFN

ð2Þ

PR¼ TP
TPþFP

ð3Þ

in which TP, FP, TN, and FN denote the number of true-positive,

false-positive, true-negative, and false-negative voxels of automatic

identification OCN, respectively.

Then, we quantify the spatial overlap between manually and auto-

matically identified OCN with the weighted Dice (wDice) coefficient

(Cousineau et al., 2017; Dice, 1945). On the basis of the traditional Dice

calculation method that is designed to calculate the fiber overlap, wDice

sets high weights for voxels with high fiber density, which is also scientific

and reasonable. We calculate the mean and standard deviation of wDice

coefficients for 40 atlas subjects, 40 test subjects, and 2 BSCM patients.

In addition, to demonstrate the robustness of our proposed OCN

atlas, we classify the brainstem tractography of the same subject five

times based on the fixed atlas by clustering at the same scale. Then we

visualize the identification OCN results for each spectral clustering. We

use wDice (Cousineau et al., 2017; Dice, 1945) to quantitatively describe

the consistency among each result and the similarity of each automatic

identification result with the manual identification result.

2.4.3 | OCN visualization

We use the 3D Slicer to visualize the automatic and manual identification

results of OCN and OCNM. Also, we show the relationship between

OCN and OCNM and their surrounding tissues separately in 3D. In par-

ticular, for BSCM patients, we analyze the identification results in combi-

nation with their clinical symptoms. For BSCM patients whose lesions

are located next to the OCN and cause corresponding clinical presenta-

tions, qualitative analysis is used to evaluate the displacement and/or dis-

ruption of the OCN in the lesion side through comparisons with the

contralateral homologous OCN. Displacement is defined as a change in

the location or direction of the affected OCN due to the BSCM mass

effect. Disruption is defined as thinning of the affected OCN, discontinu-

ity in part of the affected OCN, or lack of visualization in most or all of

its anatomy courses (Faraji et al., 2015; Lazar, Alexander, Thottakara,

Badie, & Field, 2006; Li et al., 2018).

All of the software which are used in this project, including fiber

tractography (https://www.mrtrix.org), computational tractography anal-

ysis methods (https://github.com/SlicerDMRI/whitematteranalysis), and

tractography visualization with anatomical hierarchies in 3D Slicer

(http://www.slicer.org), are open source.

3 | EXPERIMENTAL RESULTS

In the present study, we create an OCN atlas to identify the OCN auto-

matically from new subjects. We perform the identification rate calcula-

tion, spatial overlap calculation, and the OCN visualization to

demonstrate the reliability of our proposed automatic identification of

the OCN atlas. First, we invite anatomical experts (Mengjun Li and

Mingchu Li) to identify the OCN manually from brainstem fibers, which

are obtained from 27 combinations with methods and parameters. The

results of reconstruction rate (see Table 1) and visualization (see

Figure 5) suggest that MSMT-CSD combined with deterministic

tractography has the best pathway reconstruction performance for OCN

reconstruction. Second, the OCN identification performance of our pro-

posed method is evaluated quantitatively. The proposed OCN atlas has

good identification rates and spatial overlap when using test subjects.

Regarding the different subdivisions, OCN and OCNM are successfully

identified using the proposed automated identification method in all sub-

jects. The subjects that manual identifying failures are irrespective in our

statistics. The average coverage rates (mean wDice) of automatic OCN

and OCNM identification compared with those of expert manual selec-

tion are higher than 90.50%, and the mean wDice of OCN is higher than

that of OCNM. Finally, the atlas is successfully used to identify OCN

from tumor subjects, and we verify the identified results with the finding

in surgery. We find that the automatic identification result is highly con-

sistent with surgery findings.

3.1 | Assessment of the performance of
tractography method for OCN reconstruction

3.1.1 | Anatomical assessment criteria of the OCN

Different parameters and direction estimation methods remarkably

affect the performance of OCN tractography. In our study, we

TABLE 1 Reconstruction rate of
OCN subdivisions for each tractography
method

Methods Best-performed tractography parameters OCN OCNM Overall

DTI FA = 0.15, angle = 60� 0% 0% 0%

CSD FA = 0.10, angle = 60� 70% 50% 50%

MSMT-CSD FA = 0.05, angle = 45� 100% 80% 80%
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compare 27 fiber tractography strategies for OCN identification from

the same subject. We first choose the best-performing parameters for

each method and perform cross-method comparisons. Figure 5 shows

the pathways of OCN fibers and OCNM fibers from three methods,

which are overlaid on the T1w image. We can find that the intra-

mesencephalic segment of OCN obtained by DTI from Subject 1 stops

at the brainstem prematurely. OCNM fibers obtained by DTI are error

fibers that the pathway does not reach the location of the midbrain

superior colliculus. The OCN fibers obtained by CSD contain only one

positional relationship (pass between) with the red nuclei. In contrast

to those obtained by DTI and CSD, the cisternal segments of OCN

fibers and OCNM fibers obtained by MSMT-CSD are longer and more

accurate. Moreover, the cisternal segment of OCN fibers is more

intact to DIT and CSD.

3.1.2 | Reconstruction rate of OCN subdivisions

Table1. shows the reconstruction rates of the two OCN subdivi-

sions and the overall reconstruction rates across all subdivisions

and all subjects. MSMT-CSD generates the highest overall

reconstruction rate, where two subdivisions are reconstructed in

8 of 10 subjects. This is followed by CSD, in which both subdivi-

sions are reconstructed in 5 of 10 subjects. DTI performs the worst

and completely identifies extremely few OCN fibers and OCNM

fibers. After comprehensive consideration of visualization and

reconstruction rates, MSMT-CSD is the most suitable method for

OCN reconstruction.

3.2 | OCN identification rate

Table 2 gives the OCN identification rate of the overall OCN and its

subdivisions obtained using the proposed automated identification

method and the manual selection method. Regarding the different

subdivisions, we obtain relatively high identification rates for OCN

and OCNM in 40 HCP atlas subjects (average = 100.0%) and 33 HCP

test subjects through the successful manual identification (average

OCN identification rate = 96.97% and average OCNM identification

rate = 100.0%). For subjects with BSCM, we identify respectively

OCN fibers and OCNM fibers surrounding the lesion from different

subjects.

F IGURE 5 Visual comparison of the oculomotor nerve (OCN) reconstruction from three tractography methods. OCN fibers and OCNM fibers

obtained from two HCP subjects are displayed and overlaid on the T1w image. The first box shows the results of OCN fibers, and the second box
shows the results of OCNM fibers
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3.3 | OCN spatial overlap

Table 3. gives the quantitative comparison of automatic and manual

results in terms of ACC, PR, and SE. In the experimental results, the

mean ACC is close to 1. Because the number of voxels from the imag-

ing data of a complete HCP subject is much greater than the number

of voxels from gracile OCN fibers (i.e., TN is much larger than TP, FN,

and TP). The higher mean SE shows that our proposed atlas can maxi-

mize the identification of OCN fibers from new individual subjects.

Table 4 gives the mean and standard deviation of wDice scores

across 40 HCP atlas subjects and 33 HCP test subjects. For 2 BSCM

patients, we only give wDice in Table 4. Average wDice scores >0.72

are an ideal outcome according to Cousineau et al. (2017). OCN fibers

and OCNM fibers obtained from the OCN atlas are highly comparable

to the manually identified OCN. Furthermore, the wDice coefficient

demonstrates the accuracy of our approach.

The lowest wDice coefficient among the five clustering results is

0.9846 as illustrated in Figure 6d, which proves that the clustering

results based on the fixed atlas from each spectral clustering are con-

sistent. The results are also consistent with the manual identification

by experts.

3.4 | OCN visualization

Figure 7a shows the overlap between the automatically and manually

identified OCN fibers in 3D. OCN fibers and OCNM fibers from HCP

subjects have high visual consistency and pass the corresponding ana-

tomical position. OCN fibers emerge from the ONC and pass the

VentralDC through the midbrain by the interpeduncular fossa as illus-

trated in Figure 7b. Figure 7a,c show that the MLF connecting OCN is

consistent with its anatomy that is situated near the midline of the

brainstem.

3.4.1 | Case 1

A 41-year-old man presents with a BSCM at the left midbrain. The left

automatically visualized OCN, constructed from the OCN atlas, is dis-

placed superiorly and medially by the BSCM. Disruption is not identi-

fied when compared to the contralateral automatically visualized

TABLE 2 OCN identification rate (percentage of successfully identified OCN and OCNM fibers) of the overall OCN and its subdivisions using
the proposed automated identification method and the manual selection method

Subjects
Overall OCN OCNM

Automatic
(%)

Manual
(%)

Automatic
(%)

Manual
(%)

Automatic
(%)

Manual
(%)

HCP atlas subjects (n = 40) 100 100 100 100 100 100

HCP testing subjects

Successful manual identification (n = 33)

100 100 96.96 100 100 100

HCP testing subjects unsuccessful manual identification

(n = 7)

— — — — — —

BSCM patient 1 100 100 100 100 0 0

BSCM patient 2 100 100 0 0 100 100

TABLE 3 The quantitative comparison of automatic and manual results in terms of ACC, PR, and SE

Subjects
OCN OCNM

ACC PR SE ACC PR SE

HCP atlas subjects (n = 40) 0.9999 0.7215

± 0.015

0.9325

± 0.010

0.9999 0.7964

± 0.021

0.8489

± 0.016

HCP testing subjects successful manual

identification

(n = 33)

0.9999 0.7412

± 0.014

0.9172

± 0.018

0.9999 0.7966

± 0.034

0.7965

± 0.030

Note: All metrics are calculated based on the mean ± standard deviation of all successful manual identification subjects in HCP.

TABLE 4 Spatial overlap (wDice score) between automatically
(proposed) and manually identified OCN fibers and OCNM fibers

Subjects OCN OCNM

40 HCP atlas subjects 0.9417

± 0.0127

0.9371

± 0.0444

33 HCP testing subjects with

successful manual

0.9544

± 0.0594

0.9050

± 0.0675

BSCM patient 1 0.9913 0

BSCM patient 2 0 0.9307
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OCN. This patient has adduction dysfunction of the left eye, which

could be caused by the displacement of the left OCN resulting from

BSCM, the adduction dysfunction of the left eye is relieved after sur-

gery (Figure 8).

3.4.2 | Case 2

A 42-year-old man presents with a BSCM at the right pons. Dis-

placement is not observed in the right automatically visualized OCN

constructed from the OCN atlas. The disruption is not identified

when compared to the contralateral automatically visualized OCN.

This patient has no motor dysfunction of the right OCN. However,

this patient has ghosting and horizontal nystagmus, which could be

caused by the displacement of the MLF resulting from BSCM

(Figure 9).

4 | DISCUSSION

In this article, we propose an automatic OCN identification method to

enable robust anatomical OCN identification from new subjects and

investigate the patient whose tumor involves morphological changes

in the OCN. We demonstrate the robustness and reliability of our

method in identifying OCN by using a dataset of 80 HCP subjects and

2 BSCM patients. The automatic method provides an efficient tool for

dMRI tractography to simple post processing without multiple ROIs

selection and fiber filtering. Our overall observations are discussed

below.

The proposed automatic OCN identification method successfully

applies the subject-specific OCN identification, and the OCN of stud-

ied subjects is successfully identified 100% of the time. The results of

automatic and manual identification methods are compatible and have

a highly visually similar OCN trajectory and good spatial overlap. We

F IGURE 6 The results of the atlas stability test. (a) The clusters belonging to oculomotor nerve (OCN) and OCNM in the atlas. (b) Results of
manual identification of individual subject-specific tractography. (c) Results of five separate clustering of the same data at the same scale.
(d) Results of automatic identification of OCN and OCNM, and the quantitative analysis (wDice) of the comparison with the manual identification
results are shown in figure
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demonstrate the robustness and reliability of our method in identify-

ing OCN by using a dataset of 80 HCP subjects and 2 BSCM patients.

In tractography for individuals, we set the VentralDC and

brainstem as ROI for OCN tractography because the OCN passes

through the VentralDC into the cistern (Bogousslavsky, Maeder,

Regli, & Meuli, 1994; Castro, Johnson, & Mamourian, 1990) and is

shown to contribute to the production of OCN fibers. This operation

remarkably reduces possible false-positive fibers and the working time

of experts and increases the number of OCN fibers in the total fiber

number of the atlas, thereby improving the possibility of creating the

OCN atlas.

The proposed atlas can identify the different subdivisions of

OCN. Unlike the cisternal segment of OCN that has been studied in

multiple previous works, the intramesencephalic segment is relatively

less studied (Tsutsumi, Miranda, Ono, & Yasumoto, 2017; Uz &

Tekdemir, 2006). To our knowledge, Jang and Kwak (2017) demon-

strated the possibility of identifying the putative intramesencephalic

segment of OCN by using dMRI tractography. In our work, the

MSMT-CSD can effectively track the intra-brainstem region. We com-

pare the OCN tractography with combinations of multiple methods

and parameters. According to our experimental results (Table 1. and

Figure 5), compared to DTI and CSD, more qualified fibers can be

obtained by processing data using the MSMT-CSD. DTI quantifies the

dispersion of water molecules in white matter bundles in all directions

by the tensor model, whose main feature direction represents the

direction of white matter fiber bundle travel. However, the tensor

model cannot describe the fiber crossover in the region or the

tractography into the adjacent pathway, resulting in many false-

positive fibers. In addition, the cisternal segment of OCN tractography

obtained through DTI is generally shorter than that obtained through

MSMT-CSD because of the influence of CSF on the tensor model

within the OCN voxel. The diameter of the cisternal segment of the

OCN is well below the resolution achievable in DTI scans, indicating

that a segment of the voxel containing the nerve is occupied by CSF

(Zolal et al., 2016). When fitting the tensor model, the CSF accounts

for a large proportion of the tensor model, resulting in similar eigen-

values in the spatial directions of the fitted tensor model in the region,

failure to represent the OCN direction accurately, and premature

stopping of tractography. In contrast to DTI and CSD, MSMT-CSD

performs better based on the FOD estimation model by using multiple

shells and tissues to estimate fiber directions in each voxel (Castellaro

et al., 2020). Tissues respond differently with changes in b-value, and

different tissues can be effectively distinguished on the basis of their

different response functions (i.e., WM, GM, CSF) (Castellaro

et al., 2020; Jeurissen et al., 2014). This phenomenon reduces the par-

tial volume effect to obtain accurate fiber orientation models and

explains that fibers by MSMT-CSD are clearer and more accurate than

those by other two methods in the intramesencephalic segment. In

the experiments on OCN reconstruction in this article, the experimen-

tal results provide a phenomenon that OCN is easier to be

reconstructed than OCNM, so OCNM is equal to the overall rate.

According to Figure S3, the possible reasons for this phenomenon are

shown as follows: OCNM is more elongated than OCN and there is

the large inflection at the intersection of the OCN-connected MLF,

which is a challenge for the current tractography algorithm (Maier-

Hein et al., 2017; Yang, Yeh, Poupon, & Calamante, 2021). In addition,

the noise of the data will bias the FOD modeling of individual data.

So, high-quality dMRI has positive effects on OCN tractography and

F IGURE 7 Illustration of the subdivisions of the automatic oculomotor nerve (OCN) identification. The overlap of manual and automatic
methods (yellow box), OCN fibers (red box), and OCNM fibers (green box) obtained from three HCP subjects are displayed and overlaid on the
T1w image. (a) Yellow box: 3D reconstruction of OCN (green), OCNM (blue), brainstem (wathet blue), and cortex (white) shown in the top row.

(b) Red box: OCN fibers in the transverse plane of the T1w image. (c) Green box: OCNMs in the sagittal plane of the T1w image
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identification (Zolal et al., 2016). For the creation of the OCN atlas,

we utilize multi-shell HCP data in the present study, and the HCP

dataset has minimal distortion artifacts and the highest quality.

The OCN atlas can identify different anatomical subdivisions of

the OCN, where the cisternal segment of the OCN is highly visible on

T1w images, and the anatomical structure is undisputed. However,

the intramesencephalic segment of the OCN is controversial because

it cannot be directly reflected in structural images as follows:

(a) whether the OCN is directly connected to the MLF and (b) position

of the OCN to the red nuclei. First, Yeo, Jang, Kwon, and Cho (2020)

and Yoshino et al. (2016) acquired fibers that connect MLF. However,

according to Vitoševi�c et al. (2013), the midbrain slice staining on the

OCN shows that most of the OCN and MLF are from different

sources. Moreover, OCN and MLF are close to each other, but their

direct connection is not directly observed. Several scenarios result in

the above findings during tractography. (a) MLF transmits motor infor-

mation to the OCN through the neurotransmitter, and the OCN and

MLF are close to each other. Thus, OCN and MLF blend in

periaqueductal gray. (b) The problem of the accuracy of the

tractography algorithm makes it impossible to distinguish the relation-

ship between OCN and MLF. Thus, the OCN in our work is divided

into two main categories (i.e., OCN and OCNM) in accordance with

anatomical differences. Second, most of OCN is medial to the caudal

part of the red nucleus, less of OCN through the red nucleus itself

(Castro et al., 1990; Miller et al., 1997; Vitoševi�c et al., 2013). More-

over, OCN is close to the medial lemniscus (the outward path around

the red nucleus), but all fibers converge below the red nucleus and

through the interpeduncular fossa into cistern together (Miller

et al., 1997; Vitoševi�c et al., 2013). We propose that the OCN atlas

contains all anatomical OCNs and classifies them completely because

we choose to subdivide preprocessed brainstem fibers into 200 classes

when creating the atlas, at which point the atlas successfully classifies

the OCN with different anatomical subdivisions (six clusters). The

25th and 38th clusters in the atlas represent the anatomical subdivi-

sion of the OCN in the brainstem segment through the red nucleus

and the medial red nucleus. The 148th and 166th clusters represent

F IGURE 8 Results of automatic method in brainstem cavernous malformation (BSCM) patient data. (a) Results of automatic oculomotor
nerve (OCN) identification from BSCM patient data overlaid on the transverse plane of the T1w image. (b) The details of (a). (c) Results of

automatic OCN identification from BSCM patient data overlaid on the left side of the T1w image. (d) The details of (c). (e) 3D reconstruction of
OCN (green), tumor (yellow), brainstem (blue), and cortex (white). (f) The details of (e)
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the OCN that do not pass through the red nucleus and the outer path

around the red nucleus. The 71st and 177th clusters are OCNM.

In our work, we find that our proposed automatic OCN identifica-

tion method has several advantages over traditional relied-on ROI

methods to identify OCN fibers. First, the template of ROIs, which is

used to overcome the variability, and the presence of pathology/

degenerative changes across subjects still have limitations (Hodaie

et al., 2010; Wedeen et al., 2008). Second, experts are unable to draw

ROIs directly on structural images when the tumor occurs. Complex

skull base tissues are displaced by compression and imaging artifacts

and/or noise at the skull base region. In contrast to relied-on ROI

methods, our method practically eliminates dependence on the man-

ual placement of ROIs and avoids subjectivity. Moreover, the problem

of multimodal data registration is avoided, and the OCN atlas iden-

tifies OCN fibers from dMRI tractography directly. Therefore, our

method provides a robust tool for OCN identification.

The potential limitations of the present study, including

suggested future work to address limitations, are as follows. First,

we use our method to identify the OCN of subjects with different

health statuses, including healthy subjects and patients with tumor.

Further evaluation can include an investigation of patients with dis-

eases that affect OCN, for example, the relationship between the

positions of OCN and blood vessel of the patient with posterior

communicating aneurysms and differences in OCN between

patients with diabetes and healthy subjects. Second, the orbital seg-

ment of the OCN cannot be well reconstructed at present, and our

proposed method for the automatic identification of OCN does not

possess an improved identification of the orbital segment of OCN.

In future work, we will design methods to reconstruct the OCN

pathway completely and improve our OCN atlas on the basis of

our previous studies (Feng & He, 2020). Third, the proposed

method performs poorly in identifying OCN that is affected by big

BSCM. The mass effect of large BSCM usually leads to substantial

morphological changes in OCN. Given that fiber clusters are sub-

divided in accordance with fiber shape and position, deformed

OCN fibers may not be classified into the same cluster within the

OCN atlas. In our future research, BSCM shape and the identifiers

of surrounding tissues should be considered as inputs for clustering.

F IGURE 9 Results of automatic method in brainstem cavernous malformation (BSCM) patient data. (a) Results of automatic oculomotor
nerve (OCN) identification from BSCM patient data overlaid on the transverse plane of the T1w image. (b) The details of (a). (c) Results of
automatic OCN identification from BSCM patient data overlaid on the left side of the T1w image. (d) The details of (c). (e) 3D reconstruction of
OCN (green), BSCM (red), brainstem (blue), and cortex (white). (f) The details of (e)
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5 | CONCLUSION

In this study, we propose an automatic OCN identification strategy.

Experimental results show that our selected tractography method and

parameters are highly valuable for OCN reconstruction. The results of

automatic OCN identification atlas based on dMRI tractography fibers

are highly consistent with the manual OCN identification by experts.

Moreover, the automatic method shows advantages over the tradi-

tional manual selection method and allows for the robust identifica-

tion of different anatomical subdivisions of the OCN in the data from

the different acquisitions. In the end, we successfully apply the auto-

matic method to the data of patients with BSCM. The study provides

an efficient tool for simple post-processing and reduces expert labor

costs.
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