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Abstract: The objective of this two-year field study was to assess the influence of stand establish-
ment methods (direct seeding or transplanting) on root growth dynamics, shoot morphology, leaf
physiology, yield, and quality of globe artichoke (Cynara cardunculus). Three artichoke cultivars
were evaluated, ‘Green Globe Improved’ (GGI), ‘Imperial Star’ (IS), and ‘Romolo’ (ROM). Plants
established with the transplanting method had higher mean root length intensity (La), root length,
and root surface area as compared to plants established by direct seeding. The topsoil (0–20 cm)
had on average higher La, root length, and root surface area than deeper soil profiles. Transplanted
plants had higher plant shoot width and leaf area index (LAI) chlorophyll content index (SPAD) than
direct seeded plants at the vegetative stage in 2015. The improvement of root and shoot growth in
transplants (compared to direct seeding) also resulted in higher (p < 0.05) marketable yield (21.1 vs.
19.9 ton ha−1 in 2015 and 18.3 vs. 13.7 ton ha−1 in 2016). Additionally, 46–50% of the total yield oc-
curred during the first 30 days of harvest in the transplanting method compared to 13–38% for direct
seeding. No significant differences were found between planting methods or cultivars in leaf-level
gas exchange (photosynthesis, stomatal conductance, and transpiration) and cynarin concentration in
the marketable heads. Although chlorogenic acid was similar in both establishment methods in 2015,
direct seeding had higher concentration in 2016. Comparing cultivars, GGI had higher root length,
surface area, root volume, and earlier and higher marketable yield than ROM. However, ROM had
higher mean root length intensity (La; total root length per specific area in soil profile) than GGI in
both growing seasons. This study showed significant and consistent improvements in root and shoot
traits, and yield for transplants as compared to direct seeded plants.

Keywords: Cynara cardunculus; root length; minirhizotron; yield; SPAD; chlorogenic acid

1. Introduction

Farming systems, nitrogen management, cultivar selection, and planting methods
such as direct seeding and transplanting are cultural strategies that greatly influence root
and shoot growth, yield, and fruit quality in high-value vegetable crops [1–4]. In bell pepper
(Capsicum annuum), earlier studies comparing direct seeding with containerized transplants
produced in nurseries showed significant effects on growth (leaf area and shoot weight) and
developmental stages in the field [5]. For certain crop species (e.g., onion, rice) established
at high planting density, direct seeding has been considered a cost-effective method of
stand establishment since transplanting would require the additional costs for raising the
transplants in nurseries and high labor costs of transplanting [6,7]. However, consideration
of the high seed cost and lower seedling survival in direct seeding is important, especially
for high-value vegetable crops that are typically hybrids instead of open pollinated cultivars.
The applicability and success of direct seeding depends on seed quality, knowledge of
appropriate sowing times and rates, seedbed preparation, field germination, emergence,
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and resource competition from emerging weeds [8]. The main constraints on stand success
from direct seeding that could lead to high mortality are poor germination, uneven stands,
transient or persistent environmental stresses (episodes of droughts, desiccation events,
floods, excessive heat), diseases, weed competition, and limited nutrients [7]. Artichoke
(Cynara cardunculus) fields established with the transplanting method typically have less
weed pressure and disease problems and higher yield and head uniformity as compared
to direct seeding [9]. Transplant quality can also be improved during the nursery stage
by optimizing the nitrogen nutrition of the growing substrate in the tray cells, a practice
that was shown to mitigate the transplanting shock during stand establishment of globe
artichoke [3].

Transplanting is a reliable method to improve growth and achieve earliness and higher
yield, as reported for several crops, including onion (Allium cepa), rice (Oryza sativa), bell
pepper, tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus) [1,5,6,10]. Onion
established by transplanting resulted in higher yield (36.3 t ha−1) than direct seeding
(19.5 t ha−1) and matured earlier (104 days) compared to the direct seeded (135 days)
method [6]. However, the transplanting date for onion (early, mid-, or late planting) is
critical to produce higher yield [11]. Transplanted rice had higher leaf chlorophyll content
index (SPAD), N concentration, total root length, and total root tip number than direct
seeded plants [12]. In southern England, a suitable combination of cultivar and age of
transplants shortened the growth period and enabled corn plants to meet the thermal
time requirement for a grain harvest [1]. In tomato, transplants had earlier and higher
yield than direct seeded plant [5]. In smallholder farms in South Africa, the adoption of
mature transplants over direct seeding to establish corn plants has significantly increased
survival and decreased the damage caused by birds during early developmental stages [2].
A comparative review of using direct seeding and seedling plantings in restoration projects
revealed that the successful survival percentage of transplants was three times higher
than direct seeding, especially when using larger seeds (Albizia, Acacia, Phyllanthus, and
Ocotea) [7].

Root traits such as root length, root surface area, and length intensity (La; total root
length per specific area in the soil profile) can significantly affect plant morphology and
leaf physiology, as reported in globe artichoke and olive crops [3,4,13]. Planting methods
can also affect early root development, root and shoot biomass allometric partitioning, fruit
development, and marketable yields [2,14,15]. For example, in bell pepper, transplanted
plants had higher basal root dry weight percentage (transplants, 81% vs. direct seeded
plants, 25%) and smaller lateral roots (15% vs. 57%) and taproot (4% vs. 18%). While direct
seeded plants sustained more balanced root, stem, leaf, and fruit dry matter partitioning
than transplants, the latter exhibited higher and earlier yields [15].

Plant internal factors, such as leaf anatomy and morpho-physiology, can significantly
affect growth and development, as well as yield [16]. Photosynthesis (Pn) normally in-
creases rapidly from leaf emergence, reaching maximum values at full leaf expansion.
Physiological performance, including Pn and stomatal conductance (gs), can increase due
to higher leaf thickness and contents of chlorophyll (a + b) and palisade parenchyma
because those leaf variables help to capture a greater amount of light [16,17]. However, the
effects of those internal factors in artichoke have not been well studied in direct seeded
and transplanted plants.

Globe artichoke is a popular Mediterranean crop rich in antioxidant compounds
such as chlorogenic acid, dicaffeoylquinic acids, and cynarin, which are known to be
beneficial for human health [18,19]. In addition to genotype, cultural practices and farming
systems have been shown to affect the content of chlorogenic acid, with ranges from
60–600 (µg g−1), and cynarin from 2 to 20 (µg g−1) [20–23]. In organic farming, head
chlorogenic acid increased by 31% and cynarin by 12% compared to those grown in
conventional fields [19]. Shinohara et al. [24] also found that irrigation practices were more
effective than the selection of N rates to optimize artichoke crop yield and head quality
(chlorogenic acid). To date, the impact of planting method in root growth dynamics and
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head quality of artichoke cultivars has not been investigated. Accordingly, the objective
of this study was to determine the differential expression of shoot and root traits (root
length, surface area, volume, diameter, and La) in relation to the most common planting
methods (transplant vs. direct seeding). We hypothesize that when compared to direct
seeded plants, artichoke transplants will have a differential root growth pattern, with
more biomass allocation directed towards root length, especially during the vegetative
developmental stage and for early cultivars; these responses will in turn translate into
improvements in early and total marketable yield. The findings of this study contribute
to new knowledge centered on the importance of root traits to improve crop growth and
productivity of artichoke transplants.

2. Results

Table 1 shows the ANOVA and mean separation (LSD) for La as affected by planting
method, cultivar, and soil depth for two growing seasons, 2015–2016. Plants analyzed in
2015 were transplanted (or sown) in October 2014 while the 2016 plants were transplanted
(or sown) in November 2015. Since the study considered the annual system the 2015-started
plants were terminated at the end of the cycle and thus not analyzed in 2016. Mean La
was significantly different for planting method, cultivar, and soil depth during 2015 and
2016. Transplants had higher mean La in both years (2015–2016) as well as the overall
means. Root length values for direct seeded plants never exceeded those of transplants
across months and over the study period 2015–2016. However, La response varied with
cultivars. For example, ROM and IS had higher root La in March and April 2015 while GGI
had higher La than IS in July 2015 and 2016 (Table 1). The main La values (>90%) for the
three tested artichoke cultivars were within 0–80 cm of soil depth. A soil depth of 0–20 cm
had the highest mean La in 2015 while the 20–40 and 40–60 La were higher than the other
soil depths in 2016. However, the overall mean (2015–2016) for La was similar across the
0–60 cm soil depths.

Table 1. Mean root length intensity (La, mm cm−2) of artichoke cultivars (Green Globe Improved (GGI), Romolo (ROM),
and Imperial Star (IS)) as influenced by planting method (direct seeding—Seed, and transplanting—transplant) and soil
depth during 2015 and 2016 seasons. Data were collected using the minirhizotron root system.

Main Effect
Root Length Intensity (La, mm cm−2)

2015 2016 Overall
MeanMarch April May July Mean March May June July Mean

Planting
method (P)

Seed 0.72 a 1.46 b 1.03 a 0.81 a 1.01 b 0.29 a 1.27 a 0.48 a 1.97 b 1.01 b 1.01 b
Transplant 0.87 a 2.54 a 1.22 a 1.12 a 1.43 a 0.49 a 1.32 a 0.55 a 7.22 a 2.40 a 1.92 a

Cultivar (C)
GGI 0.53 b 1.01 b 1.40 a 1.26 a 1.07 b 0.21 b 1.91 a 0.08 c 8.06 a 2.56 a 1.82 a

ROM 0.71 a 2.63 a 1.39 a 1.04 ab 1.51 a 0.92 a 1.01 b 0.42 b 3.43 b 1.44 b 1.48 b
IS 0.56 a 2.27 a 0.60 b 0.59 b 1.08 b 0.06 c 0.95 b 1.05 a 2.31 c 1.09 b 1.01 c

Depth (D, cm)
20 1.06 a 2.52 a 1.77 a 1.86 a 1.80 a 1.06 a 1.43 ab 0.66 a 3.91 cd 1.77 b 1.78 a
40 1.05 a 1.95 ab 0.78 b 0.93 b 1.18 b 0.39 b 1.92 a 0.69 a 6.34 a 2.33 a 1.76 a
60 1.01 a 2.17 a 1.08 b 0.90 b 1.29 b 0.33 bc 1.50 ab 0.51 a 5.66 ab 2.00 ab 1.65 a
80 0.68 a 1.95 ab 1.14 b 0.69 b 1.12 b 0.14 bc 1.17 b 0.43 a 4.51 bc 1.56 b 1.34 b
100 0.19 b 1.41 b 0.82 b 0.43 b 0.71 c 0.04 c 0.43 c 0.30 a 2.62 d 0.85 c 0.78 c

ANOVA
P NS *** NS NS *** † NS NS *** *** ***
C ** *** ** * ** *** ** *** *** *** ***

P×C ** *** NS ** *** *** * ** *** ** NS
D *** ** ** ** *** *** * NS *** ** ***

P×D NS NS NS NS NS *** NS NS NS NS NS
C×D ** *** *** NS *** *** NS NS * † **

P×C×D NS NS NS * * *** NS NS NS NS **

†, *, **, *** show significant differences at p < 0.1, 0.05, 0.01, and 0.001, respectively. NS, not significant at p < 0.1. Means in columns followed
by different letters are significantly different at p < 0.05.
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There was a significant planting method and cultivar interaction for La across months
and over the study period 2015–2016, except in May 2015 (Table 1 and Figure 1). The
planting method and cultivar interactions revealed that, in both years, La values from the
transplanting method were higher or similar (never lower) to direct seeding across the soil
depths (0–100) and cultivars (GGI, ROM, IS), except for GGI at a 0–20 cm soil depth in 2015
(Figure 1).
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Figure 1. Mean root length intensity at different soil depths for artichoke cultivars (Green Globe
Improved (GGI), Romolo (ROM) and Imperial Star (IS)) as influenced by establishment method (direct
seeding and transplanting) during 2015 and 2016 seasons. Data were collected using minirhizotron
root system. Asterisk (*) within each soil depth represents significant differences between treatments
at p < 0.05.

In both years (2015–2016), artichoke plants had the lowest La (0–100 cm soil depth)
during the vegetative stages (March, about four months after planting) across planting
methods (direct seeding and transplanting) and over cultivars (GGI, IS, ROM) (Figure 2).
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Both direct seeding and transplanting La values were low in March, peaked during the
harvesting period (April), and decreased thereafter (July) in 2015. However, both planting
methods had the highest La after harvest (July) in 2016 (Figure 2). Roots in 2016 were
longer (about 40%)than those in 2015. Similar trends were noticed for tested cultivars in
both years, except for GGI in 2015.
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Figure 2. Mean root length intensity at soil depth 0–100 cm for artichoke cultivars (Green Globe Improved (GGI), Romolo
(ROM) and Imperial Star (IS)) as influenced by planting method (direct seeding and transplanting) during 2015 and 2016
seasons. Data were collected using the minirhizotron root system. Bars within the same harvesting date followed by
different letters are significantly different at p < 0.05.

Soil cores sampling in July 2015 revealed that root component values, specifically
length and surface area from the transplanting method, were higher than those from direct
seeding (Table 2). The GGI cultivar had consistently higher root length, surface area,
and volume than ROM. While the artichoke plants from a 0–20 cm soil depth had higher
root length and surface area than the 20–40 or 40–60 cm depths, root volumes from these
combined lower depths (20–60 cm) were higher than at the topsoil layer, 0–20 cm (Table 2).
Planting method × cultivar showed that transplanting resulted in longer or similar (never
shorter) root length than direct seeding across soil depths (0–60 cm) and cultivars (GGI,
ROM, IS) (Figure 2). Similarly, root surface area in transplanted artichokes was larger than
in direct seeded plants, except for GGI at a soil depth of 20–40 cm. For root diameter and
volume, the planting method × cultivar interactions were inconsistent or not significant
across soil depths. For example, at 20–40 cm, GGI cultivar root volume from the direct
seeding treatment was larger than for transplants, while IS from direct seeding had lower
values at the same soil depth (Figure 3).
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Table 2. Root trait components of artichoke cultivars (Green Globe Improved (GGI), Romolo (ROM), and Imperial Star
(IS)) as influenced by planting method (direct seeding—Seed, and transplanting—Transplant) and soil depth during the
harvesting period, July 2015.

Main Effect Length (cm) Surface Area (cm2) Average Diameter (mm) Volume (cm3)

Planting method (P)
Seed 136 b 10.6 b 0.32 a 0.10 a

Transplant 231 a 15.2 a 0.29 a 0.09 a
Cultivar (C)

GGI 197 a 15.5 a 0.35 a 0.14 a
ROM 119 b 10.6 b 0.34 a 0.09 b

IS 235 a 12.6 b 0.22 b 0.06 b
Depth (D)

20 330 a 20.0 a 0.22 b 0.10 b
40 107 b 13.0 b 0.36 a 0.15 a
60 114 b 5.6 c 0.33 a 0.04 c

ANOVA
P *** ** NS NS
C *** *** ** *

P×C ** ** NS *
D *** *** *** ***

P×D *** *** NS NS
C×D *** *** NS *

P×C×D ** *** NS **

*, **, *** show significant differences at p < 0.05, 0.01, and 0.001, respectively. NS, not significant at p < 0.05. Means in columns followed by
different letters are significantly different at p < 0.05.
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Figure 3. Root components of artichoke cultivars (Green Globe Improved (GGI), Romolo (ROM) or Imperial Star (IS)) as
influenced by planting method (direct seeding and transplanting) at three soil depths during the harvesting period, July
2015. Asterisk (*) within each soil depth represents significant differences between treatments at p < 0.05.



Plants 2021, 10, 899 7 of 15

Parameters used as a measure of plant morphology (width and height) and their
main physiological processes (leaf area index (LAI), chlorophyll content index (SPAD),
photosynthesis (Pn), stomatal conductance (gs), and transpiration (E)) were determined
at the vegetative and harvesting stages in both growing seasons. In 2015, plant width,
height, and LAI at the harvesting stage as well as SPAD at the vegetative stage were
higher in transplanted vs. directly seeded artichokes (Table 3). In 2016, plant size at the
vegetation stage was larger for transplanting than the direct seeding method. However,
cultivar responses were not significant or inconsistent across the study period. In addition,
Pn, gs, and E for direct seeding and transplanting were statistically similar in both years
(2015, 2016) and across cultivars (data not presented). Photosynthesis values ranged from
19–21 µmol m−2 s−1 in 2015 and from 28–30 µmol m−2 s−1 in 2016 (numerically higher in
2016); gs was about 0.4 mol m−2 s−1 in 2015 and 0.5 mol m−2 s−1 in 2016; E was about
2.5 mmol m−2 s−1 in 2015 and 5.5 mmol m−2 s−1 in 2016. However, gas exchange (Pn, gs,
and E) values for 2015 were about 50% lower than 2016 across cultivars and over planting
methods (direct seeding and transplanting) though the differences between years (2015 vs.
2016) were not statistically analyzed.

Table 3. Plant width and height, leaf area index (LAI), and chlorophyll content index (SPAD) of artichoke cultivars (Green
Globe Improved (GGI), Romolo (ROM), and Imperial Star (IS)) as influenced by planting method (direct seeding—Seed,
and transplanting—Transplant) during 2015 and 2016 seasons.

Year Main Effect
Width (cm) Height (cm) Leaf Area Index SPAD

Vegetative Harvesting Vegetative Harvesting Vegetative Harvesting Vegetative Harvesting

2015 Planting
method (P)

Seed 80.3 b 162 b 12.0 a 71.9 b 1.60 b 3.33 b 38.4 b 57.0 a
Transplant 105 a 191 a 15.3 a 93.1 a 2.10 a 3.80 a 44.0 a 58.7 a

Cultivar (C)
GGI 88.5 b 180 a 15.2 a 86.4 a 1.77 a 3.19 b 42.3 a 61.0 a

ROM 97.2 a 178 a 14.6 a 82.5 a 1.94 a 3.73 a 39.8 a 56.2 a
IS 92.1 ab 172 a 11.0 a 78.6 a 1.84 a 3.77 a 41.5 a 56.5 a

ANOVA
P * ** NS ** * * ** NS
C * NS NS NS NS * NS NS

P×C NS NS NS NS NS NS NS NS
2016 Planting

method
Seed 67.2 b 160 a 18.3 b 73.5 a 1.4 a 5.25 b 56.7 a 60.0 a

Transplant 89.1 a 167 a 21.8 a 77.8 a 1.5 a 5.86 a 57.2 a 61.4 a
Cultivar

GGI 73.3 a 167 a 23.8 a 85.9 a 1.3 a 5.10 b 59.4 a 64.5 a
ROM 90.7 a 174 a 20.1 ab 75.3 ab 1.6 a 6.62 a 56.4 ab 61.1 ab

IS 70.5 a 150 b 16.3 b 65.7 b 1.4 a 4.95 b 55.0 b 56.6 b
ANOVA

P * NS * NS NS ** NS NS
C NS *** ** * NS ** * *

P×C NS NS NS NS NS NS NS NS

*, **, *** show significant differences at p < 0.05, 0.01, and 0.001, respectively. NS, not significant at p < 0.05. Means in columns followed by
different letters are significantly different at p < 0.05.

The transplanting method significantly increased artichoke total yield in both 2015
and 2016 growing seasons, when compared to direct seeding (Table 4). In addition, the
transplanting method resulted in earlier harvesting and yield in both growing seasons
(Figure 4). In 2015, the percentage of heads from early harvests out of the total yield was
58% for transplanting and 38% for direct seeding. Similarly, the percentage was 46% for
transplanting and 13% for direct seeding in 2016. Considering cultivars, IS had the earliest
production and the highest yield percentage in the first month, while the ROM cultivar
had the latest head production across the study period, 2015–2016 (Figure 4). Specifically,
more than 60% of the total marketable yield for IS occurred between April 6 and 21, 2015
while 65% of ROM yield occurred between May 5 and May 19 of the same growing season.
However, there were no significant differences between treatments (transplant vs. direct
seeding) in head quality (chlorogenic acid and cynarin), except for chlorogenic acid in 2016.
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In that year, direct seeding had higher chlorogenic acid concentration in the head than
those from the transplanting method (Table 4). In 2015, GGI had higher yield than ROM
and IS, while in 2016 GGI and IS had higher yield than ROM (Table 4). Higher yield for
GGI was associated with a significantly lower content of chlorogenic acid concentration,
especially in 2015 (Table 4). However, there were no significant differences in cynarin
concentration between cultivars and across planting methods in both years.

Table 4. Marketable yield, chlorogenic acid, and cynarin of artichoke cultivars (Green Globe Improved (GGI), Romolo
(ROM), and Imperial Star (IS)) as influenced by planting method (direct seeding—Seed, and transplanting—Transplant)
during 2015 and 2016 seasons.

Year Main Effect Marketable Yield
(ton ha−1)

Chlorogenic Acid
(µg g−1)

Cynarin
(µg g−1)

2015 Planting method (P)
Seed 19.9 b 125 a 5.63 a

Transplant 21.1 a 138 a 6.26 a
Cultivar (C)

GGI 24.3 a 95 b 5.65 a
ROM 21.9 b 140 ab 6.65 a

IS 15.2 c 159 a 5.53 a
ANOVA

P * NS NS
C * * NS

P×C NS NS NS
2016 Planting method

Seed 13.7 b 312 a 6.70 a
Transplant 18.3 a 144 b 6.23 a

Cultivar
GGI 17.5 a 241 ab 6.76 a

ROM 15.1 b 284 a 6.21 a
IS 15.5 ab 175 b 6.52 a

ANOVA
P *** *** NS
C * * NS

P×C NS NS NS

*, *** show significant differences at p < 0.05 and 0.001, respectively. NS, not significant at p < 0.05. Means in columns followed by different
letters are significantly different at p < 0.05.
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3. Discussion
3.1. Root Growth Dynamics

Comparing both plant establishment systems across the study period data from
Tables 1 and 2 showed that transplants had higher mean root La, length, and surface area
as compared to direct seeded plants. The expression of root traits is highly associated
with plant growth and productivity, as demonstrated in bell pepper and young olive
seedlings [13,15]. In rice, it has been shown that increases in root components such as
root biomass, length, and density, as well as root oxidation activity and root zeatin +
zeatin riboside content during the early and mid-growing season, led to higher grain
yield [25]. In artichoke seedlings, higher root trait components, such as root length and
surface area during the transplanting stage, increased total marketable yield [3,9]. Early
research in tomato and pepper has demonstrated that root architecture in direct seeded and
transplanted plants are quite different. While direct seeded plants develop a vertical strong
taproot in non-compacted soils, transplanted seedlings develop a distinctive root system
with typically more basal roots derived from the root–hypocotyl transition zone, which is
caused by the early modification of the taproot in the containers; these changes also lead to
more uniform growth and higher crop yields compared to direct seeding [9,15,26,27].

Physiologically, the function of diverse root growth components is critical for the
establishment of young plants, especially just after planting [25]. At this early stage, the root
systems of newly planted seedlings might be inadequate to rapidly supply enough water
to shoots, leading to transplant shock [3,9,28]. The ability of seedlings to overcome post-
planting stress is affected by several factors such as root architecture (size and distribution),
root–soil interaction, and root hydraulic conductivity [28]. In this study, most root traits
were highly expressed in the topsoil (0–20 cm) (Tables 1 and 2). Artichoke La, root length,
and root surface area in the topsoil were greater than the lower soil profiles (Tables 1 and 2).
An earlier study in bell pepper by Leskovar et al. [14] found that transplants and direct
seeded pepper plants had greater root mass in the 0–10 cm topsoil than in the 10–20 cm
soil depth in a sandy soil (150 and 100%, respectively).

3.2. Growth, Physiology, Yield, and Head Quality

Across the study period, the results described in Table 3 show an overall increase in
plant size for transplants as compared to direct seeding plants. Rice plants established by
transplanting had higher Pn, gs, number of panicles per square meter, seed setting rate,
and grain yield, and a smaller number of tillers per plant at the early growth stage and a
maximum quantum yield of PSII (Fv/Fm) compared to direct seeded plants [29]. Higher
shoot width and height as well LAI in transplanted plants can be attributed to a larger root
system (root length and surface area, Tables 3 and 4). In lettuce (Lactuca sativa), cultivars
with large root systems increased nitrogen use efficiency and displayed higher growth
rates, leading to higher yields than those cultivars with smaller roots [30]. Higher mean La
in 2016 (compared to 2015) was coupled with higher LAI (shoot canopy) at the harvesting
stage. This increase in LAI and La in 2016 could be attributed to higher rainfall received
by plants that year as compared to the 2015 growing season. In 2015, the total rainfall and
irrigation applied to artichoke plants was 630 mm (490 rainfall + 140 irrigation), while in
the 2016 growing season, the total rainfall and applied irrigation was 787 mm (687 rainfall
+ 100 irrigation). In addition, higher soil moisture in 2016 led to higher SPAD (vegetation
stage) and gas exchange and consequently higher LAI compared to 2015. Interestingly, the
transplanting method reduced applied water in a sugar beet (Beta vulgaris) field by about
24% and evapotranspiration by 25% as compared with direct seeding [31].

The observed increase in root and shoot growth and higher yield by the transplant-
ing method compared to direct seeding in artichoke confirms previous results in other
crops. In rice, transplanted plants had higher yield than direct seeded in both local and
high-yielding cultivars [10]. Tomato transplants had higher survival rate, leaf number,
and yield, due to more possible harvests than direct seeded plants [32]. Due to the ad-
vanced seedling development, transplants exhibit greater fruit sink demand during the
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reproductive development than direct seeded plants [14]. Considering the significant and
consistent improvement in root components (La, length, and surface area), shoot size, and
early and total marketable yield from transplants across the study period (2015–2016),
this establishment method could offer significant benefits to artichoke farmers over direct
seeding. In both years, 46 to 50% of the total yield was harvested in the first month for
transplants, while 13 to 38% in the same period for direct seeded plants (Figure 4). These
results agreed with others reported for onion, tomato, and pepper [5,6,15]. A comparative
response study of direct seeded and transplanted maize (Zea mays) to N fertilization (0, 120,
180, 240, and 300 kg N ha−1) showed that transplants reached the flowering stage 11 to
15 days earlier and had higher yield than plants established by direct seeding. It is well
known that earliness is a trait highly dependent on the cultivar of choice. In our earlier
study, that was the case of for IS, an artichoke cultivar classified as early blooming, while
the GGI cultivar is considered to be late blooming [33]. In the present study, more than 50%
of the IS yield was harvested in the first month of the harvesting period (2015 and 2016).
Interestingly, GGI head production was earlier than ROM (Figure 4) in both years. In fact,
25–45% of ROM yield was harvested in the last week of the harvesting period, while GGI
late yield was about 11% and 30% in the latest May harvests of 2015 and 2016, respectively.

Although yield (treatments mean) in 2015 was about 28% higher than 2016, root and
shoot growth was lower compared to 2015, though the differences between years (2015 vs.
2016) were not statistically analyzed. In the 2016 growing season, Pn and LAI at harvest
were about 40% higher than in 2015 (Tables 1 and 4). Higher biomass in the 2016 year,
when plants received more than 157 mm of rainfall water than in 2015, might have led to
changes in the source–sink relationship, directing more investment of assimilates towards
shoot growth to compensate for the larger canopy. We speculate that a higher supply of
water in 2015 might have induced the artichoke plants to invest more in forming heads
(stronger sinks) than in biomass of the canopy.

Globe artichoke is a valuable crop and a rich source of antioxidants, such as phenolic
acids, flavonoids, and cynarin, which have been used for therapeutic effects [18,19,34,35].
Plants produce reactive oxygen species (ROS) in stress conditions (e.g., drought) and to
detoxify ROS, the antioxidants and flavonoids play a key role in protecting plants from
abnormal abiotic stresses [36,37]. Significant increases in shoot and reproductive growth
have been normally coupled with reductions in nutrient and protein concentrations in
tissues due to dilution effects [21,23,38]. In this study, this dilution effect was noticed
in the content of chlorogenic acid in 2016 (Table 4), where the significant increase (34%)
in artichoke yield from the transplanting method produced heads with reduced (54%)
chlorogenic acid. However, cynarin levels from the transplanting and direct seeding heads
were statistically similar.

4. Materials and Methods
4.1. Site Description

A two-year field study was conducted at the Texas A&M AgriLife Research and
Extension Center at Uvalde, Texas (long. 29◦12′57.6′′ N, lat. 99◦45′21.6′′ W) from October
2014 to August 2016. The soil was a clay type (hyperthermic Aridic Calciustolls of the
Uvalde series) with the following chemical properties: pH 8.0, EC 0.6 dS m−1, P 55 mg kg−1,
K 810 mg kg−1, Ca+2 12,939 mg kg−1, Mg+2 333 mg kg−1, S 29 mg kg−1, Na 50 mg kg−1,
and nitrate-N 59 mg kg−1. In the 2015 growing season, the mean growing temperature
was 23 ◦C, relative humidity 64%, and total rainfall 490 mm, while in 2016 the mean
temperature was 21 ◦C, relative humidity 67%, and total rainfall 687 mm (Figure 5). The
plant hardiness zone for the Uvalde site location is 8. Average annual extreme minimum
temperatures range from −12.2 to −6.7.
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4.2. Stand Establishment and Cultivar Treatments

We evaluated two planting methods, direct seeding and transplanting, on three
artichoke cultivars, Green Globe Improved (GGI), Imperial Star (IS), and Romolo (ROM).
GGI and IS (Big Heart Seed Co, Brawley, California) are open pollinated cultivar types with
green to light purple heads, while ROM is a contemporary hybrid cultivar (Big Heart Seed
Co, Brawley, California) with predominantly purple heads.

For the transplanting treatment, artichoke seeds of the three cultivars were sown in
polystyrene Speedling trays (one seed per cell) containing 128 cells (3.2 × 3.2 cm square
and 6.4 cm deep) and placed in a germination chamber for 4 days in darkness inside
an incubator chamber set at 20 ◦C. A 3:1 peatmoss:perlite growing medium was used
and only initial watering was required during the incubation period. Then, seedlings
were transferred to greenhouse conditions (temperature 23 ± 2 ◦C, humidity 60 ± 5%)
and grown for 7 weeks before field planting. Direct seeding and transplanting were
performed simultaneously in the open field on October 28, 2014 (first growing season) and
on November 23, 2015 (second growing season). Plants started in 2014 were abandoned
after harvest in 2015, and completely new plants were prepared for analysis in 2016. Both
establishment and cultivar treatments were planted in separate blocks, each consisting of
three beds 1.5 m apart, using a single row per bed at a spacing of 0.9 m between plants.
Beds were laid out with a black plastic mulch to reduce weed pressure and soil evaporative
water losses. The outside rows were used as buffers and the middle row was used for
growth measurements and harvests. For the direct seeded treatment, three seeds per hole
were seeded in the field and thinned to one plant after six weeks to be comparable with the
transplanting method.
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4.3. Field Management

In each growing season, N-P-K fertilizers were applied to reach a total rate of 150 N,
100 P and 100 K kg ha−1. Fertilizers (4N-4.4P-8.3K and 32N-0P-0K) were applied in 3 split
doses each year. The first dose (20% of total fertilizers) was applied the third week after
transplanting, the second dose (40%) at the 8-leaf stage, and the third (40%) prior to the
beginning of the harvest stage. In both seasons, irrigation was established by a subsurface
drip system placed in the middle of the bed at a 15 cm depth. In the 2015 growing season,
the number of irrigations was 10 (total irrigation was 140 mm, 10–15 mm per irrigation)
while in 2016 the number of irrigations was 7 (total irrigation was 100 mm, 10–15 mm
per irrigation). The total rainfall and irrigation for the 2015 growing season was 630 mm
(490 rainfall + 140 irrigation) and 787 mm (687 rainfall + 100 irrigation) for 2016. Overall,
the total amount of water received by plants was between 630 and 787 mm across the study
period. Gibberellic acid (GA3, 4%, CP Bio, Inc., Chino, CA) was sprayed twice at 20 mg
L−1, the first application at the 4th leaf stage and the second 10 d thereafter. Esfenvalerate
(Asana XL, 8.4% by weight, DuPont, Wilmington, DE, USA) at 70 mL ha−1 was applied to
control cucumber beetle (Diabrotica undecimpunctata) and cut worms during the vegetative
stage. During early head development till harvest, calcium (5%) and zinc (5%) (Tracite,
Helena Chemical Co., Fresno, CA, USA) were applied weekly to prevent head atrophia, a
physiological disorder typically associated with calcium deficiency [3].

4.4. Root Measurements

Root measurements were conducted four times during each growing season following
the procedures of Othman and Leskovar [13] and Sharma et al. [39]. Root measurements
were taken using the minirhizotron technique with acrylic tubes of 182 cm in length and
50.8 mm in diameter. Minirhizotron tubes were installed 30 cm away from the seedlings
at a 45◦ angle from the vertical using a trailer-mounted Giddings hydraulic probe (5-TS
MODEL-MGSRTS, Giddings Machine Co., Windsor, CO, USA). The aboveground 30 cm
of the minirhizotron tubes were painted with a double layer of black (inside) and white
(outside) paint to prevent light penetration and the top end of each tube was covered with
a PVC end cap for further light and moisture protection. In both growing seasons, five
specific soil depth (SSD) ranges were used, 0–20, 20–40, 40–60, 60–80, and 80–100 cm. The
SSD of each photo was calculated following the procedure of Rasmussen and Thorup-
Kristensen [40] as cos (45◦) × tube depth of the photo. As the minirhizotron tubes were
installed at a 45◦ angle from the vertical line, four minirhizotron images were collected
within each interval depth and the four values from each soil depth interval were averaged
to one value prior to statistical analysis. A microscope camera system (Bartz Technology
Corporation, Carpinteria, CA, USA) was used to capture the root pictures from the upper
interface of the tube and the soil [39,40]. The total area represented in each image was
3.24 cm2. Images were analyzed using WinRHIZOTron software (Régent Instruments Inc.,
Quebec, QC, Canada) and presented as La (mm cm−2; total root length per image area
(3.24 cm2)).

Different soil horizons (0–20, 20–40, and 40–60 cm soil depth) were also collected
during the harvesting stage in June 2015. Root samples from both treatments and across
cultivars were carefully washed under a set of large to fine screens, roots were separated,
and then root components were measured using a WinRHIZO image analysis system (V5.0,
Regent Instruments, Quebec, QC, Canada).

4.5. Shoot Morphology, Leaf Physiology, and Yield

Parameters used as a measure of plant morphology (width and height) and their main
physiological processes (LAI, SPAD, Pn, gs, and E) were determined during vegetative and
harvesting stages in both growing seasons. Gas exchange (Pn, gs, and E) was measured
using a portable photosynthesis system (LI-6400XT; LI-COR, Lincoln, NE, USA) following
the procedures of Othman et al. [41]. Leaf-level gas exchange measurements were carried
out between 11:00 a.m. and 1:00 p.m. on sun-exposed and fully matured leaves (2 leaves
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per replicate, two measurement per growing season) [42,43]. Light intensity was set to
track ambient photosynthetically active radiation, area of chamber head to 6 cm2, flow rate
to 500 µmol s−1, temperature in the cuvette to ambient air and reference CO2 to 390 µmol.
SPAD was measured using a chlorophyll meter (SPAD-502 Plus, Minolta, Japan), and LAI
was measured using a ceptometer (LP-80, Decagon Devices, Pullman, WA, USA). Artichoke
harvests were conducted between April and May 2015 and 2016 and marketable yield
(t ha−1) was determined. A head was considered marketable when its diameter was larger
than 7 cm, without tipburn and/or open bracts [20]. In both growing seasons (2015 and
2016), a representative sample of eight heads per treatment was taken and used to measure
phytochemical (chlorogenic acid and cynarin) concentration using a high-performance
liquid chromatography system (HPLC, Waters Alliance 2695 Separation Module, Milford,
MA 01757, USA).

4.6. Statistical Analysis

The study was designed using a randomized complete block design with four repli-
cations and two factors (two planting methods, three cultivars). The analysis of variance
(ANOVA) and the least significant difference test (p < 0.05) in SAS (Version 9.4 for Windows;
SAS Institute, Cary, NC, USA) were used to identify differences between planting methods
(direct seeding vs. transplanting), cultivars, and their interactions.

5. Conclusions

Overall, the two-year field assessment of stand establishment methods, transplanting
and direct seeding, revealed significant quantitative responses of root trait components,
which were translated into yield differences between the two systems in the three cultivars
evaluated. Transplants consistently exhibited increased La, root length, and surface area, as
well as shoot size, chlorophyll content index, and marketable yield. However, no significant
differences were found in root diameter and volume, leaf-level gas exchange (Pn, gs, and E),
and head cynarin concentration across the study period. Given that higher yield is the main
concern for artichoke growers, this study supports that transplanting is the best growing
method for globe artichoke cultivars. Since globe artichoke has one of the highest total
antioxidant capacities among all vegetables, our future research will focus on how to couple
the increase in artichoke yield with optimal concentrations of antioxidant compounds and
enzymes in the heads. That research will provide a better understanding on the balance
between yield promotion and phytonutrient quality, including the level of protection from
oxidative stress in transplanted globe artichoke plants.
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