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Objective: To evaluate whether radiomic features extracted from intra and peri-nodular

lesions can enhance the ability to differentiate between invasive adenocarcinoma (IA),

minimally invasive adenocarcinoma (MIA), and adenocarcinoma in situ (AIS) manifesting

as ground-glass nodule (GGN).

Materials and Methods: This retrospective study enrolled 120 patients with a total

of 121 pathologically confirmed lung adenocarcinomas (85 IA and 36 AIS/MIA) from

January 2015 to May 2019. The recruited patients were randomly divided into training

(84 nodules) and validation sets (37 nodules), with a ratio of 7:3. The minority group

in the training set was balanced by the synthetic minority over-sampling (SMOTE)

method. The intra-, peri-nodular, and gross region of interests (ROI) were delineated

with manual annotation. Image features were quantitatively extracted from each ROI

on CT images. The minimum redundancy maximum relevance (mRMR) feature ranking

method and the least absolute shrinkage and selection operator (LASSO) classifier were

used to eliminate unnecessary features. The intra- and peri-nodular radiomic features

were combined to produce the gross radiomic signature. A combined clinical-radiomic

model was constructed by multivariable logistic regression analysis. The predicted

performances of different models were evaluated using receiver operating curve (ROC)

and calibration curve.

Results: The gross radiomic signature (AUC: training set = 0.896; validation set =

0.876) showed a good ability to discriminate the invasiveness of adenocarcinoma,

comparing to intra-nodular (AUC: training set = 0.862; validation set = 0.852) or peri-

nodular radiomic signature (AUC: training set = 0.825; validation set = 0.820). The AUC

of the combined clinical-radiomic model was 0.917 for the training and 0.876 for the

validation cohort, respectively.
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Conclusions: The gross radiomic signature of intra- and peri-nodular regions improved

the prediction ability and aided predicting the invasiveness of lung adenocarcinoma

appearing as GGN.

Keywords: radiomics, tomography, X-ray computed, lung adenocarcinoma, ground-glass nodule, computational

biology

INTRODUCTION

Ground-glass nodule (GGN) on high-resolution computed
tomography (HRCT) is defined as lesions showing hazy,
increased attenuation that does not obscure underlying
bronchial structures or pulmonary vessels (1–3). Early-stage
lung adenocarcinoma nodules often manifest GGN associated
with a pathological, lepidic growth pattern (4). According to
the pathology classification in 2011, lung adenocarcinoma
has been divided into pre-invasive lesions including atypical
adenomatous hyperplasia (AAH) and adenocarcinoma in
situ (AIS), minimally invasive adenocarcinoma (MIA), and
invasive adenocarcinoma (IA) (5–7). The suggested therapeutic
strategy for each differs according to different subgroups of
adenocarcinoma classification. Compared with IA, AIS, and
MIA can be treated with wedge or segmental resection with
a 100% or near 100% of 5-year survival rate (8). Therefore,
preoperative, non-invasive radiological assessment of the
invasiveness of lung adenocarcinoma is essential.

Histology is currently the gold standard to assess the
invasiveness of lung adenocarcinoma. However, it is generally
difficult to assess the overall invasiveness of GGNs before surgery.
Traditional evaluation using CT can determine values such
as tumor size, CT attenuation value, and the percentage of
the solid component in GGN, which can help differentiate
the invasiveness of the adenocarcinoma (4, 6, 7). Yet, results
are subjective and depend widely on the experience of
those reading the images. From texture analysis to radiomic
studies (9–11), these radiomic features inside the tumor
help to differentiate the histological invasiveness of lung
adenocarcinoma appearing as GGN. Luo et al. (10) constructed
a nomogram model combining the qualitative CT imaging
features and the radiomic features extracted from intratumor.
This showed an AUC of 0.903. The radiomic features and
mean CT value of GGN ≤ 10mm was combined. The
constructed nomogram model was designed to achieve a C-
index of 0.707–0.721 (11). However, these studies (9–11) only
focused on the radiomic features inside the tumor and ignored
the regions surrounding the tumor which may be helpful
for differentiation.

Little work was reported on studying GGNs using peri-
nodular radiomic feature for prediction the invasiveness
of lung cancer. Recent studies indicate that the tumor
microenvironment and the associated abnormalities play an
important role in tumorigenesis, including lung cancer (12,
13). Therefore, we hypothesized that analyzing the peritumoral
region would provide valuable insight for the intra-nodular
radiomic analysis. Our aim was to evaluate whether radiomic
features extracted from intra- and peri-nodular regions of lung
nodules on CT images can improve the ability to determine

the histological invasiveness of adenocarcinoma appearing
as GGNs.

MATERIALS AND METHODS

The institutional review board in our hospital approved this
retrospective study and informed consent was waived.

Patients
From January 2015 to May 2019, 382 consecutive patients
with 389 pulmonary adenocarcinomas confirmed by operative
pathology were reviewed based on the 2015 the International
Association for the Study of Lung Cancer (IASLC), the American
Thoracic Society (ATS), and the European Respiratory Society
(ERS) classification of lung adenocarcinoma in our institution.
The inclusion criteria in the studywere as follows:(1) the presence
of a chest CT scan with a thin-slice thickness (0.75mm) before
surgical treatment within one month; (2) lung adenocarcinomas
presenting as GGN (including pure GGN and part-solid nodule)
with a diameter ≤ 30mm with lung window [level: −600
Hounsfield unit (HU); width: 1300 HU]; (3) no chemotherapy,
radiotherapy before surgery; (4) no other malignant tumor
history and distant metastasis. The exclusion criteria were as
following: (1) biopsy, radiotherapy, chemotherapy or surgical
resection of lung malignant tumor performed before CT
examination; (2) thin-slice images with low dose scan, different
slice thickness, or different reconstruction algorithm; (3)multiple
GGNs in the same pulmonary lobe. A total of 121 GGNs from 120
patients matched the search criteria research.

CT Image Qualitative Evaluation
Blinded to each patient’s information, two thoracic radiologists
(with 10 and 5 years of experience in chest CT) evaluated
all the thin-slice CT images and the decision was reached by
consensus. The following clinical parameters, including gender,
age, the maximal diameter of the nodule, nodular type, position,
and morphology characteristics were derived and recorded.
The morphology characteristics included spiculation, lobulation,
pleural indentation sign, air bronchogram, vacuole, and vessel
convergence sign.

Image Acquisition and Segmentation
All primary and intra-cross validation cohorts underwent
scanning at our institution with a Somatom Sensation 64
(Siemens Healthcare, Germany). CT scan parameters were as
follows: detector collimation = 0.6mm × 64; pitch = 1.4;
tube voltage = 120 kV; automatic tube current modulation;
reconstructed section thickness and interval = 0.75 and 0.5mm;
field of view = 300mm; matrix = 512×512;reconstructed
convolution function= B31f.
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An open software (ITK-SNAP 3.6.0 available at www.itksnap.
org) was used to manually segment the thin-slice CT images
with DICOM format. The image segmentation of GGNs was
contoured along the boundary of each nodule on all axial images
in the lung window setting (window level, −600 HU; window
width, 1,300 HU) on a layer by layer basis until the entire lung
nodule was covered.

The reproducibility of inter-observer and intra-observer
segmentation was initially assessed with 30 randomly chosen
GGNs by thoracic radiologists with 10 years’ experience (reader
A, PX) and 5 years’ experience (reader B, LW) independently. The
two radiologists were blinded to each other’s segmentations. Then
reader B(LW) repeated the same procedure after 1 month. Inter-
and intra-class correlation coefficients (ICCs) was used to assess
the intra- and inter-observer agreement of feature extraction. It
indicated a good agreement if the ICC > 0.75, and reader B(LW)
performed the remaining image segmentation.

The peri-nodular region was dilated 2mm in three
dimensions automatically using AK software (Analysis Kit,
GE Healthcare, US) after the intra-nodular region was drawn.
All bronchi, large vessels, vacuole, and normal tissue beyond
the pleura were manually excluded from each region of interest
(ROI). Figure 1 showed the peri-nodular region with a circle of
the dilated 2mm region lung parenchyma around the nodule.

Feature Selection and Radiomic
Signature Building
The segmented intra- and peri-nodular region was imported
into the AK Software (Analysis Kit, GE Healthcare, US) for

ROI texture feature extraction. Three hundred and ninety-six
radiomic features including the histogram, form-factor, gray-
level co-occurrence matrix (GLCM), and run-length matrix
(RLM) were calculated. Before selecting features, the feature
value of all patients was normalized with a Z-score [(x – µ)/σ],
(where x is the feature value and µ represents the average of
the feature values among all patients, and σ stands for the
corresponding standard deviation) to remove the unit limit
for each feature before applying it to the machine learning
model for classification. Subsequently, all patients were divided
into training cohorts and validation cohorts according to
7:3 randomly.

Due to sample imbalance (the number of MIA/AIS is much
less than that of IA), the synthetic minority over-sampling
(SMOTE) algorithm (14) was used to balance the minority group
in the training set. First, the data of the training set was equalized
via the SMOTE, so that the two types of training samples were
close to 1:1. Then the feature dimension reduction and machine
learning modeling were based on the equalized data. After the
model was established, all predictions were based on the real
training set and validation set. The SMOTE algorithm was used
to reduce the impact of sample imbalance on the model.

Two feature selection methods, the minimum redundancy
maximum relevance (mRMR) and the least absolute shrinkage
and selection operator (LASSO) were used to select the most
useful predictive features in the training cohort. Firstly, by using
a multivariate ranking method mRMR method, the features
were ranked according to their relevance-redundancy index
based on the heuristic scoring criteria, the top 20 features

FIGURE 1 | The intra-nodular region and the peri-nodular region (the ring 2mm region) were drawn on an axial image.
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with high-relevance were selected. Then, a LASSO classifier
was conducted using 10-fold cross-validation on the training
cohort to choose the optimized subset of features and build
a radiomic signature. The corresponding coefficients were
evaluated. The radiomic signature (rad-score) was calculated by
summing the selected texture features that were weighted by
their respective coefficients. All rad-scores between the IA and
AIS/MIA group were compared on the training set and validation
set, respectively.

Development and Validation of the
Intra-Nodular Radiomic, the Peri-nodular
Radiomic, the Gross Radiomic, and
Construction of the Radiomic Model
Before performing the multivariate logistic regression analysis,
collinearity diagnosis was performed using correlation matrix
heat map. Radiomic signatures of intra- and peri-nodular
features were built. Furthermore, using the same method
as described above, the intra- and peri-nodular radiomic
features were combined to produce additional intra- and

peri-nodular radiomic features (the gross radiomic signature).
The area under the receiver operator characteristic (ROC)
curve (AUC) was used to assess the performance of the
different models. The radiomic signature with the highest AUC
was selected.

For clinical variables and visual evaluation parameters on
CT, the significance of associations with the invasiveness of
adenocarcinoma was evaluated using the univariate logistic
analysis. Variables with P ≥ 0.05 in univariable analysis were
eliminated. Finally, significant clinical risk factors and the
radiomic signature with the highest AUC were introduced into
the step-wise multivariate logistic regression analysis to build
the clinical-radiomic model using the likelihood ratio test with
Akaike’s information criterion (AIC) as the stopping rule (15).
The sensitivity, specificity, accuracy, positive-predictive value
(PPV), and negative-predictive value (NPV) for the models in
both the primary and the validation cohort were calculated based
on the Youden index (16).

A calibration curve was used to investigate the performance
of the clinical-radiomic model. The Hosmer–Lemeshow test was
performed to evaluate the degree of fit of the clinical-radiomic

FIGURE 2 | Flowchart of study population.
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model. The predictive performance of the clinical model, the
gross rad-score model, and the clinical-radiomic model was
quantified by AUC based on ROC curve analysis.

Statistical Analysis
The LASSO logistic regression was conducted by 10-fold cross-
validation based on minimum criteria. The normality test
was first conducted for the continuous variables. If the data
followed a normal distribution, the independent sample t-tests
were used for the normally distributed continuous variables.
The Mann–Whitney U-test was used for the non-normally
distributed continuous variables. A Chi-square test was used
to compare the differences for categorical variables of clinical
data between the two groups. A backward stepwise selection
was applied using the likelihood ratio test with Akaike’s
information criterion as the stopping rule. Differences between

various AUCs was evaluated using DeLong’s method (17).
Statistical analysis was conducted with R software (version 3.3.3;
https://www.r-project.org). The reported statistical significance
levels were all two-sided, with statistical significance set at
0.05. The “stats” package (http://www.personal.psu.edu/drh20/
R/html/stats/html/stats-package.html) was used for multiple
logistic regression analysis. ROC curve analysis was performed
using the “pROC” and “ROC.TEST” software packages for R.

RESULTS

Patient Characteristics
A total of 120 consecutive patients [34 men, 86 women; mean age
= 55.9 years ± 11.9 (standard deviation); range = 26–81 years]
with 121 primary pulmonary adenocarcinomas manifesting as

TABLE 1 | Characteristics of the training and validation cohorts.

Characteristics Training set (n = 84) Validation set (n = 37)

AIS/MIA (n = 25) IA (n = 59) P AIS/MIA (n = 11) IA (n = 26) P

Gender

Female 16 (64.00%) 43 (72.88%) 0.416 9 (81.82%) 19 (73.08%) 0.695

Male 9 (36.00%) 16 (27.12%) 2 (18.18%) 7 (26.92%)

Age (year) 52.44 ± 12.71 60.22 ± 10.24 0.004 52.73 ± 11.23 56.96 ± 10.63 0.283

Location 0.546 0.289

Right upper lobe 13 (52.00%) 22 (37.29%) 7 (63.64%) 9 (34.62%)

Right middle lobe 1 (4.00%) 6 (10.17%) 0 (0.00%) 4 (15.38%)

Right lower lobe 3 (12.00%) 7 (11.86%) 3 (27.27%) 4 (15.38%)

Left upper lobe 6 (24.00%) 12 (20.34%) 1 (9.09%) 6 (23.08%)

Left lower lobe 2 (8.00%) 12 (20.34%) 0 (0.00%) 3 (11.54%)

Spiculation 0.001 0.014

Absent 20 (80.00%) 23 (38.98%) 10 (90.91%) 12 (46.15%)

Present 5 (20.00%) 36 (61.02%) 1 (9.09%) 14 (53.85%)

Lobulation 0.003 0.719

Absent 16 (64.00%) 17 (28.81%) 6 (54.55%) 11 (42.31%)

Present 9 (36.00%) 42 (71.19%) 5 (45.45%) 15 (57.69%)

Pleural Indentation 0.129 0.141

Absent 18 (72.00%) 32 (54.24%) 9 (81.82%) 13 (50.00%)

Present 7 (28.00%) 27 (45.76%) 2 (18.18%) 13 (50.00%)

Air Bronchogram 0.651 0.015

Absent 19 (76.00%) 42 (71.19%) 11 (100.00%) 15 (57.69%)

Present 6 (24.00%) 17 (28.81%) 0 (0.00%) 11 (42.31%)

Vacuole 0.923 0.083

Absent 22 (88.00%) 54 (91.53%) 9 (81.82%) 26 (100.00%)

Present 3 (12.00%) 5 (8.47%) 2 (18.18%) 0 (0.00%)

Vessel Convergence 0.034 0.091

Absent 9 (36.00%) 9 (15.25%) 5 (45.45%) 4 (15.38%)

Present 16 (64.00%) 50 (84.75%) 6 (54.55%) 22 (84.62%)

Nodule Type 0.309 0.699

Pure GGN 10 (40.00%) 11 (18.64%) 4 (36.36%) 7 (26.92%)

Part-solid GGN 15 (60.00%) 48 (81.36%) 7 (63.64%) 19 (73.08%)

Diameter 11.72 ± 6.13 14.81 ± 5.86 0.032 9.36 ± 4.11 14.62 ± 4.88 0.004

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma; GGN, ground-glass nodule.
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GGNs were enrolled from January 2015 to December 2017. In
this study, 268 lung adenocarcinomas were excluded. Of the 121
GGNs, 85 were invasive adenocarcinomas, 27 were microinvasive
adenocarcinomas, and 9 were in situ adenocarcinomas. The
specific flow chart was presented in Figure 2.

There were no statistical differences between the training set
and the validation set in patients’ gender, age, and CT imaging

FIGURE 3 | Texture feature selection by using the least absolute shrinkage

and selection operator (LASSO) about the gross radiomics. (A) Optimal feature

selection according to AUC value; (B) LASSO coefficient profiles of the 20

radiomic features. A vertical line was drawn at the selected value using 10-fold

cross-validation, where the optimal λ resulted in eight non-zero coefficients;

(C) The selected radiomic features and their coefficients about the gross

radiomic signature.

features (Table S1). Characteristics of qualitative CT imaging
features and demographic features between AIS/MIA and IA
both in the training and testing set of our study were presented
in Table 1.

Interobserver and Intraobserver
Reproducibility of Radiomic
Feature Extraction
The intra-reader ICC between two measurements by reader
A ranged from 0.821 to 0.932. The inter-reader ICC between
reader A and reader B ranged from 0.789 to 0.868. The results
indicated a favorable inter- and intra-observer reproducibility for
feature extraction.

The Radiomic Signature Building and
Diagnostic Validation
Three hundred and ninety-six texture features were extracted
from AK software within the intra- and peri-nodular region.
Then the mRMR was firstly performed to eliminate the
redundant and irrelevant features, 20 features were retained.
Texture feature selection was conducted using the LASSO
about the intra- and peri-nodular regions, along with the gross
signatures (Figures 3A,B; Figures S1A–D).

The LASSO classifier provided the optimal radiomic signature
to construct the final model with values of AUC = 0.862, 0.825,
and 0.896 for intra-, peri-nodular, and gross signatures in the
training cohort, respectively (Table 2). The ROC curve of the
radscore with intra- and peri-nodular were showed in Figure S2

both in training and validation set. For each group, the gross
signature that combined the peri- and intra-nodular features with
the highest AUC was selected.

Based on the formula of the radiomic signature, the three
rad-scores were calculated. The calculation formula for intra-
, peri-nodular, and gross signatures were presented in the
Supplementary Material. The waterfall plot showed the rad-
score for the patient vividly (Figure 3C, Figures S1E,F). All
the rad-scores of IA were significantly higher compared to the
AIS/MIA in both the training set and validation set, and results
were represented by boxplot in Figure 4, Figures S1G,H. The
intra-nodular rad-score, peri-nodular rad-score, and gross rad-
score demonstrated good predictive efficacy in the training and
validation cohorts (intra-nodular rad-score, the AUC values were
0.862 and 0.852, respectively; peri-nodular rad-score, the AUC
values were 0.825 and 0.820, respectively; gross rad-score, the
AUC values were 0.896 and 0.876, respectively). The relevant
results were shown in Table 2.

The correlation coefficients between the intra-, peri-nodular,
and gross signatures were all <0.7 using correlation matrix heat
map, which indicated no collinearity between features (Figure 5,
Figure S3).

Development and Predictive Performance
of the Clinical-Radiomic Model
Univariate logistic regression analysis showed that age, the
maximumdiameter of the nodule, spiculation, lobulation, pleural
indentation, and vessel convergence were risk factors of invasive
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TABLE 2 | Predictive value between five different models in the training and validation cohort.

Signature AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Training cohort

Intra-nodular rad-score 0.862 0.778–0.946 0.654 0.933 0.848 0.810 0.862

Peri-nodular rad-score 0.825 0.735–0.915 0.923 0.583 0.686 0.490 0.946

Gross rad-score 0.896 0.826–0.967 0.808 0.867 0.849 0.724 0.912

Clinical features 0.718 0.593–0.842 0.840 0.500 0.698 0.700 0.692

Clinical-radiomics 0.917 0.860–0.974 0.979 0.658 0.837 0.783 0.962

Validation cohort

Intra-nodular rad-score 0.852 0.718–0.986 0.900 0.800 0.829 0.643 0.952

Peri-nodular rad-score 0.820 0.679–0.961 0.800 0.760 0.771 0.571 0.905

Gross rad-score 0.876 0.747–1.000 0.800 0.920 0.886 0.800 0.920

Clinical features 0.768 0.570–0.966 0.900 0.533 0.743 0.720 0.800

Clinical-radiomics 0.876 0.739–1.000 0.952 0.643 0.829 0.800 0.900

AUC, area under the receiver operator characteristic curve; 95%CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4 | The boxplot about gross rad-scores between AIS/MIA and IA both in the training and validation sets.

adenocarcinoma. After multivariate analysis, the gross rad-score
(OR: 14.420, 95%CI: 3.700–56.180; p < 0.001) and the maximal
diameter of nodule (OR: 0.800, 95%CI: 0.605–0.980; p < 0.05)
with the lowest AIC value (AIC = 60.64) was identified as the
best model (Table 3). The average diameter of IA was larger than
that of AIS or MIA both in the training set (14.81± 5.86 vs. 11.72
± 6.13mm; p< 0.05) and the validation set (14.62± 4.88 vs. 9.36
± 4.11; p < 0.01).

The ROC curves for the gross radiomic model, clinical
model, and combined clinical-radiomic model on the training

cohort and validation cohort were shown in Figure 6. In the
training cohort, the clinical-radiomic model combining the gross
signature with the clinical parameter (the maximal diameter
of nodule) showed best predictive performance (AUC = 0.917,
95%CI: 0.860–0.974) with good sensitivity (0.979), specificity
(0.658), and accuracy (0.837) among the intra-nodular rad-score,
the peri-nodular rad-score, the gross rad-score, and the clinical
features (Table 2). In the validation cohort, the clinical-radiomic
model also showed a good performance (AUC = 0.876, 95%CI:
0.739–1.000) with high sensitivity (0.952), specificity (0.643),
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FIGURE 5 | The correlation matrix heat map showing no collinearity between the gross features.

and accuracy (0.829) (Table 2). However, the AUC values of
clinical parameters in differentiating AIS/MIA from IA were only
0.718 (95%CI: 0.593–0.842) and 0.768 (95% CI: 0.570–0.966)
in the training and validation set, respectively (Table 2). The
corresponding accuracy, sensitivity, specificity values, PPV, and
NPV of all the models were calculated and presented in Table 2.

The calibration curve of the gross signature in the training and
validation set is presented in Figure S4. There was no statistical
significance both in the training and validation cohort (P= 0.275
and 0.197, respectively) by the Hosmer–Lemeshow test, which
suggested that the combinedmodel predictions and actual results
were in good agreement. Statistically significant differences were
observed in the training cohort (Gross model vs. Clinical model:
0.896 vs. 0.717, p < 0.001; Combined model vs. Clinical model:
0.917 vs. 0.717, p < 0.001). However, there was no difference

between the gross model and clinical model in the training cohort
(0.917 vs. 0.896, P = 0.334).

DISCUSSION

In this study, we evaluated the ability of imaging features
from intra-, peri-nodular, and gross regions which combined
the intra- and peri-nodular radiomic features to discriminate
AIS/MIA from IA. It was found that the gross radiomic signature
improved the discrimination ability better than the intra- and
peri-nodular radiomic signatures alone. From this finding, a
clinical radiomic model combining the gross radiomic signature
and the maximum diameter of the nodule was also created and
validated. The clinical-radiomic model and the gross radiomic
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model outperformed the intra-, peri-nodular signature, and the
clinical parameter-based models.

We found that the radiomic features of the Cluster
Prominence and the gray level run-length matrix (GLRLM)
extracted from the tumor and peritumor had the ability to
differentiate the invasiveness of adenocarcinoma. In our study,
all the Cluster Prominence and the GLRLM textural features
of IA showed significantly higher levels than that of AIS/MIA.
This suggest that IA demonstrated more heterogeneity than
the MIA/AIS both in the tumor and the surrounding area.
Specifically, heterogeneity represented by Cluster Prominence
and GLRLM features were consistent with the medical literature

TABLE 3 | Risk factors for invasiveness of the ground-glass nodule (GGN) in the

training set.

Univariate logistic

regression

Multivariate logistic

regression

Characteristics OR (95%CI) p OR (95%CI) p

Intra-nodular model

Rad-score 5.027 (2.500–10.105) <0.001 NA NA

Peri-nodular model

Rad-score 7.148 (2.722–18.771) <0.001 NA NA

Gross model

Rad-score 5.435 (2.548–11.429) <0.001 14.420 (3.700–56.180) <0.001

Clinical model

Age 1.056 (1.011–1.104) 0.015 NA NA

Diameter 1.149 (1.037–1.273) 0.008 0.800 (0.605–0.980) 0.031

Spiculation 4.800 (1.599–14.410) 0.005 NA NA

Lobulation 3.200 (1.231–8.317) 0.016 NA NA

Vessel

convergence

3.542 (1.225–10.236) 0.019 NA NA

CI, confidence interval; GGN, ground-glass nodule; OR, odds ratio; NA, not available.

(18–20). All these parameters described the image characteristics
in the form of heterogeneity or asymmetry. In medical imaging,
high values of cluster prominence represent a larger peak for
the image gray level value. Typically, the gray level difference
between the forms is large. Therefore, GLCM can represent
the heterogeneity of local tissue as it analyzes texture changes
through the relationship between neighboring pixels. Several
studies have reported that the GLRLM texture analysis can assess
tumor heterogeneity (19, 20). Karacavus et al. (20) founded that
GLRLM textural feature in the tumor approach could be useful
in the discrimination of tumor stage. Our study regarding the
radiomic signature also represented the high heterogeneity of in
the tumor.

In contrast, most prior radiomic approaches to discriminate
the invasiveness of adenocarcinoma have been focused solely
within the extent of the tumor itself (21–25). Fan et al.
(22) found that the radiomic feature from nodules was able
to differentiate invasiveness of adenocarcinomas with high
sensitivity, specificity, and accuracy in the primary and validation
sets. However, the tumor microenvironment has not been
relatively explored and the radiomic signature extracted from
peripheral lung parenchyma maybe enable enhanced tumor
invasiveness prediction. Radiomic features extracted from the
tumor and peritumor can provide information on both the tumor
and its microenvironment, which play an important role on the
prediction of lymph node metastasis, post-surgical recurrence
risk, discrimination of adenocarcinomas from granulomas (26–
28). Our study suggested that the GLRLM features of the
surrounding area of tumor in IA was also higher than that in
MIA/AIS, which indicated that the periphery of IA was also more
heterogeneous. Specifically, the radiomic signature extracted
from peripheral lung parenchyma may be a reliable indicator of
the state of the tumormicroenvironment, whichmay differ across
different degrees of tumor invasiveness. The peri-nodular region
was defined as the surrounding 2mm encompassing the nodule

FIGURE 6 | Area under the curve (AUC) of the gross signatures, clinical model, and the combined model in the training cohort and the validation cohort.
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in our study. This distance of surrounding area was set after a
previous study conducted by Sun et al. (29).

Furthermore, the clinical-radiomic model that combined the
maximum diameter of the nodule and the gross radiomic
signatures was built and analyzed in our study. The clinical-
radiomic signature demonstrated excellent discrimination both
in the training and validation cohorts (with respective AUCs
of 0.917, 0.876). The mean maximal diameter of IA was larger
than that of MIA/AIS. This finding agrees with the suggestions
of Lee et al. (24) who found that the maximal diameter of
invasive adenocarcinoma was higher than that of pre-invasive
adenocarcinoma. However, the clinical-radiomic model was no
better than the gross radiomic model in the validation cohort.
This findingmay be due to the fact that there was only one clinical
feature and the gross radiomic features played an overwhelming
weight in the clinical-radiomic model.

However, there are several limitations to our study. Firstly,
benign lesions, including atypical adenomatous hyperplasia,
were not included in our research. Secondly, there was a
relatively limited sample size because this was a retrospective
study and inclusion criteria was strict. In our research, all
the patients underwent CT scanning at our institution on the
same Somatom Sensation 64 (Siemens Healthcare, Germany)
with standardization in scanning protocols, post-processing.
Therefore, further external validation is expected to validate
the identifying power of the models in a multicenter hospital
with a larger cohort. Third, it still was a challenge to segment
nodules by an automatic technique and all the ROI in the study
were manually segmented with much time and energy. Finally,
confounding effects by small blood vessels or bronchi may not be
completely removed as the ROIs were manually drawn.

In conclusion, while some limitations are present, the current
study provides strong evidence to suggest that the gross radiomic
signature comprised of the peri- and intra-modular signatures
offer a powerful diagnostic tool when combined with the clinical-
radiomic model for discriminating the invasiveness of lung
adenocarcinoma appearing as GGN.While histologymay remain
the gold standard, the method proposed herein provides a
convincing, non-invasive method for initial diagnosis before
the surgery.
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