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Abstract: Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements
of emerging biomedical strategies due to their biocompatibility, design flexibility, and functional-
ity. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped
Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV).
We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared
spectroscopy to examine the driving force in the self-assembly of the newly discovered materials.
It was found that both compounds exhibited ordered π-π interactions and secondary structures,
especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differen-
tiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific
markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that
of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-
specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular
biomaterial for biomedical applications.

Keywords: self-assembly; peptide; amphiphile; hydrogel; biomaterial

1. Introduction

Molecular self-assembly is the spontaneous behavior that makes molecules aggregate
into well-defined sizes, shapes, and functions through noncovalent interactions [1–5]. It
is speculated that simple and versatile molecular self-assembly systems can provide us
with new perspectives to view some complex and unknown biological developments [6,7].
Among the self-assembled materials, self-assembling peptides have gained much attention
owing to their biocompatibility, design flexibility, and functionality [8–24]. Self-assembling
peptides with amphipathic structures are considered significant materials for building
self-assembled nanostructures. The resulting nanostructures are highly bioactive and play
a crucial role in materials science, regenerative medicine, tissue engineering, and drug
delivery [25–32].

Aromatic peptide amphiphiles are currently the simplest and most effective method to
develop low-molecular weight self-assembled biofunctional materials [33–35]. In aqueous
solutions, aromatic peptide amphiphiles assemble by parallel, antiparallel, or interlocked an-
tiparallel stacking arrangements to vesicles, micelles, nanotubes, and nanofibers, which subse-
quently cross-link into soft biomaterials [36–40]. For example, the 9-fluorenylmethoxycarbonyl
(Fmoc) group was extensively used as an N-terminal aromatic component, and Fmoc-FF
was a classic example of low molecular weight self-assembled biomaterials [36]. Aromatic
incorporation with functional peptide sequences will afford more useful biomedical appli-
cations. It is known that laminin α1 chain-derived Ile-Lys-Val-Ala-Val (IKVAV) has diverse
biological activities, including the promotion of cell adhesion, neural differentiation, and
axon extension [41–43]. Many research results have reported improved neurite outgrowth
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of the stem cells with extracellular matrix scaffolds biofunctionalized with IKVAV motifs
in the chemical structures of the materials. [44–47]. Roy et al. designed and synthesized
Fmoc-IKVAV and Fmoc-YIGSR. They demonstrate the great potential of laminin-derived
hydrogels in neuronal stem cell differentiation [48]. Thompson and Parish investigated
Fmoc-DDIKVAV and successfully constructed strategies to improve stem cell therapy in
brain repair [49].

We have recently developed a series of perfluorophenyl-capped peptides (PFB-peptides)
and proved PFB is an effective N-terminal aromatic component to trigger the assembly of
aromatic peptide amphiphiles [50–54]. In this research, we newly synthesized Ben-IKVAV
(phenyl-capped pentapeptides) and PFB-IKVAV. We systematically investigate the self-
assembly, microscopic morphology, mechanical, photophysical, and biological properties of
Ben-IKVAV and PFB-IKVAV. It was found that PFB-IKVAV hydrogelator contains more
β-sheet structures and has better cell differentiation ability than Ben-IKVAV, making it
possible for tissue engineering and regenerative medicine application.

2. Results and Discussion
2.1. Molecular Design and Synthesis

Self-assembling materials incorporating aromatic moieties with IKVAV peptides can
be used as a platform technology to enhance the survival of human mesenchymal stem cells
(hMSCs, 3A6) and their neuron differentiation. In this study, we modified Ben and PFB
with the IKVAV peptide sequence for the novel materials of Ben-IKVAV and PFB-IKVAV.
The synthetic route is shown in Figure 1; the peptide derivatives of Ben-IKVAV and PFB-
IKVAV were prepared by the solid phase peptide synthesis (SPPS) method starting from
2-chlorotrityl chloride resin [55]. The peptide part was synthesized by adding Fmoc-L-
Val-OH with coupling agents of HBTU and DIEA and then deprotection by piperidine. A
similar procedure was repeated for Fmoc-L-Ala-OH, Fmoc-L-Val-OH, Fmoc-L-Lys(Boc)-OH
and Fmoc-L-Ile-OH to grow the IKVAV peptide. Finally, 2-phenylacetic acid was added
and treated with TFA to obtain Ben-IKVAV. The analog of PFB-IKVAV was afforded by
replacing the 2-phenylacetic acid with 2-(perfluorophenyl)acetic acid.
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Figure 1. The synthetic route of Ben-IKVAV and PFB-IKVAV. (HBTU: o-Benzotriazol-1- yl-N,N,N’,N’-
tetramethyluronium hexafluorophosphate; DIEA: N,N-diisopropylethyl- amine; TFA: trifluoroacetic acid.).

2.2. Investigation of Self-Assembly Properties

For biomedical applications, the self-assembly properties of Ben-IKVAV and PFB-
IKVAV were investigated under physiological conditions. It was found that both Ben-
IKVAV and PFB-IKVAV (1 wt.%, ca. 15 mM) could form white translucent hydrogels under
pH 7.4, and the optical images were shown in the insets of Figure 2. The corresponding
microscopic morphologies were examined by transmission electron microscopy (TEM).
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As displayed in Figure 2, the negatively stained nanofiber structures of Ben-IKVAV were
observed with a diameter of 4± 2 nm. The nanofibers are intertwined to form fiber bundles
with a width of about 17 ± 1 nm. In contrast, PFB-IKVAV produces short nanofibers
(diameter around 10 ± 1 nm). These fibrous nanostructures are distributed in water and
entangled within a highly organized peptide-amphiphile nanofibers network (i.e., Ben-
IKVAV and PFB-IKVAV), allowing for the formation of stable hydrogels. Moreover, the
Tgel-sol of Ben-IKVAV and PFB-IKVAV were 65 and 55 ◦C, respectively. Figure 3 reveals
the mechanical properties of 1 wt.% Ben-IKVAV and PFB-IKVAV, which were measured
by oscillatory rheology. The storage modulus (G′) of Ben-IKVAV and PFB-IKVAV were
32.0 kPa and 2.4 kPa, respectively, suggesting they were suitable for applications in tissue
engineering and regenerative medicine [56]. Furthermore, the self-assembly of Ben-IKVAV
and PFB-IKVAV are viscoelastic gels, because the values of the G′ are higher than those of
the loss modulus (G′′) in both gels.
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2.3. Spectroscopic Characterization

Since Ben-IKVAV and PFB-IKVAV could self-assemble to form the network of nanofibers
and afford the hydrogels, we further studied the driving force for the intermolecular inter-
actions of the hydrogelators using spectroscopic characterization [57,58]. We found that
the compounds uniformly dispersed in methanol with disordered ar-rangements, which is
different from that in water. The UV-vis absorption and circular dichroism (CD) spectra
of Ben-IKVAV and PFB-IKVAV in water and methanol are presented in Figure 4. The
absorption peaks of Ben-IKVAV are at 262 nm and 254 nm in water and methanol, respec-
tively, indicating the redshift feature caused by the aggregation formation in an aqueous
solution. Interestingly, for PFB-IKVAV, except for the redshift of the main absorption peak
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in water, a new absorption band around 285 nm appeared, presumably attributed to the
denser aggregation of the PFB units in PFB-IKVAV. CD spectra were recorded to under-
stand the structural properties and molecular arrangement of Ben-IKVAV and PFB-IKVAV
(Figure 4C,D). At low concentrations of Ben-IKVAV and PFB-IKVAV (50 and 500 µM) in
water, no CD signals were detected in the wavelength region 190–350 nm. Increasing the
concentration to 1000 µM, both compounds exhibited a significant Cotton effect in the
aromatic ring region, revealing they may have π-π interactions between molecules and
accompany an orderly arrangement in the aqueous environment. Meanwhile, we also
observed that the hydrogelators of Ben-IKVAV and PFB-IKVAV had a negative peak at
210–220 nm and a positive peak around 197 nm, indicating that they have β-sheet confor-
mation in the self-assembly pentapeptide hydrogelators [59]. These results suggest that
Ben-IKVAV and PFB-IKVAV may self-assemble into the high-order supramolecular struc-
tures through π-π interactions and hydrogen bonding when the concentration is higher than
1000 µM. In addition, Fourier-transform infrared spectroscopy (FT-IR) was employed to
verify the hydrogen interactions between molecules in the self-assembled state. As revealed
by FT-IR, the FT-IR spectra of Ben-IKVAV and PFB-IKVAV at 5000 µM in water displayed
strong absorption peaks at 1630 cm−1, demonstrating the hydrogen bonding interaction
in the assemblies (Figure S1, Supplementary Materials) [60]. Since thioflavin T (ThT) is
a well-known fluorescent dye utilized to identify the presence of amyloid fibrils [61], we
used the ThT fluorescence assay to further confirm the fibrillar peptide structures present
in Ben-IKVAV and PFB-IKVAV. It is known that when ThT binds to β-amyloid fibrils, a re-
markable enhancement in fluorescence intensity can be detected at 484 nm. Figure 5 shows
the ratio of the emission intensities of ThT at various concentrations of Ben-IKVAV and
PFB-IKVAV. It was found that the calculated fluorescence enhancement ratios were 140 and
210, respectively, suggesting that the self-assembly of Ben-IKVAV and PFB-IKVAV may
exhibit β-sheet-like conformation and more folded secondary structures in the presence of
PFB-IKVAV. Notably, PFB-IKVAV has a larger electronegativity than Ben-IKVAV at the
terminal end of the molecule, thereby having different hydrogen-bonding interactions and
resulting in the different behavior of fluorescence intensity with ThT.
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2.4. Cytotoxicity Test

To evaluate the potential biological applications of Ben-IKVAV and PFB-IKVAV, we
performed a biocompatibility test of these hydrogelators against hMSCs through MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay [62], and the results
are presented in Figure 6. The concentrations of Ben-IKVAV and PFB-IKVAV were selected
in the range of 10–500 µM, and the cell viability measurements were processed at 24 and
48 h after cell seeding. We found that the half-inhibitory concentration (IC50) of the two
compounds was greater than 500 µM, and the cell viabilities were over 75% when cultured
at a concentration of 500 µM for 48 h. Therefore, it can be proved that the two compounds
have good biocompatibility and can be further used for cell differentiation studies.
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2.5. Cell Differentiation Study

Since Ben-IKVAV and PFB-IKVAV are biocompatible, we then diluted 1 wt.% of
Ben-IKVAV and PFB-IKVAV hydrogels with basal medium and neural induction medium
(NIM) to 1000 µM, respectively, and cultured them with hMSCs for 0, 2, and 7 days
(Figures S2 and 7). From the experimental results, hMSCs cultured with NIM, in the pres-
ence of Ben-IKVAV or PFB-IKVAV, could successfully differentiate hMSCs into neuron-like
cells (Figure 7). The fibrous structures of Ben-IKVAV or PFB-IKVAV scattered in the culture
medium (NIM) are combined with cell surface receptors to promote neural differentia-
tion. To understand the effect of neural differentiation of hMSCs, the average neurite
outgrowth lengths on days 2 and 7 were measured in the control and experimental groups
(i.e., Ben-IKVAV in NIM and PFB-IKVAV in NIM). As shown in Figure 8, there was no
significant difference in cell morphology and axon extension length; we further investigated
the molecular biology analysis of the three samples to distinguish the effect of the materials.
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To investigate whether IKVAV derivatives can effectively promote the differentiation
of stem cells into neural cells, we diluted 1 wt.% of Ben-IKVAV and PFB-IKVAV hydrogels
with NIM to 1000 µM, respectively, and cultured hMSCs for 0, 2, and 7 days. The mRNA
was collected from NIM, NIM in the presence of Ben-IKVAV, and NIM in the presence of
PFB-IKVAV and subjected to real-time quantitative polymerase chain reaction (RT-qPCR)
analysis [63]. The expression of neuronal-specific markers, Nestin, β-tubulin, SNCA, and
MAP2 are analyzed in this work [64–67]. As can be seen from Figure 9, it was found that
the expression levels of Nestin and β-tubulin increased on day 2. However, the expression
levels of both gradually decreased with the increase in differentiation days (i.e., day 7). The
marker genes for the middle and late stages of neurons were all up-regulated, especially
the expression level of MAP2 genes was significantly increased on day 7. Although we
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did not observe a noticeable difference in cell morphology between NIM (control), NIM
in the presence of Ben-IKVAV, and NIM in the presence of PFB-IKVAV in Figure 7, there
were significant differences in the expression of nerve cell-specific marker genes (Figure 9).
These results suggest that Ben-IKVAV and PFB-IKVAV may have begun to regulate the
differentiation mechanism in the cells and can effectively promote the trend of mesenchymal
stem cells towards neural cell differentiation. Additionally, PFB-IKVAV has shown a better
cell differentiation ability than Ben-IKVAV.
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the presence of PFB-IKVAV for 2 days and 7 days (*: p < 0.05, **: p < 0.01).

After neuronal inductions of hMSCs, immunofluorescent staining for neuronal-specific
markers of β-tubulin and MAP2 was achieved [68,69]. Figure 10 presents immunostaining
for β-tubulin (green) with DAPI (blue) co-staining in hMSCs cultured with NIM (control),
NIM in the presence of Ben-IKVAV, and NIM in the presence of PFB-IKVAV for days 1, 2,
and 7. It can be seen that there is noβ-tubulin stained on day 1. As the culture time increased
to day 2, the expression of β-tubulin in the control group and the experimental groups
showed an increasing trend, indicating a trend of neural differentiation and the extension of
neural axons. On the 7th day of culture, a more evident increase of β-tubulin was observed.
Immunostaining for MAP2 (red) with DAPI (blue) co-staining showed the similarity results
(Figure 11); more interestingly, in addition to the more pronounced increase in MAP2, the
expression of MAP2 was also found in the nucleus on day 7. It is speculated that the nuclear
entry may be related to the initiation of the regulation of the gene level in the nucleus
to make the differentiation more complete. An analysis of neuronal-specific markers by
immunostaining revealed that the morphology of neuronal cells changes were sustained
with the expression of β-tubulin and MAP2 in hMSCs (Figures 10 and 11). According to
our observation, the cell morphology changed significantly after 2 days of culture in NIM,
in the presence of Ben-IKVAV and PFB-IKVAV. After 7 days of differentiation, the cells
gradually tended to mature nerve cells. Among these materials, PFB-IKVAV is the best
one for helping cell differentiation.
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Figure 10. Representative images showing immunofluorescent staining of β-tubulin (tuj 1) expression
in hMSCs cultured with NIM (control), NIM in the presence of Ben-IKVAV, and NIM in the presence
of PFB-IKVAV for (A) day 1, (B) day 2, and (C) day 7. Upper: cells appear green in color due to the
presence of β-tubulin-Ab; middle: nuclei appear blue due to staining with DAPI; lower: merged
image. (Scale bar: 20 µm.).
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Figure 11. Representative images show immunofluorescent staining of MAP2 expression in hMSCs
cultured with NIM (control), NIM in the presence of Ben-IKVAV, and NIM in the presence of PFB-
IKVAV for (A) day 1, (B) day 2, and (C) day 7. Upper: cells appear red due to the presence of
MAP2-Ab; middle: nuclei appear blue due to staining with DAPI; lower: merged image. (Scale bar:
20 µm).

3. Materials and Methods
3.1. Materials and Apparatus

Chemicals were obtained from Aldrich unless specified otherwise. 1H NMR (nuclear
magnetic resonance spectroscopy) spectra were measured in DMSO-d6 using a 300 MHz
NMR spectrometer. The optical microscope images of cell morphology were recorded with
a CLSM (Leica TCS SP5X, Wetzlar, Germany).
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3.2. Synthesis of Ben-IKVAV

2-Chlorotrityl chloride resin (1.2 g, 1.000 mmol) was swelled in anhydrous CH2Cl2
for 30 min, and then Fmoc-L-Val-OH (0.678 g, 2.000 mmol) was loaded onto the resin in
anhydrous DIEA (0.830 mL, 5.000 mmol) for 1 h. For deprotection of the Fmoc group, 20%
piperidine was added, and the sample was left for 30 min; this procedure was repeated
twice (each time for 2 min). Fmoc-L-Ala-OH (0.851 g, 2.000 mmol) was reacted to the amino
group using HBTU (0.758 g, 2.000 mmol) and DIEA (0.830 mL, 5.000 mmol) as coupling
agents for 30 min. Again, the sample was treated with 20% piperidine for 30 min; this
procedure was repeated twice (each time for 2 min). Fmoc-L-Val-OH (0.678 g, 2.000 mmol)
was coupled to the amino group using HBTU (0.758 g, 2.000 mmol) and DIEA (0.830 mL,
5.000 mmol) as coupling agents for 30 min. Again, the sample was treated with 20%
piperidine for 30 min; this procedure was repeated twice (each time for 2 min). Fmoc-L-
Lys(Boc)-OH (0.937 g, 2.000 mmol) was coupled to the amino group using HBTU (0.758 g,
2.000 mmol) and DIEA (0.830 mL, 5.000 mmol) as coupling agents for 30 min. Again, the
sample was treated with 20% piperidine for 30 min; this procedure was repeated twice
(each time for 2 min). Fmoc-L-Ile-OH (0.707 g, 2.000 mmol) was coupled to the amino
group using HBTU (0.758 g, 2.000 mmol) and DIEA (0.830 mL, 5.000 mmol) as coupling
agents for 30 min. Again, the sample was treated with 20% piperidine for 30 min; this
procedure was repeated twice (each time for 2 min). Finally, 2-phenylacetic acid (0.372 g,
3.000 mmol) was coupled to the free amino group using HBTU (1.138 g, 3.000 mmol) and
DIEA (1.250 mL, 7.500 mmol) as coupling agents. After the reaction mixture was stirred
overnight, the peptide derivative was cleaved through treatment with TFA. The resulting
solution was dried under air, and then DI water was added to precipitate the target product.
The solid was dried under a vacuum to remove the residual solvent (light brown solid:
0.467 g) (Figures S3 and S5). 1H NMR (300 MHz, DMSO-d6): δ = 0.70–1.00 (m, 18H, CH3),
1.00–1.05 (m, 1H, CH2), 1.05–1.35 (m, 2H, CH2), 1.40–1.60 (m, 4H, CH2), 1.65–1.70 (m, 2H,
CH2), 1.95–2.15 (m, 2H, CH2), 2.70–3.20 (m, 4H, CH2), 4.10–4.50 (m, 5H, CH), 7.20–7.40 (m,
5H, CH), 7.60–7.75 (m, 3H, NH), 7.91 (d, J = 9.1 Hz, 1H, NH), 8.07 (d, J = 7.2 Hz, 1H, NH),
8.10–8.25 (m, 2H, NH); 13C NMR (75 MHz, DMSO-d6): δ = 10.9, 15.4, 17.9, 18.2, 19.06, 19.15,
22.3, 24.3, 26.6, 30.0, 30.7, 31.1, 36.6, 42.1, 48.0, 52.4, 56.9, 57.1, 57.3, 126.3, 128.2, 129.0, 136.7,
170.2, 170.4, 171.2, 171.3, 172.3, 172.8. MS [ESI+]: calcd. m/z 646.82, obsvd. 647.52 [M−H]+.

3.3. Synthesis of PFB-IKVAV

A similar procedure was used for Fmoc-L-Val-OH, Fmoc-L-Ala-OH, Fmoc-L-Val-OH,
Fmoc-L-Lys(Boc)-OH, and Fmoc-L-Ile-OH to grow the IKVAV peptide. Subsequently, 2-
(perfluorophenyl)acetic acid (0.678 g, 3.000 mmol) was coupled to the free amino group
using HBTU (1.138 g, 3.000 mmol) and DIEA (1.250 mL, 7.500 mmol) as coupling agents. Af-
ter the reaction mixture had been stirred overnight, the aromatic-capped peptide derivative
was cleaved through treatment with TFA. The resulting solution was dried by air, and then
DI water was added to precipitate the target product. The solid material was dried under a
vacuum to remove the residual solvent (light brown solid: 0. 592 g) (Figures S4 and S6). 1H
NMR (300 MHz, DMSO-d6): δ = 0.75–1.00 (m, 18H, CH3), 1.05–1.15 (m, 1H, CH2), 1.15–1.30
(m, 4H, CH2), 1.30–1.40 (m, 2H, CH2), 1.45–1.60 (m, 4H, CH2), 1.60–1.85 (m, 2H, CH2),
1.95–2.15 (br, 2H, CH2), 3.65–3.85 (m, 2H, CH2), 4.10–4.50 (m, 5H, CH), 7.65–7.80 (m, 3H,
CH), 7.91 (d, J = 8.1 Hz, 1H, NH), 8.06 (d, J = 6.9 Hz, 1H, NH), 8.19 (d, J = 8.1 Hz, 1H, NH),
8.42 (d, J = 9.1 Hz, 1H, NH); 13C NMR (75 MHz, DMSO-d6): δ = 12.0, 16.3, 18.8, 19.1, 20.0,
20.1, 23.3, 25.2, 27.6, 29.6, 30.9, 31.7, 32.1, 37.8, 48.9, 53.5, 58.1, 58.3, 117.8, 137.8, 145.9, 167.8,
171.3, 171.8, 172.3, 173.3, 173.8. MS [ESI+]: calcd. m/z 736.77, obsvd. 737.47 [M−H]+.

3.4. Cell Viability Tests

The biocompatibilities of Ben-IKVAV and PFB-IKVAV were measured by the MTT
cell viability test. The hMSCs were seeded in 24-well plates (density: 50,000 cells per well)
with Dulbecco’s modified Eagle’s medium (DMEM, 0.5 mL) containing 10% phosphate-
buffered saline (PBS, pH 7.4) and 1% penicillin/streptomycin solution and then incubated
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for 24 h. Compounds of Ben-IKVAV and PFB-IKVAV at different concentrations (10,
50, 100, 200, and 500 µM) were added when cells were plated. After 24 and 48 h, the
medium was replaced with fresh medium supplemented with MTT reagent (4 mg mL–1,
0.5 mL per well). After another 4 h, the medium containing MTT was removed, and
DMSO (0.5 mL per well) was added to dissolve the formazan crystals. Each of the 24 wells
was transferred to a 96-well plate. The optical densities (ODs) of the resulting solutions
were measured at 595 nm using an absorbance microplate reader (Infinite F50, TECAN,
Männedorf, Switzerland). Cells that had not been subjected to treatment with the com-
pounds were used as the control. The cell viability percentage (%) was calculated from the
expression ODsample/ODcontrol.

3.5. Cell Differentiation

The hMSCs were grown in 24-well plates (density: 2.4 × 105 cells per well) in NIM
supplemented with 1% penicillin/streptomycin, 10−7 M dexamethasone, 50 µg/mL L-
Ascorbic acid-2 phosphate, 50 µM indomethacin, 10 µg/mL insulin, and 0.45 mM 3-isobutyl-
1-methyl-xanthine. The cells cultured in a basal medium were used as a negative control.

3.6. Real-Time Quantitative Polymerase Chain Reaction

Total RNA was isolated from the control and induced (Neurogenic) hMSCs and
quantified with a spectrophotometer (NanoPhotometer™ Pearl Design Edition, Westlake
Village, CA, USA). Complementary DNA (cDNA) was synthesized from the total purified
RNA (1 µg) using a MMLV High-Performance Reverse Transcriptase kit with a 10 µM
OligodT primer at 37 ◦C for 1 h. The RT-qPCR reaction was achieved with cDNA quantified
with 2 × SYBR Green supermix supplemented with 10 µM of specific primers set (Table 1).
The RT-qPCR reaction was carried out with initial denaturation at 95 ◦C for 10 min, followed
by 40 cycles of PCR at 95 ◦C for 15 s, and 60 ◦C for 60 s.

Table 1. List of primers used in RT-qPCR.

Gene Primer Sequence Product Size (bp)

Nestin 5′-CTGGAGCAGGAGAAACAGG-3′ (forward)
5′-TGAAAGCTGAGGGAAGTCTTG-3′ (reverse)

182

β-tubulin 5′-AGCAAGAACAGCAGCTACTTCGT -3′ (forward)
5′-GATGAAGGTGGAGGACATCTTGA -3′ (reverse)

102

α-synuclein (SNCA) 5′-AGGACTTTCAAAGGCCAAGG-3′ (forward)
5′-TCC TCCAACATTTGTCACTTG-3′ (reverse)

187

MAP2 5′-CTTCAGCTTGTCTCTAACCGAG-3′ (forward)
5′-CCTTTGCTTCATCTTTCCGTTC-3′ (reverse)

199

3.7. Immunofluorescent Staining

After neuronal inductions of hMSCs, immunostaining was performed for neuronal-
specific markers. Cells were fixed with 4% formaldehyde for 15 min and permeabilized
with PBST buffer (0.1% Triton X-100 supplemented with BSA). After permeabilization,
cells were blocked with Blocking buffer (PBST buffer + 5% serum) for 30 min and then
incubated with primary antibodies β-tubulin (1:100) and MAP2 (1:200) at 4 ◦C overnight.
After primary antibody treatment, cells were washed with PBST buffer and incubated
with secondary antibodies, FITC conjugated goat-anti-mouse (β-tubulin), and cy5 con-
jugated goat-anti-rabbit (MAP2), for 1 h. For nuclear staining, cells were treated with
4′,6-diamidino-2-phenylindole (DAPI) for 15 min. Finally, cells were observed under a
fluorescence microscope.

4. Conclusions

In summary, we have designed and synthesized newly aromatic peptide amphiphiles
of Ben-IKVAV and PFB-IKVAV. We systematically investigated the self-assembly, mi-
croscopic morphology, mechanical, and photophysical properties by using transmission
electron microscopy, rheology, UV-vis absorption, fluorescence, circular dichroism, and
Fourier-transform infrared spectroscopy. It was found that both compounds displayed
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order π-π interactions and β-sheet structures in the assemblies, especially PFB-IKVAV. Our
findings demonstrate the importance of the amphiphilic molecular design of self-assembled
supramolecular nanomaterials. The cytotoxicity of human mesenchymal stem cells and
cell differentiation studies was also performed, indicating that PFB-IKVAV is a potential
biomaterial opening new perspectives for future investigations into tissue engineering and
regenerative medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134115/s1, Figure S1: FT-IR spectra of (A) Ben-
IKVAV and (B) PFB-IKVAV at a concentration of 5000 µM in water; Figure S2: The optical microscope
images of cell morphology of hMSCs cultured with basal medium (control), basal medium in the
presence of Ben-IKVAV, and basal medium in the presence of PFB-IKVAV for 2 days and 7 days
(scale bar: 50 µm); Figure S3: 1H NMR spectrum of Ben-IKVAV in DMSO-d6; Figure S4: 1H NMR
spectrum of PFB-IKVAV in DMSO-d6; Figure S5: 13C NMR spectrum of Ben-IKVAV in DMSO-d6;
Figure S6: 13C NMR spectrum of PFB-IKVAV in DMSO-d6.
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