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Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted

patients. Despite advances in the understanding of MDD and its treatment, profound

innovation is needed to develop fast-onset antidepressants with higher effectiveness.

When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-

onset antidepressant-like effects in several mouse models, including the olfactory

bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and

be suitable to assess the time course of depressive-like behavior in rodents. This study

aimed at investigating the long-term behavioral and neurochemical effects of GUO

in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were

submitted to OBX and, after 14 days of recovery, received daily (ip) administration of

7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed

the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal

BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated

the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10).

Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced

increase in hippocampal FDG metabolism. These results provide additional evidence

for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes

relevant to counteract depression.

Keywords: major depressive disorder, psychopharmacology, purines (source: MeSH), guanosine, purinergic

signaling, olfactory bulbectomy

INTRODUCTION

Major depressive disorder (MDD) is a multifactorial disorder characterized by a complex
symptomatology, leading to important changes in the mental and social health of afflicted patients
(1, 2). Despite its high prevalence (3), there are no validated biomarkers that can be used
for a differential diagnosis (4). Current antidepressants are characterized by delayed clinical
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response, significant adverse effects, long-term treatment, and,
unfortunately, high relapse rates (3, 5–8). Innovation in the
field is sorely needed, especially the development of fast
acting drugs with improved effectiveness, for which a better
understanding of the pathophysiology underlying MDD is
a requirement.

The removal of the olfactory bulbs in rodents induces
long-term disruption in pathways of the cortical–hippocampal–
amygdala circuit, leading to dysfunctional signaling in limbic
areas (9, 10). It recapitulates, in rodents, depressive-like
behavioral and neurochemical changes observed in MDD
patients (9, 11–13). Adding to its face value, the OBX-induced
altered behavior can be reversed or attenuated by chronic
(and not acute) treatment with the classical antidepressant
agents (12, 14). We proposed (15) that OBX in mice provides
two-different windows to explore changes in behavior: an
early one (up to 4 weeks after surgery), which includes
hyperlocomotion, spatial memory deficits, and anhedonia-like
behavior, and a latter one (up to 8 weeks after surgery),
where only anhedonia-like behavior is no longer observed. This
temporal profile adds to the model’s face value by replicating the
symptom remission documented in a segment of untreatedMDD
patients (12, 14).

Depressive patients present decreased levels of serum
guanosine [GUO, an endogenous nucleoside with
neuroprotective properties (16–18)], corroborating the idea that
the purinergic signaling is involved in MDD pathophysiology
(18–20). Substantial data have demonstrated that systemic or
central GUO induces antidepressant-like effects in distinct
rodent models with predictive validity [tail suspension test
(21), forced swimming test (21, 22), and acute restrain stress
(22)]. GUO antidepressant-like effects were also verified
with combined subthreshold doses of GUO and ketamine
in the novelty-suppressed feeding test (NSF) (23) and the
corticosterone-induced depression models (24). Moreover, a
single and acute GUO intraperitoneal administration showed
fast-onset antidepressant-like activity, comparable to ketamine,
in OBX mice (25). Different mechanisms were postulated
for GUO antidepressant effects: interaction with NMDA
receptors and the mTOR pathway (21, 25), activation of
MAPK/ERK and Nrf2/HO-1 pathways, inhibition of GSK-3β
(26), attenuation of oxidative stress (22), and facilitation of
neuronal plasticity (27).

As no safe fast-onset antidepressant is currently available
for long-term use, a better understanding of long-term
administration of GUO is warranted. As the OBX model seems
to show higher sensitivity, specificity, and reliability than other
experimental depression models (9, 14, 28–30), it was the model
chosen for this study.

The purpose of this study is to investigate the
effects of chronic GUO in the OBX-induced long-
lasting changes in behavior (locomotion and cognition)
and brain signaling (glutamate transmission, oxidative
stress, and neuroinflammation) parameters. Additionally,
positron emission micro-tomography (microPET) with
[18F]fluorodeoxyglucose ([18F]FDG) was used to investigate
brain metabolism.

MATERIALS AND METHODS

Animals
Three cohorts of male C57BL/6 mice (45–50 days, 20–25 g)
were obtained from Fundação Estadual de Produção e Pesquisa
do Rio Grande do Sul, Porto Alegre, Brazil. Animals were
housed five per cage and allocated in a room with controlled
temperature (22 ± 1◦C), under a 12 h/12 h light/dark cycle,
and with ad libitum access to food and water. The cages were
placed in the experimental room 24 h before behavioral tasks for
acclimatization. Behavioral tests were carried out between 13:00
and 17:00 h. The [18F]FDG-microPET was performed between
7:00 and 11 h in the Preclinical Imaging Center at PUC-RS. All
procedures were performed in accordance with the NIH Guide
for the Care and Use of Laboratory Animals and approved by
the local Ethics Committee (project approval #24577). All efforts
weremade tominimize suffering and the number of animals used
in the experiments.

Drugs
GUO and imipramine (IMI) were purchased from Sigma
Chemicals (St. Louis, MO, USA). All drug solutions were freshly
prepared (in saline) before administration and intraperitoneally
(i.p.) injected (10 ml/kg), as 7.5 mg/kg (25) for GUO and
40 mg/kg for IMI (used as positive control drug) (31,
32). To reduce the influence of the stress from repeated
i.p. administration, the behavioral tests and euthanasia were
performed 24 h after the last drug administration. To minimize
damages from repeated injections, the abdomen quadrant was
changed daily.

Bilateral Olfactory Bulbectomy
Bilateral olfactory bulb ablation was performed as previously
described (15, 25). Briefly, mice were anaesthetized (i.p.) with a
combination of xylazine (6 mg/kg) and ketamine (100 mg/kg)
diluted in saline. The animals were fixed in a stereotactic frame
(Stoelting Co., USA), the skull was shaven, and a burr hole
(circa 2mm in diameter) was made above the olfactory bulbs,
4mm rostral to the bregma. Both olfactory bulbs were then
disconnected with a surgical micro-scissors and removed by
suction with a glass Pasteur pipette. Sham-operated mice were
treated in the same way, including piercing of the dura mater, but
their olfactory bulbs were left intact.

Treatment Schedule and Behavior
The research designs can be seen in Figures 1A, 2A, 3A for
cohorts 1, 2, and 3, respectively.

In all three cohorts, naïve animals were submitted to the
Open Field Task (OFT1) 1 day before surgery. After recovery
from surgery (for 14 days), mice were re-submitted to the OFT
(OFT2) and a final one (OFT3) after treatments. Daily treatments
started immediately after OFT2 and lasted for 45 days, up to
24 h before euthanasia. Behavior or image data collected after the
recovery period is considered baseline, and those collected after
the treatment are considered follow-up.

From the 80 animals assigned to cohort 1, 12 mice were
lost (due to surgical or chronic treatment complications,
incomplete bulbectomy, or frontal cortex injury). The following
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FIGURE 1 | Cohort 1: study design (A). Surgery and treatment effects in locomotor activity in OFT (B): Columns represents mean ± S.E.M. (n = 8–14 mice/group).
*p < 0.05, **p < 0.01, ***p < 0.001 OBX x respective Sham, two-way ANOVA/Tukey. (C,D): Delta (1) between the time spent exploring objects in NORT training (FO1

and FO2) (C) and test (D) (NO and FO) sessions, respectively. Columns represent median with range (n = 8–12). *p < 0.05, **p < 0.01, ***p < 0.001, two-way

(Continued)
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FIGURE 1 | ANOVA/Tukey. (E,F): Total distance travelled (E) and time spent in each arm (F) in YMT. Columns represent mean ± S.E.M. (n = 8–14). *p < 0.05, **p <

0.01, one-way ANOVA/Tukey. Hippocampal levels of BDNF (G), NO (H), DCFH (I), GSH (J), IL-1 (K), IL-6 (L), IL-10 (M), TNF-α (N), (O) and INF-γ. Columns represent

mean ± S.E.M. (n = 5–12). *p < 0.05, ***p < 0.001 OBX x respective sham; #p < 0.05, ##p < 0.01, ###p < 0.001 OBX GUO x Sal; two-way ANOVA/Tukey.

FIGURE 2 | Cohort 2: study design (A). Surgery and GUO treatment effects in locomotor activity in OFT (B). Columns represent mean ± S.E.M. (n = 10–15).
*p < 0.05, ***p < 0.001 OBX x Sham, two-way ANOVA/Tukey. Effects of surgery and GUO treatment at mNORT training (C) and test (D) sessions. Columns represent

median with range, and in the inserts, columns represent mean ± S.E.M. (n = 10–15). **p < 0.001; total exploratory behavior, two-way ANOVA/Sidak. Inserts

represent distance travelled. *p < 0.05, **p < 0.001, ***p < 0.0001 two-way ANOVA/Tukey.

experimental groups were subjected to OFT2 (baseline line):
Sham Sal (n= 10), OBX Sal (n= 14), Sham IMI (n= 8), OBX IMI
(n = 14), Sham GUO (n = 14), and OBX GUO (n = 13). OFT3
(follow-up) was performed 24 h after daily treatment: Sham Sal (n
= 10), OBX Sal (n = 12), Sham IMI (n = 8), OBX IMI (n = 11),
Sham GUO (n = 14), and OBX GUO (n = 12). OFT3, the
novel object recognition test (NORT), and the Y-maze test (YMT)
were performed in these very same groups within 24 h from
each other.

From the 50 animals assigned to cohort 2 (n = 50), four mice
were lost (due to surgical complications, incomplete bulbectomy,
or frontal cortex injury). The following groups were subjected to
OFT2 (baseline): Sham Sal (n = 10), OBX Sal (n = 12), Sham
GUO (n= 12), and OBX GUO (n= 15), while OFT3 (follow-up)
was performed for Sham Sal (n = 10), OBX Sal (n = 11), Sham
GUO (n = 10), and OBX GUO (n = 15). The modified NORT
(mNORT) was performed 24 h after OFT3.

From the 44mice assigned to the third cohort, 6 mice were lost
(due to surgical complications, incomplete bulbectomy, or for
frontal cortex injury). OFT2 (baseline) was performed for Sham

Sal (n = 8), OBX Sal (n = 11), Sham GUO (n = 8), and OBX
GUO (n= 12). OFT3 (follow-up) was performed for Sham Sal (n
= 8), OBX Sal (n = 11), Sham GUO (n = 8+), and OBX GUO
(n = 12). Twenty-four hours after, the OFT3 mice were scanned
for [18F] FDG-microPET imaging.

Locomotor Activity
The OFT was performed as previously detailed (15, 25). Mice
were individually placed facing the wall of a gray wooden box
(50 × 50 × 50 cm, lighted by 200-lux bulb) and recorded for
10min by a video-camera (positioned above and at ca. 90◦ to the
square arena) connected to a monitor. The total distance traveled
was evaluated using the AnyMaze R© software. The apparatus was
cleaned with alcohol 70◦ and dried between trials.

Memory

Novel Object Recognition Task
The novel object recognition task (NORT) was used to evaluate
recognition memory (25, 33). NORT was performed at the
same OFT apparatus, consisting of an acquisition trial (training
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FIGURE 3 | Cohort 3: Study design (A). Effects of surgery and treatment on locomotion at the OFT3 (B). GFAP/β-actin (C), glutamate uptake (D), and mRNA levels of

GLAST (E) and GLT-1 (F) in the hippocampus. Columns represent mean ± S.E.M. (n = 8–11 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001 Sham x respective

OBX; #p < 0.05 OBX GUO x Sal, two-way ANOVA/Tukey. Brain metabolic maps showing the mean SUVr in the hippocampus of groups Sham Sal, Sham GUO, OBX

Sal, and OBX GUO in the baseline (G) and follow-up (H) scans. T-statistical maps showing the statistically significant decrease in metabolism in the hippocampal

region on the OBX GUO follow-up group in comparison with the group OBX Sal follow-up (I). VOI means [18F]FDG SUVr values in the total hippocampal region (J), in

the dorsal hippocampal region (K), and in the ventral hippocampal region (L). All images are projected into a standard magnetic resonance imaging (MRI) image in

axial, sagittal, and coronal planes. Data represented as mean ± S.D. *p < 0.05 (multiple comparisons—three-way ANOVA with repeated measures).

session) and a test trial (test session) performed within a 24 h
interval. During the training session (10min), two identical
objects were placed in a symmetric position in the center

of the apparatus (subjects with training session exploration
time inferior to 20 s were excluded from the experiment). The
time spent in each object and the total distance traveled were
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measured. In the test session (10min), one of the objects
was replaced by a novel object (different shape and material),
and again, the time spent exploring each object and distance
traveled was measured. Exploration of an object was defined as
rearing on or sniffing the object from <1 cm, and/or touching
it with the nose. Successful recognition of a previously explored
object was reflected by preferential exploration of the novel
object in more than 50% of the total time. Experiments were
recorded as described in Section Locomotor Activity. The total
distance in the training and the test sessions were analyzed
by AnyMaze R© software, while the time spent in each object
was analyzed in video records by an experimenter blinded to
groups and treatments. After each session, the OFT arena and
objects were thoroughly cleaned with 70% ethanol to prevent
odor recognition.

Modified Novel Object Recognition Task
The purpose of mNORT was to investigate mice ability to
discriminate odor, given the potential recovery of olfactory bulbs.
The mNORT was conducted as the NORT except for two main
differences: i—the objects (FO1 and FO2) at training and test
(FO and NO) sessions were kept in rat cages at the animal
facility during the 24 h previous to the experiment; and ii—by the
exclusion criteria used in NORT, since no Sham mice explored
objects at training session more than 20 s.

Y-Maze Test
A modified version of the Y-maze test was used (34, 35). The
apparatus consisted of three identical arms (30× 8 cm) disposed
at 120◦, with gray wooden walls of 15 cm height. The test
consisted of a sample phase trial and a test phase trial separated
by a 30min trial interval. In the sample phase trial, each mouse
was individually placed in the maze with one of the three arms
closed and allowed to explore the other two arms freely for 5min.
At the test trial, each animal was placed again in the maze with
all three arms opened and allowed to explore freely for 5min;
the arm closed at sample trial was defined as the new arm. The
modified Y-maze was used to evaluate short-term recognition
memory. Successful recognition was expressed by increasing the
time spent or distance traveled in the new arm when compared
to arms 1 and 2. Experiments were video-recorded, and the time
spent and total distance traveled in all three arms were analyzed
by the AnyMaze R© software. After each session, the apparatus was
thoroughly cleaned with 70% ethanol.

Neurochemistry
Sample Collection
Twenty-four hours after the last behavioral session and drug
administration, mice were anesthetized with xylazine (6 mg/kg)
and ketamine (100mg/kg) and decapitated, brains were removed,
and the hippocampi were dissected out for immediate analysis or
frozen at−80◦C for biochemical evaluations.

Redox Homeostase

Reactive Oxygen Species
The hippocampus tissue samples were homogenated in
phosphate-KCl (20 mM/140mM) buffer and centrifuged at 1,000

× g × 5min at 4◦C. An aliquot of the supernatant was used to
evaluate 2

′
,7

′
-dichlorodihydrofluorescein diacetate (DCFH-DA)

oxidation (15). DCFH-DA (7µM) oxidation was determined
spectrofluorimetrically. Fluorescence was determined at 488 nm
for excitation and 520 nm for emission. A standard curve was
carried out using 2

′
,7

′
- dichlorofluorescein (DCF). Results are

shown as delta of DCFH-DA oxidation between 15 and 30min
of incubation.

Nitrite
NO levels were determined by measuring the amount of nitrite
(a stable oxidation product of NO) in hippocampal tissue
homogenates, as indicated by the Griess reaction. The Griess
reagent was a 1:1 mixture of 1% (w/v) sulphanilamide in
2.5% (w/v) phosphoric acid and 0.1% (w/v) N-(1-napththyl)
ethylenediamine dihydrochloride in deionized water. Briefly, the
tissue was homogenized in phosphate-KCl (20 mM/140mM)
buffer and centrifuged at 1,000 × g × 5min at 4◦C. The
supernatant was deproteinized with 20 µl TCA 25%, centrifuged
at 2,000 × g × 10min at 4◦C, and immediately neutralized
with 2M potassium bicarbonate. After this procedure, the
Griess reagent was added directly to the neutralized sample and
incubated in the dark for 15min at 22◦C (15, 36). Samples
were analyzed at 550 nm on a microplate spectrophotometer.
Nitrite concentrations were calculated using a standard curve,
and the results are expressed as percentages relative to the
control conditions.

Glutathione
GSH levels were assessed as previously described (36). The
hippocampal tissues were homogenated in a phosphate-KCl
(20 mM/140mM) buffer containing 5mM EDTA, and protein
was precipitated with 1.7% meta-phosphoric acid. The tissue
homogenates were centrifuged at 1,000 × g × 5min at 4◦C,
and the supernatants were mixed with o-phthaldialdehyde (at
a final concentration of 1 mg/ml methanol) and incubated at
22◦C for 15min. Fluorescence was measured using excitation
and emission wavelengths of 350 and 420 nm, respectively. A
calibration curve was performed with standard GSH solutions.
GSH concentrations were calculated as nmol/mg protein.

Neuroinflammation
Hippocampi samples were homogenized in PBS/Tris-HCl/SDS
5% pH 7.4 and centrifuged at 5,000 × g × 10min at 4◦C, and
the supernatant was collected (15). Commercial enzyme-linked
immunosorbent assay (ELISA) kits for rat IL-1, IL-6, TNF-α,
INF-γ, and IL-10 were used according to the manufacturer’s
instructions (eBIOSCIENCE, San Diego, CA, USA). Briefly, 96-
well microplates were incubated with the primary antibody at
4◦C overnight, washed, and blocked at room temperature for
1 h. The cytokine standards, calibrators, and samples were added
in the plate in triplicate and incubated at room temperature
for 2 h. After washing, the secondary antibody conjugated with
peroxidase was added and incubated at room temperature for
1 h; the samples were washed and the tetramethylbenzidine
chromogen was added. After 15min, the enzyme reaction
was stopped by adding 50 µl phosphoric acid 1M. The
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absorbance was measured at 450 nm. The results are expressed
as pg/mg protein.

Glutamate Neurotransmission
Glutamate Uptake by Hippocampi Slices
After dissected out, the hippocampi were immediately cut
into transverse slices (300µm thick) using a Mcllwain Tissue
Chopper. Transverse hippocampal slices were immediately
immersed in HBSS solution (137 NaCl, 0.63 Na2HPO4, 4.17
NaHCO3, 5.36 KCl, 0.44 KH2PO4, 1.26 CaCl2, 0.41 MgSO4,
0.49 MgCl2, and 5.5 glucose), pH 7.2, 4◦C, and glutamate
uptake was performed following an adapted protocol (37). Slices
were pre-incubated with HBSS, at 37◦C for 15min, followed
by medium change and incubation in the presence of 0.2
µCi/ml L-[3,4−3H]glutamate (American Radiolabeled Chemicals,
Cat# 0132, Conc. 1 mCi/ml) for 5min. The incubation was
stopped with two ice-cold washes using 1ml of HBSS, followed
by the immediate addition of 200 µl of 0.5N NaOH, and
stored overnight. Na+-independent uptake was measured using
the same protocol, with modifications in the temperature
(4◦C) and medium composition (choline chloride instead of
sodium chloride). Na+-dependent uptake was defined as the
difference between both uptakes. The incorporated radioactivity
was measured in a Hidex 300 SL scintillation counter. Results are
expressed as nMol of glutamate/protein/minute.

GLAST and GLT-1 Gene Expression
The gene expression of GLAST and GLT-1 was evaluated in
hippocampi from each Sal and GUO groups (n = 6) by
quantitative real-time polymerase chain reaction (RT-PCR).
Total RNA was extracted using TRIzol R© reagent (Invitrogen,
Carlsbad, CA) following the instructions from the manufacturer.
The purity and concentration of the RNA were determined
by spectrophotometry at 260/280 nm ratio. One microgram
of total RNA was reverse transcribed using the Applied
BiosystemsTM High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA) in a 20-µl reaction.
GLAST (Rn01402419_g1), GLT-1 (Rn00691548_m1), and β-
actin (Rn00667869_m1) mRNA levels were quantified using
the TaqMan real-time RT-PCR system, using inventory primers
and probes purchased from Applied Biosystems (Foster City).
Quantitative RT-PCR was performed in duplicate using the
Applied Biosystems 7500 fast system. No-template and a no-
reverse transcriptase were used in each assay as controls,
producing no detectable signal during the 40 cycles of
amplification. Therefore, target mRNA levels were normalized to
β-actin levels using the 2−11Ct method (38).

Astrocyte Marker
GFAP immunocontent was analyzed by Western blot as
previously described (39). Briefly, hippocampal samples from
all experimental groups (n = 6) were solubilized in ice-
cold lysis buffer (4% SDS, 2mM EDTA, 50mM Tris-HCl pH
6.8), standardized in sample buffer (62.5mM Tris-HCl pH
6.8, 2% (w/v) SDS, 5% β-mercaptoethanol, 10% (v/v) glycerol,
0.002% (w/v) bromophenol blue), and boiled at 95◦C for 5min.
Samples were separated by SDS-PAGE (35 µg protein/well)

and transferred to a nitrocellulose membrane (GE Healthcare).
Adequate loading of each sample was confirmed using Ponceau
S staining. After blocking with 5% (w/v) skim milk overnight,
membranes were incubated with primary rabbit antibody one
at 4◦C (GFAP from Sigma Aldrich, São Paulo/Brazil, 1:3,000
dilution; β-tubulin, 1:2000 dilution), washed, and incubated
with horseradish peroxidase-conjugated donkey anti-rabbit IgG
(NA934V, 1:5,000 dilution, GE Healthcare, UK) secondary
antibody for 2 h. Chemiluminescent bands were detected in
ImageQuant LAS4000 system (GE Healthcare) using Immobilon
Western chemiluminescence kit (#P90720, Millipore) and
quantified with ImageQuant TL software (version 8.1, GE
Healthcare). The results are expressed in percentage of control
levels after normalization using β-tubulin as an internal standard.

Brain Derived Neurotrophic Factor
The hippocampi were homogenized in PBS/Tris-HCl/SDS 5%
pH 7.4 and centrifuged at 5,000× g× 10min at 4◦C. BDNF levels
were measured in the supernatants by anti-BDNF sandwich-
ELISA, in a plate previously coated with anti-BDNF antibody
according to the instructions at ELISA Kit for Brain Derived
Neurotrophic Factor (Wuhan USCN Business Co., Ltd, Cat.
No. SEA011Ra).

Protein Determination
Protein content was measured using the Pierce BCA R© protein
kit (Thermo Scientific, Waltham, MA, USA) with bovine serum
albumin as standard.

Glucose Metabolism Imaging Procedure
The PET scans were performed using a TriumphTM microPET
at the Brain Institute of Rio Grande do Sul [LabPET-4, TriFoil
Imaging, Northridge, CA, USA (for technical information, see
Bergeron et al. (40)]. Mice from the third cohort were scanned in
two points: after recovery (baseline, 15 days post OBX) and after
treatments (follow-up, in experimental day 57) (Figure 3A).

Animals received an intraperitoneal injection of [18F]FDG
(mean± s.d.= 25± 0.5 mCi) after overnight fasting; eachmouse
was returned to its home cage for a 40min period of awake
uptake of [18F]FDG, immediately followed by a 10minmicroPET
static acquisition conducted under isoflurane anesthesia (2%
at 0.5 L/min oxygen flow). The scan was performed with the
animals in a head-first prone position and with the field of view
(FOV: 4.6 cm) centered in the animal’s head. Throughout these
procedures, the animals were kept on a pad heated at 37◦C.

Imaging data were reconstructed using the maximum
likelihood estimation method (MLEM-3D) algorithm with
20 interactions. Each microPET image was reconstructed
with a voxel size of 0.2 × 0.2 × 0.2mm and spatially
normalized into an [18F]FDG template using brain normalization
in PMOD v3.8 and the Fuse It Tool (PFUSEIT) (PMOD
Technologies, Zurich, Switzerland). Further imaging processing
and analysis were carried out using the MINC Tool Kit
software (www.bic.mni.mcgill.ca/ServicesSoftware). MicroPET
images were manually co-registered to a standard mouse
MRI histological template. Activity values were normalized
by the region of reference showing the lower standard
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deviation among all the images, the lateral septal nucleus
(Supplementary Figure 1A) and, therefore, are expressed as
reference standardized uptake value (SUVr). Mean SUVr of total
hippocampus and subregions was extracted using predefined
VOI templates (Supplementary Figures 1B,C).

Statistics
Data from OFT, NORT, mNORT, and biochemical parameters
were compared by two-way ANOVA followed by Tukey’s post
hoc. Data from YMT was analyzed by one-way ANOVA followed
by Tukey’s post hoc. [18F]FDG hippocampal t-statistical maps
(voxelwise) were generated comparing groups of interest (p <

0.05). Regional values of [18F]FDG data were analysed by three
way mixed ANOVA (time × surgery × treatment) followed by
Newman–Keuls post hoc.

RESULTS

Cohort 1
Results are shown in Figure 1. All groups of naïve mice,
either assigned to sham or OBX surgeries, and any of the
treatment groups (saline, IMI, or GUO) presented comparable
performances at OFT1 (F(1,74) = 0.47 p > 0.05) (data not
shown). Data from OFT2 (baseline) show that OBX induced
hyperlocomotion (F(1,67) = 44.99, p< 0.0001). For OFT3 (follow-
up), the two-way ANOVA identified a main effect of OBX (F(2,61)
= 4.34, p < 0.05), and interaction between treatment and OBX
(F(1,61) = 23.69, p< 0.0001), showing that IMI andGUO reversed
the persistent hyperlocomotion of untreated OBX (Figure 1B).

As for NORT memory, two-way ANOVA identified OBX as
the main effect (F(5,58) = 10.56, p < 0.001), and interaction
between OBX and treatments (F(2,58) = 4.45, p < 0.05), showing
that IMI and GUO also reversed the OBX-induced NORT
memory deficit (Figures 1C,D).

Results in Y-maze task indicate that only OBX IMI group
present an impaired performance in distance travelled (F(2,30) =
1.49, p > 0.05; Figure 1E), while GUO (but not IMI) attenuated
the OBX-induced Y-maze memory deficit in time spent in the
Y-maze new arm (F(2,33) = 3.31, p < 0.05; Figure 1F).

Two way ANOVA identified OBX as the main effect for
hippocampal BDNF (F(1,19) = 10.07, p < 0.05; 1G) and nitrite
levels (F(1,19) = 12.59, p < 0.05; Figure 1H); an interaction
between OBX and GUO in BDNF, nitrite, and GSH content was
identified, with GUO reversing OBX-induced increased in BDNF
(F(1,19) = 16.50, p < 0.05; Figure 1G) and nitrite (F(1,19) = 12.76,
p < 0.05; Figure 1H) levels, and decreased GSH levels (F(1,19)
= 29.52, p < 0.05; Figure 1J). OBX per se did not alter DCFH
levels; however, in OBX groups GUO decreased DCFH levels in
comparison to saline (Figure 1).

Two way ANOVA shows that OBX clearly induced
neuroinflammation at the hippocampus, and GUO slightly
attenuated the increase in IL-1 (F(1,33) = 66.09, p < 0.0001;
Figure 1K), IL-6 (F(1,33) = 94.15, p < 0.0001; Figure 1L), TNF-α
(F(1,33) = 71.66, p < 0.0001; Figure 1N), and INF-γ ((F(1,33) =
47.58, p < 0.0001; Figure 1O), as well as the decrease in IL-10
(F(1,33) = 142.1, p < 0.0001; Figure 1M).

Cohort 2
Replicating the findings from cohort 1 in OFT3 (follow-up),
OBX-induced hyperlocomotion (F(1,42) = 52.4, p < 0.0001;
Figure 2B), the interaction between GUO and OBX (F(1,42) =
6.06, p < 0.05, Figure 2B) shows that GUO reversed the OBX
effect on locomotor activity.

Smell is crucial to the performance at NORT. Since olfactory
bulbs are known for its neurogenic and proliferative capacity (41–
45), and considering that brain circuitry remodeling has been
reported after OBX (15), a modified NORT was performed to
differentiate the effects of GUO from those of a potential recovery
of the sense of smell at follow-up. As expected, at themNORT, not
anosmic sham mice did not reach the exploration criteria, either
in training or test session. Corroborating the data from cohort 1,
OBX induced memory impairment at NORT test session (F(1,41)
= 27.73, p< 0.0001; Figure 1D), and a positive interaction shows
that GUO reversed (F(1,41) = 4.97, p < 0.05) this deficit. Both
not anosmic Sham groups presented decreased locomotion in
mNORT training (F(1,41) = 27.57, p < 0.0001; insert Figure 2C)
and test (F(1,41) = 19.65, p < 0.0001; insert Figure 2D) sessions.

Cohort 3
Replicating cohorts 1 and 2 findings in OFT3 (follow-up), OBX
mice present increases in locomotor activity (F(1,35) = 27.76 p
< 0.0001; Figure 3B) and the interaction between GUO and
OBX (F(1,35) = 7.360 p < 0.05) confirms GUO reversal in OBX-
induced hyperlocomotion.

No differences were identified in GFAP protein expression
among groups (F(1,19) = 2.68, p> 0.05, Figure 3C). OBX induced
increased hippocampus glutamate uptake (F(1,19) = 29.99, p
< 0.0001; Figure 3D). OBX induced decreased hippocampus
GLAST gene expression (F(1,19) = 27.57, p < 0.0001; Figure 3E),
an effect unresponsive to GUO. No differences in GLT-1 gene
expression (F(1,19) = 0.3115, p > 0.05; Figure 3F) were found
among conditions or treatments.

At baseline, [18F]FDG-microPET showed increased glucose
metabolism at the hippocampus of OBX subjects compared to
Sham (Hippocampus mean SUVr: Sham Sal = 1.06 ± 0.04, n
= 5; Sham GUO = 1.08 ± 0.05, n = 7; OBX Sal = 1.16 ±

0.05, n = 9; OBX GUO = 1.16 ± 0.06, n = 11; Figure 3G).
The mean hippocampal increase in FDG metabolism driven by
OBX was up to 8% in comparison to Sham (hippocampus mean
percentage of change: OBX Sal = 8.82%; OBX GUO = 7.93%;
Supplementary Figure 1E). A voxel-wise t-statistical analysis,
using the Sham Sal group as control, showed that significant
18F]FDG-microPET differences were found only for OBX groups
(OBX Sal t(4) = 5.76; p= 0.006; OBX GUO t(4) = 4.25; p= 0.013;
Sham GUO t(4) = 1.21; p= 0.292; Supplementary Figure 1F).

At follow-up, [18F]FDG-microPET revealed higher
hippocampal glucose metabolism for OBX Sal × Sham Sal,
while chronic GUO attenuated the OBX-induced rise in
[18F]FDG signal (OBX Sal × OBX GUO) (hippocampus mean
SUVr: Sham Sal= 1.10± 0.07, n= 6; Sham GUO= 1.11± 0.05,
n = 8; OBX Sal = 1.19 ± 0.05, n = 9; OBX GUO = 1.16 ± 0.05,
n = 10; Figure 3H). At this point, the hippocampal increase
in FDG metabolism in the untreated OBX animals reached a
peak of 15% increase (mean of 13.8%) in comparison to Sham
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Sal, while the OBX group treated with GUO presented a mean
value of 9% (hippocampus mean percentage of change: OBX Sal
= 13.85%; OBX GUO = 9.10%; Supplementary Figure 1G). A
voxel-wise t-statistical analysis, using Sham Sal at follow-up as
control, only detected a significant increase in FDG metabolism
for the saline treated OBX group (OBX Sal t(5) = 3.80; p =

0.0126); in the group OBX GUO it increased metabolism was
only seen in a small cluster (peak t(7) = 2.41; p = 0.0469) and no
significant difference was seen for the group Sham GUO there
(peak t(5) = 1.65; p= 0.1599; Supplementary Figure 1H).

A percentage of change map analysis (data not show) revealed
a mean lower hippocampal glucose metabolism for the OBX
GUO at follow-up group if compared to the OBX Sal group at
the same period (peak t(8) of 3.17; p= 0.0132; Figure 3I).

A hippocampal mask with 6 VOIs, based on the Allen
Mouse Brain Atlas (https://mouse.brain-map.org/), was used to
obtain the mean regional [18F]FDG SUVr value of the total
hippocampus, of the dorsal hippocampus region, and of the
ventral hippocampus region. For the total hippocampus mean
SUVr (Figure 3J), a three-way ANOVA test—with repeated
measures—identified only the effect of OBX [F(1,28) = 17.75, p=
0.0002], and interaction betweenOBX andGUO [F(1,20) = 5.91, p
= 0.0245]. The post hoc test identified a significant difference for
mean total hippocampal SUVr between baseline groups Sham Sal
and OBX Sal (p < 0.05) and Sham Sal and OBX GUO (p < 0.05),
and only in Sham Sal and OBX Sal group at follow-up (p < 0.05).

At the dorsal region of the hippocampus (Figure 3K), the
analysis indicated the effect of the OBX [F(1,28) = 12.9, p
= 0.0012], and interaction between OBX and GUO [F(1,20)
= 6.4, p = 0.0199]. Following, a multiple comparisons test
identified a significant difference for mean dorsal hippocampal
SUVr only comparing the Sham Sal and OBX Sal groups at
follow-up (p < 0.05).

Finally, at the ventral region of the hippocampus (Figure 3L),
the three-way ANOVA analysis showed an effect for the OBX
[F(1,28) = 18.32, p= 0.0002] but not for treatment [F(1,20) = 0.01;
p = 0.9194] or time [F(1,28) = 3.27, p = 0.0810]. No interaction
was found.

DISCUSSION

This study shows that 45 day treatment with GUO reversed the
hyperlocomotion and attenuated the memory deficit induced
by OBX. The biochemical analysis of the hippocampi from
those animals shows that treatment with GUO completely
reversed the BDNF increase and the redox imbalance, as well
as discreetly attenuated the pro-inflammatory status induced by
OBX. Additionally, MicroPET imaging analysis indicates that
GUO reduced the OBX-induced hippocampal increase in FDG
metabolism. The behavioral and neurochemical effects promoted
by chronic GUO treatment on theOBXmodel are similar to those
reported for antidepressant agents used clinically (9, 14, 46).

Regarding the antidepressant behavioral potential of GUO, we
previously showed that an acute single administration of GUO
was already capable to reverse the anhedonic-like behavior, as
well as the short-term recognition memory impairment observed

after 15 days post OBX surgery (25). Noteworthy, only when
chronically administered, as observed in the present study,
GUO reversed the hyperlocomotion induced by OBX, whereas
acute GUO, as ketamine, administration was ineffective (25).
The effects are in line with our proposal that OBX model of
depression depicts a time dependent development of depressive-
like behaviors (15).

In contrast with the recognition deficit observed in shorter
post-surgery periods (25), we show in the present study that
8 weeks after OBX surgery the recognition memory evaluated
by NORT is partially recovered. As previously demonstrated
for the transient loss of self-care and motivational behavior
in OBX mice (15), the same pattern was here verified for
recognition memory as assessed by NORT. Nevertheless, the
lower discrimination rate of OBX mice at NORT suggests
incomplete remission of long-term memory deficits within 2
months of surgery. It has been reported that GUO can promote
amnesic effects (25, 47, 48). Amnesic effects were observed when
GUO was administered acutely (25) or for a short time (up to 2
weeks) (48), but not after along 6 weeks treatment (49). In the
current study, GUO did not induce any memory disturbance;
on the contrary, GUO treatment for 8 weeks attenuated the
residual memory deficit observed in untreated OBX mice (50).
In agreement to our findings, it was recently reported that
GUO administered during 26 days induces antidepressant-like
effect, with no impairment on learning and memory (51). Taken
together, those results suggest that a short-term disturbance in
GUO levels can negatively impact learning and memory, but
homeostasis is regained after repeated administration cancelling
GUO amnesic effect.

In the present study, IMI treatment did not reverse the
memory deficit induced by OBX in the YMT task. Similar
results were reported for tricyclic antidepressants (52, 53), as
well as for chronic IMI treatment on spatial working memory
deficits in OBX mice tested 2 weeks after OBX (54). Similar
results were found with rats treated with IMI for 10 or 28 days,
resulting in impaired delayed in spatial win-shift performance
(41). The results suggest that, differently than GUO, treatment
with IMI presents a time independent impairment on learning
and memory. The discrepancy may be related to the fact that as
an endogenous compound GUO metabolism can be adjusted in
accordance to GUO level.

Neurogenic and proliferative abilities are recognized for
olfactory bulbs (43), with studies showing that after different
types of lesions spontaneous recovery occurs over time (42, 44,
45, 55). To test the hypothesis that odor discrimination could
be regained over time, we investigated the effects of time and
treatment on Sham and OBX mice capability to discriminate
odor. By using a modified NORT protocol (mNORT) where
objects are smeared with rat odor, it was shown that OBX-
induced anosmia was still present at follow-up. As in NORT,
chronic GUO improved the OBX-induced residual memory
deficit in mNORT. Therefore, the improvement or attenuation
of memory impairment induced by OBX was the result of GUO
treatment and not a potential recovery of odor discrimination.

Several neuroprotective effects of GUO have been
demonstrated, but its exact mechanism of action is still

Frontiers in Psychiatry | www.frontiersin.org 9 August 2021 | Volume 12 | Article 701408

https://mouse.brain-map.org/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Almeida et al. Chronic Guanosine Antidepressant-Like Effect

unclear (17). Nevertheless, in vivo and in vitro studies evidenced
that GUO modulates a broad range of cellular pathways
that are closely related to various brain functions (16, 17).
Notable, evidences support that MDD physiopathology
is also related to alterations in some of those signaling
and metabolic pathways (53). Besides neurotransmitter
imbalance, altered levels of neurotrophic factors/neurogenesis,
altered glial/neuronal biology, impairment in mitochondrial
functionality, hypermetabolism in brain specific regions
including hippocampus, increased proinflammatory scenario,
and nitrosative and oxidative stress are also observed in the
patients suffering from MDD, as well as in animals submitted
to different models that mimic MDD (12, 56). Therefore, in the
present study, we explored some of the neurochemical systems
related to depression and previously observed to be modulated
by GUO.

BDNF profiles were largely explored in several rodent models
of MDD. The literature reveals a tight association between
depression phenotype and decreased BDNF content, as well
as its reversal by antidepressant when investigated in different
stress-induced rodent models of depression (57). However, in
the OBX model of depression, the literature suggests distinct
hippocampal BDNF modulations (14). Accordingly, an age
dependent opposite effect on BDNF level was observed after OBX
surgery, as 10 week old mice submitted to OBX presented an up-
regulation in BDNF levels (58), while a decrease was observed
in older animals (6 months old) (57). Literature supports that
BDNF levels decline during normal brain aging, which are
often accompanied by mild brain atrophy, reduced neuronal
function, and synaptic loss (59). Our result reinforces the data
on young mice, as we also observed here an increase on BDNF
levels in mice submitted to OBX at 7 weeks old. Considering
the critical role of BDNF in synaptic plasticity (60, 61), the
increment in BDNF content observed in the current study
can be associated with the attenuation of behavioral deficits
(NORT and YMT) in untreated OBX mice over time. Given that
our data show that GUO prevented the OBX-induced BDNF
increment and behavioral deficits, it is conceivable that the
neuroprotective effect of GUO diminishes the need to increase
BDNF. Alternatively, GUO could have an earlier effect on BDNF
levels as it has been shown that GUO stimulates BDNF synthesis
or its release inducing neuroplasticity in in vitro and in vivo
experiments (27, 51, 62–66).

Chronic GUO completely reversed the OBX-induced
hippocampal redox imbalance. The results corroborate previous
data (67–70) indicating that GUO exerts its antioxidant
action as a direct radical scavenger, preventing the OBX-
induced increase in cellular ROS production, NO levels, and
decrease in GSH content. The links among redox imbalance,
inflammatory status, and depression are well-documented
(71), including in our previous study exploring neurochemical
changes in OBX mice model of depression, where we had
demonstrated that a hippocampal pro-oxidative status is
observed at 2 weeks after OBX, remaining dysregulated
at least for more 6 weeks (15). Chronic GUO discreetly
attenuated the pro-inflammatory status induced by OBX

in mice hippocampi. Chronic GUO did not replicate the
inhibitory effect on TNF-α release observed with acute GUO
administration (69), or the anti-inflammatory effect obtained by
subthreshold doses of GUO plus ketamine in mice submitted
to a corticosterone model of depression (72). Overall, results
indicate that the potential anti-inflammatory GUO property
does not play a significant for the antidepressant effects of
chronic GUO.

Numerous evidences pointed to a relevant role for the
glutamatergic system in the pathophysiology of depression
disorder (73, 74). Accordingly, it has been documented that
different brain regions of OBX rodents are more sensitive
to release glutamate when exposed to novelty (75–77). A
limitation for this study is the absence of data on CSF glutamate
content. Nevertheless, we show that OBX induced an increase
in hippocampal glutamate uptake, unaffected by chronic GUO.
Regarding the main astrocytic glutamate transporters, OBX
mice presented decreased GLAST mRNA expression, with no
changes in GLT-1, a pattern unchanged by chronic GUO.
Considering that OBX increases glutamate release (75–77), it
is arguable that increased glutamate uptake is to be expected.
In fact, GUO stimulates glutamate uptake in vitro and in
vivo (16, 17), but only in the presence of high glutamate
concentration or neurological conditions, respectively (37).
As OBX increases glutamate uptake for a long period, it is
of interest to investigate, at different brain areas and time
points, if GUO minimizes earlier glutamatergic excitotoxicity by
increasing glutamate uptake and/or its use as energy substrate
during recovery.

Alongside with the increased hippocampal glutamate uptake,
OBX also induced increase in hippocampal FDG metabolism.
The increase in FDG metabolism is present at baseline (15
days after surgery) and magnified at follow-up (60 days after
surgery). The effect is more prominent in the hippocampus
dorsal region in comparison to the ventral part. Although
previous studies suggested that glucose hypermetabolism might
result from increased gliosis (78), we did not identify changes
in GFAP astrocytic marker. Further investigation with a broader
range of glial markers is necessary to clarify this effect.
Stimulation of the glycolytic pathway (mainly in astrocytes) has
been associated to increased BDNF signaling (79), increased
levels of oxidative and nitrosative radicals (80), enhancement
in inflammatory cytokines (81), and/or increment in glutamate
release (82). It is therefore arguable that the increment in
[18F]FDG signal (83, 84) observed in untreated OBX mice may
result from alterations in multiple brain signaling pathways.
The increased in glutamate uptake accompained by increased
glucose metabolism and BDNF levels is suggestive of a long-
lasting plasticity process in the hippocampus of mice subjected
to OBX. Forty-five days of GUO treatment prevented the OBX-
induced increase in hippocampal FDG metabolism in untreated
animals. The lack of increase in FDG metabolism accompanied
by attenuated BDNF increase and diminished redox imbalance
corroborate the hypothesis that GUO modulates different brain
pathways contributing, directly or indirectly, to a better-balanced
brain metabolism.
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CONCLUSION

Our data clearly show that chronic GUO attenuates the
behavioral changes induced by OBX, an effect accompanied by
neurochemical changes associated with hippocampal plasticity.
The antidepressant effect elicited by GUO seems to be
associated with its ability to concurrently prevent OBX-induced
BDNF increment and redox imbalance, as well as increase in
FDG metabolism.

Adding to previous reports showing that acute GUO acts as a
fast-onset antidepressant (25), the present data suggest continued
benefits with chronic treatment. This result is of value since
data suggest that GUO systemic administration is safe, well-
tolerated, and not associated with major side effects (85, 86).
Additionally, our data reinforces the role of the purinergic system
in MDD physiopathology.
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Sham GUO, OBX Sal, and OBX GUO, in the follow-up scan (F). T-statistical maps

showing the statistically significant increased metabolism in the hippocampal

region on groups Sham GUO, OBX Sal, and OBX GUO, in the follow-up scan, in

comparison with the group Sham Sal follow-up (G). Representative images of the

hippocampal positive (metabolism increase) percentage of change between group

Sham Sal follow-up and groups Sham Sal, Sham GUO, OBX Sal, and OBX GUO,

in the follow-up scan (H).
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