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ABSTRACT  The mammalian STE20-like (MST) protein kinases are composed of 
MST1, MST2, MST3, MST4 and YSK1. They play crucial roles in cell growth, 
migration, polarity and apoptosis. Dysfunction of these kinases often leads to 
diseases. MST kinases are extensively involved in development and function 
of immune system. Here, we review recent progresses on the regulatory func-
tion of MST kinases in innate immune signaling. 
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INTRODUCTION 
The MST kinases are evolutionarily conserved homologues 
of yeast Sterile20 (STE20) kinase [1]. Mammalian STE20 
kinases can be divided into GCK (germinal center kinase) 
and PAK (p21-activated kinase) families [2]. The GCK family 
includes eight subfamilies, named GCKI to GCKVIII. They 
share a conserved kinase domain at N-terminal region, but 
possess diverse C-terminal regions that mediate protein-
protein interaction. In mammal, the GCKII subfamily con-
sists of MST1 (also named STK4) and MST2 (also named 
STK3); the GCKIII subfamily consists of MST3 (also named 
STK24), MST4 (also named STK26 or MASK) and YSK1 (also 
named STK25 and SOK1). The GCKII and GCKIII subfamilies 
constitute MST kinases. 

MST1 and MST2 are major components of the mamma-
lian Hippo signaling pathway, which controls cell number, 
organ size and tissue homeostasis [3-8]. Together with 

SAV1 and MOB1A/B, MST1/2 can activate downstream 
kinases LATS1/2, leading to the phosphorylation and inhibi-
tion of the transcriptional coactivators YAP and TAZ. Un-
phosphorylated YAP/TAZ can freely translocate from the 
cytoplasm to the nucleus and then activate TEAD family 
transcription factors, causing the expression of pro-
proliferative and anti-apoptotic genes. Therefore, MST1/2 
are considered as tumor suppressors, and YAP/TAZ as on-
coproteins. Upregulation of YAP or/and TAZ has been iden-
tified in many types of cancers, such as breast, colorectal, 
gastric, liver and lung cancers [9, 10].  

MST3, MST4 and YSK1 are implicated in the regulation 
of cell growth, migration, polarity and apoptosis. MST3 was 
firstly identified as a protein involved in caspase-mediated 
apoptosis [11]. Following studies found that MST3 could 
phosphorylate NDR1/2, which are paralogs of LATS1/2 and 
also the substrates of MST1/2, to regulate cell cycle pro-
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Abbreviations: 
dsRNA – double-stranded RNA 
GCK – germinal center kinase, 
HCC – hepatocellular carcinoma, 
IFN – interferon, 
LPS – lipopolysaccharide, 
mROS – mitochondrial ROS 
Poly(I:C) – polyinosinic-polycytidylic 
acid, 
RLR – RIG-I-like receptor, 
ROS – reactive oxygen species, 
STRN – striatin, 
TLR – Toll-like receptor. 
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gression [12-14]. MST3 promotes dendritic filopodia and 
spine synapse development via phosphorylating TAO1/2 
[15], while the MST3b isoform regulates axon regeneration 
[16]. One of the major physiological functions of MST4 is 
acting downstream of the LKB1−MO25−STRAD polarization 
complex, which also works as tumor suppressor, to induce 
brush border formation in intestinal epithelial cells [17]. 
YSK1 can function with LKB1 together, regulating the neu-
ronal polarization via influencing the dynamics of the 
GM130-mediated Golgi apparatus [18, 19]. The 
LKB1−STRAD scaffold and activator MO25 can directly bind 
GCKIII kinases and significantly enhance their activities [20-
22]. However, the functional interplay between GCKIII ki-
nases and LKB1 has not been fully addressed. 

Recently, MST3 and MST4 were reported to promote 
cancer cell migration together with their adaptor CCM3 
[23-26]. MST kinases, as well as CCM3, are components of 
supramolecular complexes termed "striatin (STRN)-
interacting phosphatase and kinase (STRIPAK)" that contain 
both MST kinases and phosphatase PP2A with STRN pro-
teins as scaffolds for complex assembly [27]. STRN proteins 
recruit PP2A to negatively regulate the functions of MST 
kinases in cell growth and cancer metastasis most likely via 
dephosphorylating these kinases and therefore inhibition 
of their kinase activities [23, 28]. 

Besides their roles in development and tumorigenesis, 
the MST kinases have been increasingly implicated in im-
mune response, especially innate immune signaling during 
the last few years. These kinases modulate antimicrobial 
and antiviral responses at multi-levels. Here, we firstly in-
troduce the known functions of MST kinases in immune 
system, and then summarize recent progresses on the reg-
ulatory relationship between MST kinases and innate im-
mune signaling. 

 

FUNCTIONS OF MST KINASES IN IMMUNE SYSTEM 
MST kinases especially MST1/2 are extensively involved in 
immune regulation [29]. MST1 is enriched in lymphoid 
organs including thymus, spleen and lymph nodes [30]. It 
regulates the proliferation of naïve T cells together with its 
partner RAPL (also named RASSF5 or NORE1). It is also sug-
gested that MST1 protects naïve T cells from oxidative 
stress via phosphorylating and activating transcription fac-
tors FOXO1/3 [31, 32]. Lymphocyte trafficking is a central 
event during immunological response and controlled by 
chemokines and adhesion receptors such as integrins [33]. 
Upon sphingosine-1 phosphate and chemokine stimulation, 
MST1/2 governs Rho family GTPase Rac1 activation via 
phosphorylating MOB1A/B to promote thymocyte egress 
[34, 35]. The homing and egress abilities of T lymphocytes 
to peripheral lymphoid organs were impaired in MST1 or 
MST1/2 knockout mice [34-36]. MST1 can be regulated by 
Rap1−RAPL signal to promote lymphocyte polarization and 
adhesion through inducing the translocation of LFA-1 (also 
named αLβ2 integrin) to the leading edge and immunologi-
cal synapse [37-39]. Recently, the well-known substrates 
NDR1/2 kinases and newly identified substrate L-plastin of 

MST1 were considered to mediate its function on thymo-
cyte egress and T cell migration [40-42]. 

Treg cells are required for maintaining immune toler-
ance and homeostasis via inhibiting immune response of 
other cells [43]. Treg cells can limit the development of 
autoimmune and chronic inflammatory diseases, and also 
have negative effects on cancer immunity. MST1/2 can 
regulate the development and function of Treg cells 
through phosphorylating and stabilizing FOXO1/3 [44, 45]. 
FOXP3 is a specific marker of Treg cells and essential for 
their function [46]. The function of FOXP3 is regulated by 
acetylation [47]. Both lysine acetyltransferases TIP60 and 
p300 can promote FOXP3 acetylation and stability to medi-
ate its function on transcriptional repression, while lysine 
deacetylases SIRT1 and HDAC6 have an opposite role. 
MST1 can enhance FOXP3 acetylation through suppressing 
the deacetylase activity of SIRT1 and the interaction be-
tween SIRT1 and FOXP3 [48]. Recent study found that the 
MST1/2 downstream effector TAZ suppresses FOXP3 acety-
lation and promotes its degradation, and therefore attenu-
ates Treg cell differentiation [49]. Th17 cells can protect 
the host against infection via its pro-inflammatory role. 
Geng et al. found that TAZ functions as a coactivator of the 
transcription factor RORγt, but not TEADs, to induce Th17 
cell differentiation. However, TEAD1 can sequester TAZ 
from RORγt and FOXP3 to counterturn its function and 
promote Treg cell differentiation. Moreover, the MST1/2 
kinases are supposed to be involved in these processes. 
Thus, both the MST1/2 kinases and the TAZ-TEAD tran-
scription factors in the Hippo pathway play key roles in the 
maintenance of T cell homeostasis. 

Neutrophils constitute the most part of white blood 
cells in circulation. Upon pathogen invasion, neutrophils 
migrate to inflammatory sites and execute the program of 
degranulation to release granular antimicrobial molecules 
[50]. MST3 and its partner CCM3 can regulate neutrophil 
degranulation via modulating UNC13D-driven vesicle exo-
cytosis [51]. Furthermore, MST1-dependent vesicle traf-
ficking is required for neutrophil extravasation [52]. 

 

INNATE IMMUNE SIGNALING 
Innate immunity is the first line of defense against patho-
gen invasion. Innate immune system utilizes multiple path-
ogen pattern receptors to sense pathogen-associated mo-
lecular patterns (PAMPs) from pathogens and trigger im-
mune response. Pathogen pattern receptors include mem-
brane-anchored Toll-like receptors (TLRs) and C-type lectin 
receptors, and cytosolic RIG-I-like receptors (RLRs), NOD-
like receptors and AIM2-like receptors [53, 54]. TLR- and 
RLR-mediated signaling has been reported to associate 
with MST kinases. There are ten TLRs in humans. TLR1, 
TLR2, TLR4, TLR5, TLR6 and TLR10 are localized on plasma 
membrane where they sense mainly microbial membrane 
components, while TLR3, TLR7, TLR8 and TLR 9 are ex-
pressed in endosomal compartments where they recognize 
microbial nucleic acids [55, 56]. TLR2 can sense multiple 
microbial components such as lipoproteins, peptidoglycans 
and hemagglutinin from bacteria, fungi and viruses. TLR2 
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usually functions via forming heterodimers with other TLRs 
such as TLR1 and TLR6. TLR4 recognizes bacterial lipopoly-
saccharide (LPS). TLR5 is a receptor for bacterial flagellin. 
Endosomal TLR3 recognizes viral double-stranded RNA 
(dsRNA) and its synthetic analogue polyinosinic–
polycytidylic acid (poly(I:C)), while TLR7 and TLR8 recognize 
viral single-stranded RNA. TLR9 specifically senses un-
methylated CpG motifs in bacterial and viral DNA.  

Upon activated by their ligands, TLRs can recruit adap-
tors MyD88 or/and TRIF that bind different downstream 
signal  molecules  [55] (Figure  1A).  MyD88  recruits  IRAK4,  
IRAK1 and IRAK2 forming the Myddosome, which bind and 
activate E3 ligase TRAF6. TRAF6 in turn activates the IKK 
complex including NEMO, IKKα and IKKβ, which phosphory-
lates IκB and promotes its degradation, causing the activa-
tion of transcription factor NF-κB and the induction of pro-
inflammatory cytokines. TRIF can recruit E3 ligase TRAF3, 
resulting in the activation of transcription factor IRF3 and 
the induction of type I interferons (IFNs). The 
TLR2−TLR1/TLR6 heterodimers, TLR5, TLR7, TLR8 and TLR9 
recruit MyD88 to activate NF-κB, while TLR3 recruits TRIF 
to activate IRF3. TLR7, TLR8 and TLR9 also induce MyD88-
mediated TRAF3 activation that causes IRF7-mediated 
transcription. The activation of TLR4 induces Myddosome 

formation and NF-κB activation. In the help of CD14, TLR4 
can translocate to endosome where it recruits TRIF and 
activates both IRF3 and NF-κB. 

RLRs are composed of three members, RIG-I, MDA5 
and LGP2. RIG-I and MDA5 recognize viral dsRNA [57] (Fig-
ure 2). RIG-I prefers short 5’ppp and 5’pp dsRNA, while 
MDA5 recognizes long dsRNA. During viral infection, acti-
vated RIG-I and MDA5 bind to a mitochondrion-located 
adaptor MAVS and induce its oligomerization [58]. The 
resultant MAVS filament further recruits multiple TRAF 
proteins such as TRAF2, TRAF3 and TRAF6 to activate TBK1, 
IKKε, IKKα and IKKβ, leading to the activation of IRF3 and 
NF-κB and the production of type I and type III IFNs. Cyto-
solic DNA sensors include cGAS, IFI16, DAI and DDX41 [59]. 
Viral DNA binds and activates cGAS, which utilizes ATP and 
GTP to generate cyclic di-GMP/AMP [60] (Figure 2). Cyclic 
di-GMP/AMP induces endoplasmic reticulum-resident 
STING dimerization to activate TBK1−IRF3 signaling, caus-
ing the production of antiviral type I IFNs. 

 

MST KINASES AND TLR SIGNALING 
Recently, we and others have reported that MST kinases 
play crucial roles on the modulation of TLR signaling and 
inflammation [61-63] (Figure 1A). The expression of MST4 

FIGURE 1: MST kinases in the regulation of TLR signaling. (A) In mammals, upon microbial infection, TLRs sense different kinds of PAMPs 
and promote the production of pro-inflammatory cytokines and IFNs through activating E3 ligases TRAF3/6 and transcription factors NF-κB 
and IRF3/7. TRAF6 also promotes mROS production in a Rac1- and ECSIT-dependent manner. MST1/2 could stimulate mROS production 
through PKC-α−Rac1−TRAF6−ECSIT pathway to clear pathogens. On the contrary, MST1 suppresses the upstream kinase IRAK1 of TRAF6 to 
limit the production of pro-inflammatory cytokines. MST4 also attenuates TLR-mediated inflammatory responses through directly phos-
phorylating and inhibiting TRAF6. The inhibitory roles of MST1 and MST4 in proinflammatory response protect body against inflammatory 
damage and chronic inflammation-driven HCC. (B) In Drosophila, upon microbial infection, Tl receptor promotes the activation of Hpo ki-
nase, which in turn restricts the transcription of Dl/Dif inhibitor Cact through Hippo signaling, and thus promotes Tl-mediated antimicrobial 
response. 
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responds dynamically to LPS stimulation and/or bacterial 
infection in immune cells and organs of mice [61]. Overex-
pression of MST4 suppresses LPS- or bacteria-induced pro-
duction of pro-inflammatory cytokines IL-6 and TNF-α in 
human THP-1 cells and mouse peritoneal exudate macro-
phages (PEMs), while knockdown of MST4 has an opposite 
role. MST4 activator MO25 can further enhance the inhibi-
tory effect of MST4 on TLR signaling. Upon LPS stimulation, 
MST4 expression is increased, and it directly binds and 
phosphorylates the TRAF_C domain of TRAF6 at Thr463 
and Thr486, which impairs the oligomerization of TRAF6. 
Due to the important role of oligomerization on the E3 
ligase activity of TRAF6 [64, 65], TRAF6 phosphorylation by 
MST4 impairs its autoubiquitination and the formation of 
signaling complex, causing the suppression of TLR-
mediated inflammatory responses. Clinical data showed 
that MST4 expression is markedly downregulated and in-
versely correlates with IL6 expression in the peripheral 
blood samples of patients with sepsis [61]. In a mouse 
model developing septic shock, MST4 protects mice against 
exacerbated inflammation in a TRAF6- and macrophage-
dependent manner, suggesting that MST4 has a crucial role 
in limiting inflammatory damage and maintaining immune 
homeostasis upon bacterial infection. 

During pathogen infection, phagocytes such as neutro-
phils and macrophages can recognize, engulf, and degrade 
microorganism [66-68]. Phagocytes sense chemical com-
ponents and physical properties of microorganism and 
engulf microorganism into phagosomes. Phagosomal 
NADPH oxidase machinery can generate reactive oxygen 
species (ROS) to kill pathogens. Mitochondrial ROS (mROS) 
is required for the optimal clearance of pathogen by mac-
rophages [69] (Figure 1A). Cell surface receptors TLR1/2/4 
contributes to the mROS production via recruiting mito-
chondria to phagosomes. A further study found that 
MST1/2 are indispensible for this process (Figure 1A). De-
pletion of MST1/2 in myeloid cells leads to more suscepti-
bility of mice to bacterial infection and severe inflamma-
tion [62]. Upon bacterial infection, MST1/2 are activated 
by TLR1/2/4−MyD88 signaling and in turn phosphorylates 
PKC-α at Ser226 and Thr228, leading to PKC-α activation. 
Activated PKC-α interferes with the binding of the Rho-
GTP-dissociation inhibitor Ly-GDI (also named Rho-GDI2) to 
Rac1 via phosphorylating Ly-GDI at Ser31, leading to the 
release of Rac1 [70]. TRAF6 can further mediate Lys63-
linked polyubiquitination of GTP-charged Rac1 at Lys16 
that results in its activation. In turn, the polyubiquitination 
of Rac1 promotes the interaction of TRAF6 with ECSIT. 
TRAF6 enhances ECSIT ubiquitination and enrichment at 
the mitochondrial periphery [69]. ECSIT is a regulator of 
mitochondrial complex I assembly [71]. It associates with 
mitochondrial complex I assembly chaperone NDUFAF1 to 
regulate mitochondrial function that is required for the 
recruitment of mitochondria to phagosomes and the pro-
duction of ROS in phagocytes. However, the mechanism for 
the activation of MST1/2 by TLRs is still undefined. Recent-
ly, Liu et al. found that Drosophila IRAK homolog Pelle (Pll) 
acting downstream of Toll (Tl) receptor directly phosphory-
lates Cka (Drosophila homolog of STRNs) and promotes its 

degradation [72] (Figure 1B). Because both the kinase Hip-
po (Hpo, Drosophila homolog of MST1/2) and the phospha-
tase PP2A B’’’ regulatory subunit Cka are major compo-
nents of Drosophila STRIPAK complex and Cka is a negative 
regulator of Hpo activity [28], the degradation of Cka will 
facilitate the activation of Hpo. Thus mammalian MST1/2 
may be activated by TLR1/2/4 in a similar manner. 

Besides their roles on TLR-mediated ROS production, 
MST1/2 are also involved in the regulation of canonical 
TLR-mediated inflammatory response (Figure 1A). Upon 
the stimulation with poly(I:C), LPS and CpG that activate 
TLR3/4/9 respectively, the MST1 expression is decreased in 
mouse PEMs [63]. MST1 deficiency results in increased 
expression of IL-1β, IL-6 and TNF-α in macrophages in re-
sponse to LPS and CpG stimulation, but reduced expression 
of IFN-β in response to LPS and poly(I:C) stimulation [62, 
63]. IRAK1 is a component of the Myddsome and required 
for TLR-mediated production of pro-inflammatory cyto-
kines [73]. However, its phosphorylation and degradation 
promotes IFN-β production [74, 75]. MST1 can associate 
with IRAK1 to induce its phosphorylation and degradation, 
resulting in impaired TLR4/9-mediated NF-κB activation 
and pro-inflammatory cytokines production but enhanced 
TLR3/4-stimulated IRF3 phosphorylation and IFN-β produc-
tion [63]. Whether IRAK1 is the direct substrate of MST1 
needs more biochemical investigation.  

Numerous studies have revealed the regulatory roles of 
TLR signaling on cancer development [76, 77]. Many TLRs 
ligands such as poly(I:C), LPS and CpG have potential anti-
tumor activity, indicating the activation of TLRs suppresses 
tumorigenesis might through stimulating IFN response. 
However, other reports suggest TLR-mediated chronic in-
flammation promotes tumor development. For example, 
ultraviolet irradiation promotes angiotropism and metasta-
sis in melanoma through inducing TLR4/Myd88-driven neu-
trophilic inflammation [78]. Intestinal microbiota and TLR4 
signaling also have potential roles in promoting hepatocel-
lular carcinoma (HCC) proliferation [79]. Li et al. found that 
the expression of MST1 is significantly decreased in macro-
phages from HCC patients and inversely correlated with 
the expression of IRAK1, and the levels of phosphorylated 
p65 and STAT3 [63]. Consistent with its inhibitory role in 
pro-inflammatory response and positive role in IFN re-
sponse, MST1 guards mice from chronic inflammation-
driven HCC upon LPS stimulation or bacterial infection.  

Besides the direct regulation of TLR signaling, the GCKII 
family kinases also facilitates TLR-mediated antimicrobial 
response via Hippo signaling (Figure 1B). In Drosophila, like 
Tl and Myd88 deficiency, depletion of Hpo or Warts (Wts, 
Drosophila homolog of LATS1/2) in fly fat bodies, as well as 
overexpression of Yorkie (Yki, Drosophila homolog of YAP), 
causes higher sensitivity to bacterial and fungal infection 
[72]. The transcription of Drosophila IκB homolog Cactus 
(Cact) that inhibits the NF-κB family transcription factors 
Dorsal (Dl) and Dorsal-related immune factor (Dif) is con-
trolled by the Yki-Scalloped (Sd, Drosophila homolog of 
TEADs) transcription factor complex. Hpo can suppress the 
expression of Cact to promote innate immune response via 
inhibiting Yki activity. Due to the impact of Tl on Hpo acti-
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vation, microbial infection can trigger Hippo signal trans-
duction, which inhibits Cact expression and subsequently 
facilitates antimicrobial response.  

 

MST KINASES IN ANTIVIRAL SIGNALING REGULATION 
The activation of transcription factor IRF3 is a key step in 
antiviral response. IRF3 is constituted of an N-terminal 
DNA binding domain, an IRF association domain and a C-
terminal auto-inhibitory region. Upon viral infection, IRF3 is 
phosphorylated by TBK1 or IKKε at multiple sites in auto-
inhibitory region, which leads to its homo-dimerization and 
nuclear localization [80, 81]. In nucleus, IRF3 binds the IFN-
stimulated response element (ISRE) sequences within the 
promoters of IFN genes to activate their transcription. 
MST1 was reported to suppress RIG-I−MAVS- and 
cGAS−STING-mediated antiviral response via the regulation 
of IRF3, as well as its upstream kinase TBK1 [82] (Figure 2). 
MST1 can interact with and phosphorylate IRF3 at Thr75 
and Thr253. MST1 partners SAV1 and RASSF family pro-
teins RASSF1A and RASSF5 may mediate the interaction 
between MST1 and IRF3 to promote IRF3 phosphorylation. 
Residues Thr75 and Thr253 localize at DNA binding and IRF 
association domains of IRF3 respectively. Phosphorylation 
of these two threonine residues disrupts the dimerization 
and DNA-binding ability of IRF3 and thus impairs its tran-
scription activity and antiviral signaling. Furthermore, 
PPM1B was identified as the phosphatase responsible for 

dephosphorylation of IRF3 at Thr75 and Thr253 [82]. MST1 
also suppresses TBK1 activation, further contributing to the 
attenuation of IRF3 activation. Zebrafish ectopically ex-
pressing MST1 are more susceptible to viral infection, 
while depletion of MST1 protects cells and mice against 
viral infection, suggesting MST1 physiologically suppresses 
innate immune response during viral invasion, which may 
prevent tissue damage caused by excessive IFN response. 

Recently, two groups reported that YAP/TAZ in the 
Hippo pathway could negatively regulate antiviral response 
[83, 84] (Figure 2). Zhang et al. found that YAP/TAZ attenu-
ate K63-linked polyuniquitination of TBK1 by TRAFs, and 
they also associate with TBK1/IKKε to suppress their bind-
ing to upstream adaptors STING and MAVS, as well as to 
the substrate IRF3, both of which result in the inhibition of 
TBK1 activity and IRF3 phosphorylation [83]. Distinct from 
this finding, Wang et al. reported that YAP associates with 
IRF3 to directly block its homo-dimerization and interaction 
with importins, and therefore to prevent its nuclear trans-
location, but has no influence on the activity of TBK1/IKKε 
or the phosphorylation of IRF3 [84]. Both of groups 
demonstrated that the transcriptional activity of YAP/TAZ 
is dispensable for their inhibitory role in antiviral response, 
but the C-terminal transactivation of YAP is required for 
this function. Overexpressing YAP or TAZ enhances viral 
infection in human cells and zebrafish, while myeloid YAP 
deficiency has an opposite effect in mice. When Hippo sig-

FIGURE 2: MST kinases and Hippo sig-
naling regulate antiviral signaling. Upon 
viral infection, RIG-I/MDA5 and cGAS 
recognize viral dsRNA and dsDNA respec-
tively, and activate TBK1/IKKε via adap-
tors MAVS and TRIF, as well as E3 ligases 
TRAF3/6, leading to the activation of 
IRF3 and the production of IFNs. MST1 
can phosphorylate and suppress the 
activation of IRF3, as well as TBK1, to 
impair antiviral response. The down-
stream effectors YAP/TAZ of the Hippo 
pathway also negatively regulate antivi-
ral signaling through inactivating TBK1 
and IRF3. Viral infection induces the 
phosphorylation and degradation of YAP 
by IKKε, relieving its inhibitory role in 
antiviral immunity. IKKε can also induce 
the ubiquitination and degradation of 
LATS1/2 in glioblastoma multiforme cell 
lines, causing YAP activation. In addition, 
IRF3 can promote YAP−TEAD-driven 
gastric caner growth. 
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nal is turned “ON” by cellular nutrition or physical status 
including serum starvation and high cell confluence, 
YAP/TAZ are phosphorylated and inactivated by MST1/2 
downstream kinases LATS1/2, and thus their suppression 
on TBK1 is relieved [83]. This finding is different from the 
aforementioned role of MST1 in antiviral response through 
directly inhibiting IRF3 that does not depend on Hippo sig-
naling [82]. Furthermore, viral infection induces the phos-
phorylation of YAP at Ser403 by IKKε, triggering the lyso-
somal degradation of YAP and also relieving its negative 
function in antiviral immunity, which is independent of 
Hippo signaling [84]. However, IKKε was also reported to 
induce the ubiquitination and proteasomal degradation of 
LATS1/2 in glioblastoma multiforme cell lines, causing YAP 
activation [85]. A selective inhibitor of IKKε, amlexanox, 
reverses the inhibition of IKKε on LATS1/2 and thus de-
clines glioblastoma cell migration and invasion and glio-
blastoma growth in xenograft mouse model. In this regard, 
we have recently found that both IRF3 and YAP are unregu-
lated in clinical samples of gastric cancer [86]. Viral infec-
tion that activates IRF3 relieves the inhibition of YAP. 
Mechanistically, phosphorylated IRF3 can bind both YAP 
and TEAD4 in the nucleus to co-regulate the target genes 
of the Hippo pathway. Treatment with amlexanox that 
decreases the activity of IRF3, significantly suppresses YAP-
driven gastric cancer growth in mice. These observations 
further indicate a complex interplay between the Hippo 
pathway and innate immune regulation.  

 
CONCLUSION AND PERSPECTIVE 
MST kinases are emerging as crucial regulators of innate 
immune response. They regulate antibacterial and antiviral 
signaling via targeting multiple molecules including kinases 
IRAK1 and TBK1/IKKε, E3 ligase TRAF6 and transcription 
factor IRF3. The activity of these signal molecules is im-
portant for their functions and must be strictly regulated. 
Current results suggest that MST kinases can suppress the 
activity of these molecules via direct phosphorylation, 
which is required for limiting excessive immune response. 
MST kinases also have positive roles against pathogen in-
fection through diverse mechanism. Therefore, MST kinas-
es and the Hippo pathway exert their influences on the 
regulation of innate immune response likely in a context-
dependent manner. The type of pathogens and host cells, 
as well as the specific tissue microenvironment, might de-
termine the positive or negative role of MST kinases in 
innate immunity. Given that the activation of MST kinases 
is regulated by cell−cell contact, mechanical cues, GPCR 
signal and cell stress [87, 88], these factors may also influ-
ence innate immune response. Furthermore, the activity of 
MST kinases is negatively regulated by the PP2A module in 
the STRIPAK complex, so other components of STRIPAK 
complex are expected to regulate microbial defense pro-

grams. Several components of STRIPAK complex have been 
reported to participate in the regulation of T and B cell 
development and IFN signaling [89-91]. Whether other 
subunits possess MST-dependent or independent roles on 
immune regulation need to be investigated. 

Excessive inflammatory response usually causes tissue 
damage, while impaired immune response is insufficient to 
prevent microbial infection. Due to the important function 
on immune regulation, dysregulation of MST kinases often 
links to immune diseases. Several mutations of MST1 have 
been detected in patients with immunodeficiency [92, 93]. 
These patients are susceptive to bacterial and viral infec-
tion possibly caused by defective development of T and B 
cells. This observation is distinct from that in mice where 
MST1 deficiency resulted in impaired innate antiviral re-
sponse [82]. Thus MST1 might play distinct roles at differ-
ent stages of antiviral immunity. In patients with IgG4-
related autoimmune pancreatitis and rheumatoid arthritis, 
the CpG sites in the promoter region of MST1 were hyper-
methylated and the expression of MST1 was reduced in 
patient Treg cells [94]. It is possible that the disorders 
caused by these alterations on MST1 partially result from 
the dysregulation of innate immune response. The associa-
tion of MST1 and other MST kinases and immune diseases 
remains to be elucidated. Until now, studies on the regula-
tory roles of MST kinases in immune regulation are still 
limited. Future discoveries will uncover their novel regula-
tory mechanism and provide new therapeutic strategies for 
related diseases. 
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