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ABSTRACT Here, we describe the genome of Desulfovibrio sulfodismutans ThAc01, a
Desulfobacterota member first isolated from freshwater mud and the first strain re-
ported to be capable of growth via sulfur disproportionation. As such, this genome
expands our understanding of the diversity of sulfur-disproportionating microorgan-
isms.

Desulfovibrio sulfodismutans ThAc01 was first isolated from freshwater marine mud
and was the first organism characterized as capable of growth via the dispropor-

tionation of either sulfite or thiosulfate to sulfide and sulfate (1, 2). Unlike many sulfur
disproportionators that are incapable of growth via sulfate reduction (e.g., see refer-
ence 3), D. sulfodismutans is also able to grow via sulfate reduction coupled to the
oxidation of small organic compounds, although this does result in slower growth than
that during disproportionation (2). D. sulfodismutans was sequenced as part of a larger
study to identify genetic markers to distinguish sulfate-reducing organisms from
sulfur-disproportionating organisms (4–6).

Purified genomic DNA was ordered from the DSMZ. D. sulfodismutans was grown
anaerobically at 35°C in medium 641 prior to DNA extraction at the DSMZ with a JetFlex
genomic DNA purification kit from GenoMed. After submission to MicrobesNG, DNA
libraries were prepared using a Nextera XT library preparation kit with a Hamilton
Microlab STAR automated liquid-handling system. Libraries were sequenced by using
an Illumina HiSeq 250-bp paired-end protocol. Adapters were trimmed from reads
using Trimmomatic v0.30 (7), and de novo assembly was performed using SPAdes v3.7
(8). Annotation was performed using RAST v2.0 (9). Genome completeness was esti-
mated with CheckM v1.0.12 (10), and the likelihood of the presence or absence of
metabolic pathways was estimated with MetaPOAP v1.0 (11). The taxonomic assign-
ment of the genome was determined with GTDB-Tk v0.3.2 (12). Hydrogenase proteins
were classified with HydDB (13). All software was run using default parameters.

The D. sulfodismutans genome was recovered at 108� coverage as 1,080,467 reads,
which were assembled into 295 contigs. The draft genome has an N50 value of 37,406
bp and totals 4,376,887 bp, with 4,454 coding sequences and 54 RNAs. The genome has
a GC content of 63.5%. The genome was determined to be 100% complete and 0.6%
redundant and to have 0% strain heterogeneity by CheckM, based on the presence of
conserved single-copy marker genes.

Metabolic pathways for sulfur disproportionation are expected to be indistinguish-
able from those for dissimilatory sulfate reduction (e.g., see reference 14); consistent
with this expectation, the D. sulfodismutans genome encodes a full dissimilatory sulfate
reduction pathway, including sulfate adenylyltransferase, adenylylsulfate reductase,
dissimilatory sulfite reductase, and the sulfite reduction-associated DsrMKJOP complex.
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The D. sulfodismutans genome encodes a group A FeFe hydrogenase and a group 4e
NiFe hydrogenase, as determined by HydDB. The D. sulfodismutans genome encodes a
flagellum, consistent with the description of D. sulfodismutans as a motile organism (2).
While truncation of the C-terminal domain of AprB was recently proposed as a marker
for sulfur disproportionation in diverse bacteria (4), this marker is not present in D.
sulfodismutans (i.e., the genome encodes a full-length AprB). This trait may be related
to the ability of D. sulfodismutans to grow facultatively as a sulfur disproportionator or
a sulfate reducer, in contrast to obligate sulfur-disproportionating organisms in the
genus Desulfobulbus, the genomes of which encode the truncated AprB.

Taxonomic assignment by GTDB-Tk places D. sulfodismutans in the Desulfovibrion-
aceae family of the Desulfobacterota phylum (formerly Deltaproteobacteria); however,
GTDB-Tk does not place D. sulfodismutans within the genus Desulfovibrio but instead
suggests that it may represent a separate novel genus-level lineage and therefore may
require taxonomic reassignment.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under accession number JAAGRQ00000000. The FASTQ files of the
raw reads were deposited in the NCBI SRA under accession number SRR11035950.
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