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Abstract
With the invention of RNA sequencing over a decade ago, diagnosis and identification of the gene-related diseases entered 
a new phase that enabled more accurate analysis of the diseases that are difficult to approach and analyze. RNA sequenc-
ing has availed in-depth study of transcriptomes in different species and provided better understanding of rare diseases and 
taxonomical classifications of various eukaryotic organisms. Development of single-cell, short-read, long-read and direct 
RNA sequencing using both blood and biopsy specimens of the organism together with recent advancement in computa-
tional analysis programs has made the medical professional’s ability in identifying the origin and cause of genetic disorders 
indispensable. Altogether, such advantages have evolved the treatment design since RNA sequencing can detect the resistant 
genes against the existing therapies and help medical professions to take a further step in improving methods of treatments 
towards higher effectiveness and less side effects. Therefore, it is of essence to all researchers and scientists to have deeper 
insight in all available methods of RNA sequencing while taking a step-in therapy design.
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Introduction

The basis of molecular biology began with genes located in 
DNA transcribed to RNA for protein synthesis; the emer-
gence of the double-helix structure of DNA in 1953 showed 
the essence of life as a result of gene interaction [1, 2]. The 
whole machinery defines the organism’s characteristics and 
maintains the biological functions of the cells and the organ-
ism as one. Therefore, RNA analysis is essential in under-
standing the genomic processes and the diseases’ origin. The 
RNAs, collectively known as transcriptomes, are complex 
genomic structures with coding and non-coding regions 
and are intermediaries between genes and proteins. Thus, 
detailed study on transcriptome is essential to understand 
the genomic function and to identify molecular composi-
tions of cells. In addition, more comprehensive knowledge 
on transcriptome can help us understand the cause as well 
as development of diseases.

Therefore a thorough study of the transcriptome is nec-
essary for understanding genomic function, identifying 

molecular compositions of cells, and understanding the 
cause and development of diseases [3]

Among RNA species, messenger RNA (mRNA) is the 
most valuable one for further study as it carries the genomic 
data from the organism’s DNA [4]. However, analysis of 
protein-coding RNA requires a precise technique that can 
distinguish the coding-protein RNA from the non-coding 
RNAs (ncRNAs). The complexity of the genome arises from 
the following; Coding genes comprise almost 2% of the 
whole human genome, and a majority of the coding genes 
undergo transcription [5]. Additionally, a single genomic 
locus is likely to exhibit different isoforms resulting in dif-
ferent splicing patterns with possibly various transcriptional 
start sites [6]. Moreover, unpredictable monoallelic (mater-
nal or paternal allele) expression of genes adds an extra layer 
of complexity in transcriptomic analysis [7]. In-vivo and 
in-vitro analysis of homogenous cells populations has shown 
heterogeneity of the cells due to intrinsic and extrinsic fac-
tors such as microenvironment [8]. However, research shows 
the cells in the same microenvironment can manifest differ-
ent transcript levels due to factors such as the cell cycle [9].

Under the category of ncRNAs, ribosomal RNAs 
(rRNAs) and transfer RNAs (tRNAs) as functional ele-
ments in mRNA translation, small nuclear RNAs (snR-
NAs) is RNA splicing, small nucleolar RNAs (snoRNAs) 
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in rRNAs modifications [10], microRNAs (miRNAs) and 
piwi-interacting RNAs (piRNAs) in post-transcriptional 
regulation of gene expression [11], and long non-coding 
RNAs (lncRNAs) in chromatin remodelling, transcriptional 
and post-transcriptional regulation [12]. Designing genome 
analysis techniques that can accurately and efficiently pro-
file the whole genome and distinguish between the coding 
and non-coding ones was the scientists’ target for decades. 
Over the past few decades, researchers developed various 
methods to have an in-depth analysis of RNAs and a more 
accurate understanding of gene expression. Low-through-
put methods such as quantitative polymerase chain reaction 
(qPCR) which introduced as powerful techniques for the 
purpose. However, it could not apply to measuring multiple 
transcripts. And despite the introduction of hybridization-
based microarray in 1995 that provided a better solution 
for the study of gene expression [13, 14], limitations of the 
method such as cross-hybridization with extremely simi-
lar sequences and lack of accuracy in the quantification of 
lowly- and highly expressed genes [15, 16] led scientists to 
develop sequence-based techniques to reduce the inaccuracy 
in the study of transcriptomes (transcriptomics) technologies 
using complementary DNA (cDNA). The aim of studying 
transcriptome is to catalogue the whole transcript (coding 
and non-coding RNAs), determine the splicing pattern and 
the changes that occur in the post-transcriptional stage, and 
identify the changes in expression level of each transcript 
by quantifying the changes based on different intrinsic and 
extrinsic factors [3]. Although techniques such as Sanger 
sequencing of cDNA using expressed sequence tag (EST) 
[17], serial analysis of gene expression (SAGE) and cap 
analysis of gene expression (CAGE) [18], have improved 
RNA analysis, their insensitivity in discovering novel genes 
and high cost of Sanger sequencing makes the techniques 
inefficient [19].

Next-generation sequencing (NGS) that are High-
throughput sequencing can perform sequencing faster with 
lower cost and higher accuracy. Additionally, it is useful 
for identifying undefined gene expression sequences in an 
intense time manner [20]. Further development of long-read 
RNA sequencing, known as third-generation sequencing, 
can be used to generate full-length cDNA transcripts with a 
minimum number of false-positive splice sites and capturing 
great diversity of transcript isoforms [21]. The introduction 
of RNA-seq, from bulk- to single-cell RNA sequencing, has 
given the opportunity to process and map transcriptome.

Although the development of the RNA-seq method goes 
back more than a decade [22, 23], it has revolutionized 
the interpretation of eukaryotic transcriptomes [24, 25] 
by analysis of differential gene expression (DGE) using 
next-generation sequencing (NGS) with the standard work-
flow; RNA extraction, followed by mRNA enrichment or 

ribosomal RNA depletion, cDNA synthesis and prepara-
tion of an adaptor-ligated sequencing library. The advan-
tage of the technique is the in-depth ability to perform 
10–30 million reads in each sample on usually Illumina 
short-read sequencing instruments [26]. In addition, the 
introduction of Long-read RNA-seq, also known as third-
generation sequencing, and direct RNA-seq (dRNseq) 
have made the transcriptomics more thorough [27, 28] 
without requiring prior information on the RNA sequence 
[29, 30]. The introduction of single-cell RNA sequenc-
ing in 2009 helped scientists map and generate libraries 
for individual cells [31, 32]. In 2015, Drop-seq, for RNA 
analysis of a large population of individuals cells at once, 
and InDrop, for labelling and mapping single cell, have 
given more diverse ways of transcriptome analysis [32]. 
Single-cell combinational indexing RNA sequencing (Sci-
RNA-seq) in 2017 is a two-step combinatorial barcoding 
method designed to profile single-cell and single-nucleus 
transcriptomes with no single-cell isolation step necessary 
[33]. Split-pool ligation-based transcriptome sequencing 
(SPLiTseq) in 2018 was designed to interpret the cellular 
origin of RNA using combinational barcoding [34].

The method introduces advantages compared to the pre-
viously discussed methods by providing a detailed under-
standing of the transcriptome through the quantitative 
measuring of the gene expression, splicing, maternal or 
paternal allele expression and altogether, helps to interpret 
the cause of diseases efficiently with lower cost.

After the laboratory-based workflow, computational 
analysis, most importantly data processing and analysis, 
is carried out using various computational tools. Data pro-
cessing can be performed for both organisms with and 
without reference genomes. The organisms with a refer-
ence genome, short RNA sequencing reads are mapped 
using the reference genome. On the other hand, for the 
organisms with no reference genome, de novo transcrip-
tome assembly is applied [35, 36].

This review provides past and current research stud-
ies on RNA-seq, and its types focus on the advantages 
and disadvantages of the technique. Furthermore, it pre-
sents the use of the method in cancer as well as rare dis-
eases. Additionally, it introduces the future possibilities of 
RNseq and its application for understanding disease origin 
and development in more detail. Finally, the paper gives a 
brief description of RNAseq application for different types 
of cancer, rare diseases, and COVID-19 (Coronavirus Dis-
ease 2019), that have been challenging medical profes-
sionals in finding the most effective way for diagnosis and 
treatment with least side effects and we hope to shed light 
on utilizing the technique for more useful and accurate 
protocol to minimize the error and enhance the therapies 
and eventually, the diseases’ prognosis.
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RNA sequencing methods

RNA sequencing techniques can be categorized based on 
the library preparation methods and the applied approach 
into short-read sequencing, long-read cDNA sequencing, 
and long-read direct RNA sequencing. Although short-
read and long-read cDNA techniques follow almost many 
steps, in the same manner, the quantity of sample and com-
putational analysis of the techniques at the beginning and 
the end of library preparation is different. While short-
read sequencing of cDNA provides Short Read Archive 
(SRA) that consists of almost all sequenced mRNA data 
[37], long-read cDNA sequencing has helped scientists to 
develop transcript data with their diverse isoforms [38]. 
The following information presents current published 
knowledge on short-read cDNA sequencing, long-read 
cDNA, and direct RNA sequencing.

Short‑read CDNA sequencing

This method has replaced microarray in RNAs gene 
expression with less cost and more straightforward appli-
cation with a higher quality of data through the transcrip-
tome [39]. The commonly used platform under this cat-
egory is via transcript’s reversible terminator sequence and 
synthesis techniques [40, 41]. Like all other techniques, 
the technique is carried out on platforms such as IonTor-
rent and Illumina and performs RNA sequencing analysis 
through an indirect method using cDNA. And the method 
includes RNA extraction, mRNA enrichment, mRNA frag-
mentation, cDNA synthesis, cDNA fragmentation, cDNA 
amplification, sequencing, and data analysis [42].The base 
pair banding of mRNA fragments for the technique is 150- 
to 200 bps for library purification and preparation, and 
therefore, the prepared cDNA is mainly between 200 and 
400 bps [43]. A short-read sequencing library is prepared 
with an average of 20–30 million reads for each sample. 
After the complete sequencing, the library is purified by 
computational processing to identify the reads aligned 
with the targeted individual transcripts.

This method helps to report an association of intra-plat-
form with inter-platform [44, 45]. Nevertheless, limita-
tions due to possible occurring errors during sample prep-
aration and computational analysis may cause false reports 
in the identification and quantification of diverse forms of 
isoforms that are manifested from a gene [46], especially 
the transcripts with a large number of base pairs such as 
the ones found in humans [47]. Therefore, it is understand-
able that short-read RNA sequencing is not fully efficient 
to perform a complete analysis of long transcripts [48]. 

In addition to the limitations of RNA size, multi-mapped 
reads are not accurate. Long-read sequencing has lifted the 
limitations of size by tagging full-length cDNA and the 
use of unique molecular identifiers that are copied along 
with cDNA prior to library preparation (UMIs) [49, 50].

Long‑read CDNA sequencing

As mentioned previously, short-read sequencing requires 
the assembly of short RNA fragment reads, which affects 
the accuracy of the genome mapping process and the whole 
sequence cannot be identified and analyzed. However, long-
read sequencing can identify large-size RNA and process the 
full length, making genome mapping possible for mamma-
lian cells containing 1–2 kb of transcripts and may surpass 
100 kb [51–53]. The method is performed on a number of 
platforms that were developed in the past few years, and 
ones are Single-Molecule Real-Time (SMRT) technology 
from Pacific Biosciences (PacBio sequencing) and protein 
nanopore sequencing technology from Oxford Nanopore 
Technologies (ONT).

The standard protocol includes conversion of high-quality 
RNA to full-length cDNA by template-switching reverse 
transcriptase [54], and the cDNA undergoes amplification 
by polymerase chain reaction (PCR) to prepare the SMRT 
library [54]. While the ONT platform follows the same pro-
tocol as PacBio [55], reverse transcriptase was shown to 
affect library preparation and the length of transcript read 
on ONT [56]. In contrast to the advantages, long-read cDNA 
sequencing requires a great amount of time for the large size 
of the genome to be processed [57], and therefore, further 
studies are necessary to optimize the time.

Long‑read direct RNA sequencing

Unlike short-read and long-read cDNA sequencing, long-
read RNA sequencing, also known as dRNA-seq (DRS), 
does not require cDNA generation and therefore can elimi-
nate the errors that occur during cDNA amplification and 
avoid RNA-RNA chimaeras produced by cDNA [58]. 
Although the limitation of reading length is not the chal-
lenge with the technique, the fragmentation of the input read 
is still challenging [59, 60]. The technique is carried out on 
nanopore sequencing technology developed by ONT [43, 
61]. The process includes two ligation steps. The first liga-
tion step includes ligation of duplex adaptor to polyA tail 
of RNA, followed by reverse-transcription followed by the 
second ligation step, which is the attachment of the motor 
protein-attached sequencing adaptor. Finally, the products 
go through library preparation [62]. The other advantage of 
DRS over the other two lies in the ability of the technique 
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to identify the RNA base modifications, and thus can shed 
light on the epigenetics of the species [62, 63].

RNA sequencing in viral diseases, cancer, 
and rare diseases

RNA sequencing has provided an effective approach in 
detecting different types of cancers and rare diseases and, 
thus, has shed light on developing more effective treat-
ments. DRS has been applied for genomic studies of viral 
transcriptomes, and it uses cDNA to analyse and interpret 
viral RNA [64–66]. Previous studies applied the technique 
to investigate human poly(A) RNA and DNA-based viruses 
[67]. A recent study has shown full-length sequencing of 
HCoV-229E virus that belongs to the coronavirus family and 
encompasses the known largest RNA genome. In this study, 
the technique used defective interfering RNAs (DI-RNAs) 
for in vitro analysis of transcript using full-length cDNA 
[68]. In this study, in patients who manifested resistance dur-
ing therapy, RNA-seq detected human gemcitabine-resistant 
pancreatic cancer cells (PANC1) as potential therapeutic tar-
gets [69].

In addition to the discussed RNA sequencing methods, 
in situ RNA sequencing was developed to perform RNA 
sequencing inside the cell without cell lysis and RNA extrac-
tion [70]. The study on breast cancer applied the technique 
to analyse short RNA fragments of ACTB gene and HER2 
(abundant growth-promoting protein outside breast cells) 
RNA in preserved cells and tissues and helped to detect tis-
sue heterogeneity at a molecular level [70]. Despite all new 
inventions and advancements in medicine, cancer remains 
elusive and is considered one of the most life-threatening 
malignant diseases. With the development of RNA sequenc-
ing as one of the high-throughput methods of transcriptome 
analysis, interpretation of diseases and their genetic causes at 
the molecular level has been conceivable. Single-cell RNA 
sequencing, known as scRNA-seq, has been used to analyse 
single malignant cell’s heterogeneity to present the cause of 
cancers [69, 71, 72], such as pancreatic ductal adenocarci-
noma [69]. RNA-seq can find out the uses of tumour muta-
tional burden (TMB), whose study is noteworthy as a pos-
sible immune checkpoint biomarker and helps in treatment 
and cancer prognosis [73]. By detecting a mutation in MET 
proto-oncogene and isocitrate dehydrogenase 1 (IDH1) gene 
using RNA-seq, the possibility of designing a better therapy 
for lung adenocarcinoma and chondrosarcoma has been 
made possible [74, 75]. Therefore, the technique has facili-
tated target therapy by detecting the causative gene or the 
mutation of target genes in various types of cancer, such as 
acute myeloid leukaemia (AML) [76, 77]. In head and neck 
cancer [78] and oligodendroglioma [79], single-cell RNA 
sequencing has helped to elucidate the difference between 

malignant and benign cells using the data collected for copy 
number variations (CNV). Besides applications of RNA-seq 
in treatment design for cancers, the tool can be used as a 
diagnostic tool in blood-based sarcoma [80]. Although this 
review has covered limited past and present studies on RNA-
seq in cancer diagnosis and target therapy, it is abundantly 
clear that the tool in identifying the genetic and epigenetic 
cause of cancer, assisting in better therapy design by detect-
ing the resistant genes, and elucidating the mutations in the 
genes as cancer biomarkers for better therapy.

The advantages of RNA-seq extend to in better under-
standing of rare diseases. Over 7000 rare Mendelian disor-
ders have been identified so far. However, the genetic basis 
of more than half of all Mendelian diseases reported remains 
elusive, despite being monogenic [81]. Furthermore, these 
diseases can show variable phenotypes even in cases where 
the causal disease gene is identified, even in patients such 
as siblings [82, 83], which presents diagnostic and patient 
management challenges [84]. RNA-seq offers the ability 
to calculate allele-specific expressions that are likely to 
expose the existence of a broad heterozygous regulatory, 
splicing, nonsense variant or epimutation to help identify 
candidate rare disease genes and variants [85–90]. Table 1 
introduces some of the rare diseases that are investigated 
using RNA-seq.

Advantages of RNA-seq extend in better understanding 
of rare diseases. Over 7000 rare Mendelian disorders have 
been identified so far. The genetic basis of more than half 
of all Mendelian diseases reported remains elusive, despite 
being monogenic [93]. These diseases can show variable 
phenotypes even in cases where the causal disease gene is 
identified, even in patients such as siblings [94, 95] with 
the same genetic mutation, which presents in diagnostic and 
patient management challenges [96]. RNA-seq offers the 
ability to calculate allele-specific expression that are likely 
to expose the existence of a broad heterozygous regulatory, 
splicing or nonsense variant or epimutation to help identify 
candidate rare disease genes and variants [97–100]. Table 1 
introduces some of the rare diseases that were investigated 
using RNA-seq.

Conclusion and future perspectives

Advancement in RNA-seq has been one of the major revo-
lutions in the study and interpretation of transcriptome in 
the past few years. With ongoing innovation and develop-
ment in bioinformatics, data analysis software and plat-
form technologies, cataloguing full-length transcript and 
library preparation for all organisms, whether single-cell 
organisms, such as yeast to mammalians, many questions 
elude scientists carry out further investigations on various 
physiological and genetic abnormalities can be answered. 
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Moreover, library preparation has kept the information 
accessible to those who are researching transcript-related 
studies. Furthermore, the researcher can use this tool in 
comparing the tissues and cells in normal and abnormal 
conditions to track and reveal the causatives of different 
diseases and identify metablic abnormalities or alterations 
that happen in molecular and cellular levels and identify 
metabolic abnormalities or alterations that happen in 
molecular and cellular levels.

The current outbreak of COVİD-19 and the emergence 
of variants in short-term time have been a challenge for the 
researchers in finding a better tool in interpreting the full-
length RNA of the SARS-CoV-2 to develop a more efficient 
treatment and durable vaccine. And RNA sequencing with 
the advantage of reading a large-size transcript has pro-
vided an insight into developing a platform that can help in 
a detailed analysis of SARS-CoV-2 RNA to reveal the cause 
of genetic variation and resistance towards the currently used 
treatments. Besides, the diagnostic tools are critical in can-
cer and rare diseases and with ongoing improvement in RNA 
sequencing techniques and existing diagnostic tools for some 
diseases, it is expected to see great advancements in devel-
oping standard diagnostic tools that benefit the biomark-
ers of disease that are being detected by RNA sequencing. 
Not to mention that the collection of all data from different 
organisms’ transcriptomes can improve the field of taxon-
omy by aligning the sequenced transcripts and measuring 
the level of similarities among the organisms. Therefore, it 
is expected that the unknown and undefined forms of iso-
forms can be determined and eventually help the unidenti-
fied genes’ function and full potentials to be uncovered, and 
questions in molecular and cellular evolution and diversity 
of many pathogenic viruses will be answered.

Although this review has covered limited present and past 
studies and achievements on applications and advantages of 
RNA-seq, it is hoped that the readers of the review will ben-
efit from the collected information and shed light on future 
applications of RNA sequencing in better understanding of 
genetically diversified human diseases.
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