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Abstract

With the invention of RNA sequencing over a decade ago, diagnosis and identification of the gene-related diseases entered
a new phase that enabled more accurate analysis of the diseases that are difficult to approach and analyze. RNA sequenc-
ing has availed in-depth study of transcriptomes in different species and provided better understanding of rare diseases and
taxonomical classifications of various eukaryotic organisms. Development of single-cell, short-read, long-read and direct
RNA sequencing using both blood and biopsy specimens of the organism together with recent advancement in computa-
tional analysis programs has made the medical professional’s ability in identifying the origin and cause of genetic disorders
indispensable. Altogether, such advantages have evolved the treatment design since RNA sequencing can detect the resistant
genes against the existing therapies and help medical professions to take a further step in improving methods of treatments
towards higher effectiveness and less side effects. Therefore, it is of essence to all researchers and scientists to have deeper

insight in all available methods of RNA sequencing while taking a step-in therapy design.
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Introduction

The basis of molecular biology began with genes located in
DNA transcribed to RNA for protein synthesis; the emer-
gence of the double-helix structure of DNA in 1953 showed
the essence of life as a result of gene interaction [1, 2]. The
whole machinery defines the organism’s characteristics and
maintains the biological functions of the cells and the organ-
ism as one. Therefore, RNA analysis is essential in under-
standing the genomic processes and the diseases’ origin. The
RNAs, collectively known as transcriptomes, are complex
genomic structures with coding and non-coding regions
and are intermediaries between genes and proteins. Thus,
detailed study on transcriptome is essential to understand
the genomic function and to identify molecular composi-
tions of cells. In addition, more comprehensive knowledge
on transcriptome can help us understand the cause as well
as development of diseases.

Therefore a thorough study of the transcriptome is nec-
essary for understanding genomic function, identifying
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molecular compositions of cells, and understanding the
cause and development of diseases [3]

Among RNA species, messenger RNA (mRNA) is the
most valuable one for further study as it carries the genomic
data from the organism’s DNA [4]. However, analysis of
protein-coding RNA requires a precise technique that can
distinguish the coding-protein RNA from the non-coding
RNAs (ncRNAs). The complexity of the genome arises from
the following; Coding genes comprise almost 2% of the
whole human genome, and a majority of the coding genes
undergo transcription [5]. Additionally, a single genomic
locus is likely to exhibit different isoforms resulting in dif-
ferent splicing patterns with possibly various transcriptional
start sites [6]. Moreover, unpredictable monoallelic (mater-
nal or paternal allele) expression of genes adds an extra layer
of complexity in transcriptomic analysis [7]. In-vivo and
in-vitro analysis of homogenous cells populations has shown
heterogeneity of the cells due to intrinsic and extrinsic fac-
tors such as microenvironment [8]. However, research shows
the cells in the same microenvironment can manifest differ-
ent transcript levels due to factors such as the cell cycle [9].

Under the category of ncRNAs, ribosomal RNAs
(rRNAs) and transfer RNAs (tRNAs) as functional ele-
ments in mRNA translation, small nuclear RNAs (snR-
NAs) is RNA splicing, small nucleolar RNAs (snoRNAs)
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in rRNAs modifications [10], microRNAs (miRNAs) and
piwi-interacting RNAs (piRNAs) in post-transcriptional
regulation of gene expression [11], and long non-coding
RNAs (IncRNAs) in chromatin remodelling, transcriptional
and post-transcriptional regulation [12]. Designing genome
analysis techniques that can accurately and efficiently pro-
file the whole genome and distinguish between the coding
and non-coding ones was the scientists’ target for decades.
Over the past few decades, researchers developed various
methods to have an in-depth analysis of RNAs and a more
accurate understanding of gene expression. Low-through-
put methods such as quantitative polymerase chain reaction
(qPCR) which introduced as powerful techniques for the
purpose. However, it could not apply to measuring multiple
transcripts. And despite the introduction of hybridization-
based microarray in 1995 that provided a better solution
for the study of gene expression [13, 14], limitations of the
method such as cross-hybridization with extremely simi-
lar sequences and lack of accuracy in the quantification of
lowly- and highly expressed genes [15, 16] led scientists to
develop sequence-based techniques to reduce the inaccuracy
in the study of transcriptomes (transcriptomics) technologies
using complementary DNA (cDNA). The aim of studying
transcriptome is to catalogue the whole transcript (coding
and non-coding RNAs), determine the splicing pattern and
the changes that occur in the post-transcriptional stage, and
identify the changes in expression level of each transcript
by quantifying the changes based on different intrinsic and
extrinsic factors [3]. Although techniques such as Sanger
sequencing of cDNA using expressed sequence tag (EST)
[17], serial analysis of gene expression (SAGE) and cap
analysis of gene expression (CAGE) [18], have improved
RNA analysis, their insensitivity in discovering novel genes
and high cost of Sanger sequencing makes the techniques
inefficient [19].

Next-generation sequencing (NGS) that are High-
throughput sequencing can perform sequencing faster with
lower cost and higher accuracy. Additionally, it is useful
for identifying undefined gene expression sequences in an
intense time manner [20]. Further development of long-read
RNA sequencing, known as third-generation sequencing,
can be used to generate full-length cDNA transcripts with a
minimum number of false-positive splice sites and capturing
great diversity of transcript isoforms [21]. The introduction
of RNA-seq, from bulk- to single-cell RNA sequencing, has
given the opportunity to process and map transcriptome.

Although the development of the RNA-seq method goes
back more than a decade [22, 23], it has revolutionized
the interpretation of eukaryotic transcriptomes [24, 25]
by analysis of differential gene expression (DGE) using
next-generation sequencing (NGS) with the standard work-
flow; RNA extraction, followed by mRNA enrichment or
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ribosomal RNA depletion, cDNA synthesis and prepara-
tion of an adaptor-ligated sequencing library. The advan-
tage of the technique is the in-depth ability to perform
10-30 million reads in each sample on usually Illumina
short-read sequencing instruments [26]. In addition, the
introduction of Long-read RNA-seq, also known as third-
generation sequencing, and direct RNA-seq (dRNseq)
have made the transcriptomics more thorough [27, 28]
without requiring prior information on the RNA sequence
[29, 30]. The introduction of single-cell RNA sequenc-
ing in 2009 helped scientists map and generate libraries
for individual cells [31, 32]. In 2015, Drop-seq, for RNA
analysis of a large population of individuals cells at once,
and InDrop, for labelling and mapping single cell, have
given more diverse ways of transcriptome analysis [32].
Single-cell combinational indexing RNA sequencing (Sci-
RNA-seq) in 2017 is a two-step combinatorial barcoding
method designed to profile single-cell and single-nucleus
transcriptomes with no single-cell isolation step necessary
[33]. Split-pool ligation-based transcriptome sequencing
(SPLiTseq) in 2018 was designed to interpret the cellular
origin of RNA using combinational barcoding [34].

The method introduces advantages compared to the pre-
viously discussed methods by providing a detailed under-
standing of the transcriptome through the quantitative
measuring of the gene expression, splicing, maternal or
paternal allele expression and altogether, helps to interpret
the cause of diseases efficiently with lower cost.

After the laboratory-based workflow, computational
analysis, most importantly data processing and analysis,
is carried out using various computational tools. Data pro-
cessing can be performed for both organisms with and
without reference genomes. The organisms with a refer-
ence genome, short RNA sequencing reads are mapped
using the reference genome. On the other hand, for the
organisms with no reference genome, de novo transcrip-
tome assembly is applied [35, 36].

This review provides past and current research stud-
ies on RNA-seq, and its types focus on the advantages
and disadvantages of the technique. Furthermore, it pre-
sents the use of the method in cancer as well as rare dis-
eases. Additionally, it introduces the future possibilities of
RNseq and its application for understanding disease origin
and development in more detail. Finally, the paper gives a
brief description of RNAseq application for different types
of cancer, rare diseases, and COVID-19 (Coronavirus Dis-
ease 2019), that have been challenging medical profes-
sionals in finding the most effective way for diagnosis and
treatment with least side effects and we hope to shed light
on utilizing the technique for more useful and accurate
protocol to minimize the error and enhance the therapies
and eventually, the diseases’ prognosis.
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RNA sequencing methods

RNA sequencing techniques can be categorized based on
the library preparation methods and the applied approach
into short-read sequencing, long-read cDNA sequencing,
and long-read direct RNA sequencing. Although short-
read and long-read cDNA techniques follow almost many
steps, in the same manner, the quantity of sample and com-
putational analysis of the techniques at the beginning and
the end of library preparation is different. While short-
read sequencing of cDNA provides Short Read Archive
(SRA) that consists of almost all sequenced mRNA data
[37], long-read cDNA sequencing has helped scientists to
develop transcript data with their diverse isoforms [38].
The following information presents current published
knowledge on short-read cDNA sequencing, long-read
cDNA, and direct RNA sequencing.

Short-read CDNA sequencing

This method has replaced microarray in RNAs gene
expression with less cost and more straightforward appli-
cation with a higher quality of data through the transcrip-
tome [39]. The commonly used platform under this cat-
egory is via transcript’s reversible terminator sequence and
synthesis techniques [40, 41]. Like all other techniques,
the technique is carried out on platforms such as IonTor-
rent and Illumina and performs RNA sequencing analysis
through an indirect method using cDNA. And the method
includes RNA extraction, mRNA enrichment, mRNA frag-
mentation, cDNA synthesis, cDNA fragmentation, cDNA
amplification, sequencing, and data analysis [42].The base
pair banding of mRNA fragments for the technique is 150-
to 200 bps for library purification and preparation, and
therefore, the prepared cDNA is mainly between 200 and
400 bps [43]. A short-read sequencing library is prepared
with an average of 20-30 million reads for each sample.
After the complete sequencing, the library is purified by
computational processing to identify the reads aligned
with the targeted individual transcripts.

This method helps to report an association of intra-plat-
form with inter-platform [44, 45]. Nevertheless, limita-
tions due to possible occurring errors during sample prep-
aration and computational analysis may cause false reports
in the identification and quantification of diverse forms of
isoforms that are manifested from a gene [46], especially
the transcripts with a large number of base pairs such as
the ones found in humans [47]. Therefore, it is understand-
able that short-read RNA sequencing is not fully efficient
to perform a complete analysis of long transcripts [48].

In addition to the limitations of RNA size, multi-mapped
reads are not accurate. Long-read sequencing has lifted the
limitations of size by tagging full-length cDNA and the
use of unique molecular identifiers that are copied along
with cDNA prior to library preparation (UMIs) [49, 50].

Long-read CDNA sequencing

As mentioned previously, short-read sequencing requires
the assembly of short RNA fragment reads, which affects
the accuracy of the genome mapping process and the whole
sequence cannot be identified and analyzed. However, long-
read sequencing can identify large-size RNA and process the
full length, making genome mapping possible for mamma-
lian cells containing 1-2 kb of transcripts and may surpass
100 kb [51-53]. The method is performed on a number of
platforms that were developed in the past few years, and
ones are Single-Molecule Real-Time (SMRT) technology
from Pacific Biosciences (PacBio sequencing) and protein
nanopore sequencing technology from Oxford Nanopore
Technologies (ONT).

The standard protocol includes conversion of high-quality
RNA to full-length cDNA by template-switching reverse
transcriptase [54], and the cDNA undergoes amplification
by polymerase chain reaction (PCR) to prepare the SMRT
library [54]. While the ONT platform follows the same pro-
tocol as PacBio [55], reverse transcriptase was shown to
affect library preparation and the length of transcript read
on ONT [56]. In contrast to the advantages, long-read cDNA
sequencing requires a great amount of time for the large size
of the genome to be processed [57], and therefore, further
studies are necessary to optimize the time.

Long-read direct RNA sequencing

Unlike short-read and long-read cDNA sequencing, long-
read RNA sequencing, also known as dRNA-seq (DRS),
does not require cDNA generation and therefore can elimi-
nate the errors that occur during cDNA amplification and
avoid RNA-RNA chimaeras produced by cDNA [58].
Although the limitation of reading length is not the chal-
lenge with the technique, the fragmentation of the input read
is still challenging [59, 60]. The technique is carried out on
nanopore sequencing technology developed by ONT [43,
61]. The process includes two ligation steps. The first liga-
tion step includes ligation of duplex adaptor to polyA tail
of RNA, followed by reverse-transcription followed by the
second ligation step, which is the attachment of the motor
protein-attached sequencing adaptor. Finally, the products
go through library preparation [62]. The other advantage of
DRS over the other two lies in the ability of the technique
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to identify the RNA base modifications, and thus can shed
light on the epigenetics of the species [62, 63].

RNA sequencing in viral diseases, cancer,
and rare diseases

RNA sequencing has provided an effective approach in
detecting different types of cancers and rare diseases and,
thus, has shed light on developing more effective treat-
ments. DRS has been applied for genomic studies of viral
transcriptomes, and it uses cDNA to analyse and interpret
viral RNA [64-66]. Previous studies applied the technique
to investigate human poly(A) RNA and DNA-based viruses
[67]. A recent study has shown full-length sequencing of
HCoV-229E virus that belongs to the coronavirus family and
encompasses the known largest RNA genome. In this study,
the technique used defective interfering RNAs (DI-RNAs)
for in vitro analysis of transcript using full-length cDNA
[68]. In this study, in patients who manifested resistance dur-
ing therapy, RNA-seq detected human gemcitabine-resistant
pancreatic cancer cells (PANCI) as potential therapeutic tar-
gets [69].

In addition to the discussed RNA sequencing methods,
in situ RNA sequencing was developed to perform RNA
sequencing inside the cell without cell lysis and RNA extrac-
tion [70]. The study on breast cancer applied the technique
to analyse short RNA fragments of ACTB gene and HER2
(abundant growth-promoting protein outside breast cells)
RNA in preserved cells and tissues and helped to detect tis-
sue heterogeneity at a molecular level [70]. Despite all new
inventions and advancements in medicine, cancer remains
elusive and is considered one of the most life-threatening
malignant diseases. With the development of RNA sequenc-
ing as one of the high-throughput methods of transcriptome
analysis, interpretation of diseases and their genetic causes at
the molecular level has been conceivable. Single-cell RNA
sequencing, known as scRNA-seq, has been used to analyse
single malignant cell’s heterogeneity to present the cause of
cancers [69, 71, 72], such as pancreatic ductal adenocarci-
noma [69]. RNA-seq can find out the uses of tumour muta-
tional burden (TMB), whose study is noteworthy as a pos-
sible immune checkpoint biomarker and helps in treatment
and cancer prognosis [73]. By detecting a mutation in MET
proto-oncogene and isocitrate dehydrogenase 1 (IDH1) gene
using RNA-seq, the possibility of designing a better therapy
for lung adenocarcinoma and chondrosarcoma has been
made possible [74, 75]. Therefore, the technique has facili-
tated target therapy by detecting the causative gene or the
mutation of target genes in various types of cancer, such as
acute myeloid leukaemia (AML) [76, 77]. In head and neck
cancer [78] and oligodendroglioma [79], single-cell RNA
sequencing has helped to elucidate the difference between
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malignant and benign cells using the data collected for copy
number variations (CNV). Besides applications of RNA-seq
in treatment design for cancers, the tool can be used as a
diagnostic tool in blood-based sarcoma [80]. Although this
review has covered limited past and present studies on RNA-
seq in cancer diagnosis and target therapy, it is abundantly
clear that the tool in identifying the genetic and epigenetic
cause of cancer, assisting in better therapy design by detect-
ing the resistant genes, and elucidating the mutations in the
genes as cancer biomarkers for better therapy.

The advantages of RNA-seq extend to in better under-
standing of rare diseases. Over 7000 rare Mendelian disor-
ders have been identified so far. However, the genetic basis
of more than half of all Mendelian diseases reported remains
elusive, despite being monogenic [81]. Furthermore, these
diseases can show variable phenotypes even in cases where
the causal disease gene is identified, even in patients such
as siblings [82, 83], which presents diagnostic and patient
management challenges [84]. RNA-seq offers the ability
to calculate allele-specific expressions that are likely to
expose the existence of a broad heterozygous regulatory,
splicing, nonsense variant or epimutation to help identify
candidate rare disease genes and variants [8§5-90]. Table 1
introduces some of the rare diseases that are investigated
using RNA-seq.

Advantages of RNA-seq extend in better understanding
of rare diseases. Over 7000 rare Mendelian disorders have
been identified so far. The genetic basis of more than half
of all Mendelian diseases reported remains elusive, despite
being monogenic [93]. These diseases can show variable
phenotypes even in cases where the causal disease gene is
identified, even in patients such as siblings [94, 95] with
the same genetic mutation, which presents in diagnostic and
patient management challenges [96]. RNA-seq offers the
ability to calculate allele-specific expression that are likely
to expose the existence of a broad heterozygous regulatory,
splicing or nonsense variant or epimutation to help identify
candidate rare disease genes and variants [97—100]. Table 1
introduces some of the rare diseases that were investigated
using RNA-seq.

Conclusion and future perspectives

Advancement in RNA-seq has been one of the major revo-
lutions in the study and interpretation of transcriptome in
the past few years. With ongoing innovation and develop-
ment in bioinformatics, data analysis software and plat-
form technologies, cataloguing full-length transcript and
library preparation for all organisms, whether single-cell
organisms, such as yeast to mammalians, many questions
elude scientists carry out further investigations on various
physiological and genetic abnormalities can be answered.
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