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Abstract: Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2,
have been identified as the cause for an evolving spectrum of neurological disorders. Affected
individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and
movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder
course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported.
By analyzing phenotypic, functional, and genetic data from published reports and novel cases,
we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated
disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated
with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities
and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-
function. We describe seven additional individuals harboring three known and the novel KCNA2
variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the
importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as
a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical
spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum,
genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.
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1. Introduction

Potassium channels are involved in many vital processes such as neuronal excitability,
neurotransmitter release, and cellular osmoregulation [1,2]. KCNA2, encoding for the
voltage-gated potassium channel subfamily A member 2 (Kv1.2, OMIM * 176262) is a
member of the shaker-like delayed rectifier potassium channel family [3]. It is predomi-
nantly expressed in axons and presynaptic terminals of the central nervous system [4,5].
Homo- or heterotetramers formed by α-subunits containing variable proportions of Kv-
subfamily members contribute to functional channel characteristics [6]. Kv1.2 consists of
six transmembrane segments (S1–S6) forming the voltage-sensing domain (S4) and the
ion-conducting pore (S5-S6) with its selectivity filter localized in the pore loop [7,8]. The C-
terminal and N-terminal cytosolic domains are less conserved and regulate tetramerization
and the association to modifying subunits [9,10]. Several antibody-mediated neurological
diseases in children and adults have been linked to proteins associated with Kv1 channel
components, such as leucine-rich glioma-inactivated 1, contactin-associated protein 2, and
particularly Kv1 channel subunits [11,12].

In 2015, pathogenic de novo variants in KCNA2 were first described in six individuals
with early-onset severe epilepsy, cognitive impairment, and ataxia [13]. Two phenotypically
distinct epilepsy syndromes were delineated correlating with gain-of-function (GOF) and
loss-of-function (LOF) changes of the net potassium current of Kv1.2 [13,14]. The recurrent
KCNA2 variant c.881G > A, leading to an amino-acid exchange at position 294 within the
voltage sensing domain, was identified in individuals with hereditary spastic paraplegia
(HSP) as an additional phenotype [15]. In 2017, novel and previously reported individuals
were summarized into three distinct functional and clinical subgroups of Kv1.2 dysfunction:
GOF, LOF, and a mixed dysfunctional type (GOF/LOF) [16].

In this study, we present additional individuals with known and novel variants in
KCNA2. We reevaluate phenotypic, functional, and genetic data from all published cases
to refine and further delineate the assumed phenotypic and functional subgroups. We
analyze the genetic distribution of all known pathogenic and likely pathogenic variants in
KCNA2 and predict the functional impact of all possible missense variations in KCNA2.

2. Results

We identified 115 individuals with pathogenic and likely pathogenic (P/LP) KCNA2
variants from 28 publications (78 cases) and ClinVar database entries (37 cases). Addi-
tionally, we report clinical data from seven novel cases, six individuals with P and LP
KCNA2 variants, and one individual with a VUS. After the exclusion of all individuals
without sufficient clinical information, we included 76 of 115 cases into further analyses
(see Section 4).

In 40 individuals, variants occurred de novo, while 17 segregated with the disease
in the family. In 21 cases, information on inheritance was unavailable. Thirty different
alterations of KCNA2 are on record to date, with 26 single-nucleotide variants (SNV), one
in-frame deletion, and three different deletions (Tables 1 and 2).
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Table 1. KCNA2 variants from published clinical reports.

cDNA Change Protein Change
Functional

Conse-
quence

Phenotype Number of
Patients Reference

heterozygous variants:
missense

c.469G > A p.(Glu157Lys) GOF epileptic encephalopathy 1 [16]
c.676G > A p.(Glu226Lys) no data epilepsy, childhood-onset 1 [17]
c.788T > C p.(Ile263Thr) LOF epileptic encephalopathy 1 [13,16]
c.869T > G p.(Leu290Arg) GOF/LOF epileptic encephalopathy 2 [16,18,19]
c.878T > A p.(Leu293His) GOF/LOF epileptic encephalopathy 1 [16]
c.881G > A p.(Arg294His) LOF hereditary spastic paraplegia 7 [15,20]
c.889C > T p.(Arg297Trp) no data developmental and epileptic encephalopathy 3 [21–23]
c.890G > A p.(Arg297Gln) GOF ataxia & myoclonic epilepsy 15 [3,13,14,16,24–29]
c.894G > T p.(Leu298Phe) GOF epileptic encephalopathy 1 [13,16]
c.959C > T p.(Thr320Ile) no data epilepsy, mild ataxia 1 [30]
c.971G > C p.(Ser324Thr) no data epilepsy, drug-resistant 1 [31]
c.982T > G p.(Leu328Val) GOF/LOF epileptic encephalopathy 2 [16,32]

c.1070G > A p.(Gln357Arg) no data Lennox-Gastaut syndrome 1 [25]
c.1120A > G p.(Thr374Ala) GOF/LOF epileptic encephalopathy, early onset 8 [16,26,33–35]
c.1192G > T p.(Gly398Cys) LOF epileptic encephalopathy 1 [16]
c.1195G > A p.(Val399Met) no data epileptic encephalopathy 1 [23]
c.1202C > T p.(Thr401Ile) no data epileptic encephalopathy 1 [36]
c.1214C > T p.(Pro405Leu) LOF epileptic encephalopathy 14 [13,16,23,34,37,38]
c.1223T > C p.(Val408Ala) no data Rett-like syndrome with infantile onset seizures 1 [39]

truncating
c.637C > T p.(Gln213*) LOF epileptic encephalopathy 1 [16]

c.193C > T p.(Arg65*) predicted
LOF epilepsy 1 [17]

c.1265_1266delAG p.(Glu422Glyfs*21) predicted
LOF epileptic encephalopathy 1 [26]

in-frame deletion
c.765_773del p.(Met255_Ile257del) LOF episodic ataxia & pharmacoresponsive epilepsy 7 [3]

deletion
c.110606081_111393713del~788

kb no data generalized epilepsy 1 [40]

homozygous variants:
c.193C > T p.(Arg65*) no data intellectual disability, autosomal-recessive 4 [41]

GOF: gain-of-function effects, LOF: loss-of-function effects compared to wild-type channels; all variants are described according to the
transcript NM_004974.3.

Table 2. Variants of KCNA2 reported in ClinVar.

cDNA Change Protein Change Interpretation Phenotype Number of
Reported Patients

missense
c.788T > C p.(Ile263Thr) LP epileptic encephalopathy 2
c.869T > C p.(Leu290Pro) LP epileptic encephalopathy 1
c.881G > A p.(Arg294His) LP epileptic encephalopathy 4
c.890G > A p.(Arg297Gln) P epileptic encephalopathy 6
c.894G > T p.(Leu298Phe) P epileptic encephalopathy 2
c.959C > T p.(Thr320Ile) P epileptic encephalopathy 1
c.989T > G p.(Leu330Arg) LP not provided 1

c.1013G > A p.(Gly338Glu) LP epileptic encephalopathy 1
c.1084C > G p.(Pro362Ala) LP not provided 1
c.1120A > G p.(Thr374Ala) P epileptic encephalopathy 2
c.1195G > A p.(Val399Met) LP epileptic encephalopathy 2
c.1202C > T p.(Thr401Ile) LP not provided 1
c.1214C > T p.(Pro405Leu) P epileptic encephalopathy 8
c.1219C > G p.(Pro407Ala) LP not provided 2
c.1223T > C p.(Val408Ala) P epileptic encephalopathy 1

truncating
c.298C > T p.(Arg100*) LP epileptic encephalopathy 1

deletion
g.(?_110593873)_(110604802_?)del P epileptic encephalopathy 1

all variants are described using the transcript NM_004974.3; LP: likely pathogenic; P: pathogenic.
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2.1. Novel Cases with KCNA2 Variants in this Study

Data from seven previously unpublished cases with known pathogenic (n = 5) and
novel variants (n = 2) in KCNA2 were ascertained. Genetic and phenotypic data are
summarized in Table 3. The localization and structural consequence of the novel missense
variant p.(Tyr417Cys) is depicted in Figure 1. Furthermore a comparison of the wild-
type proline(405)–valine(406)–proline(407) (PVP) motif and changes by the novel variant
p.(Pro407Ala) andthe known variant p.(Pro405Leu) are shown.
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Cys417 (red sticks), in context with the S4-S5 linker regions of the same and neighboring channel subunits, respectively 
(orange). (D–F) Close-up views of the proline(405)–valine(406)–proline(407) (PVP) motif (red sticks; (D)) as well as the 
amino acid substitutions Leu405 (E) and Ala407 (F) of the corresponding proline residues. The PVP motif interacts with 
the S4–S5 linker, and both prolines of this symmetric motif (D) are important for channel gating. The substitution of Pro405 
(E) and Pro407 (F) disrupts its symmetry and structure, likely impairing interactions with S4–S5 during gating-related 
conformational changes. All three substitutions are located in the S6 helix and in proximity to the S4–S5 linkers, which is 
suggestive for the probable affection of associated interactions leading to altered channel gating. 
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cases, tremor in 23%, and increased muscle tone (spasticity), in 16%. Febrile seizures were 
described in 28% (21/76) of cases. 30% (21/69) of the patients achieved seizure control 
(missing data in 11 cases). Of the cases with available data, most individuals (82%, 59/72) 
show intellectual disability of various severity. Thirteen individuals were reported with a 
normal cognitive development, including all five cases harboring the 
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cases) was abnormal in 23 cases (40%), with cerebellar atrophy being most commonly re-
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Figure 1. Localization of three identified missense variants in the Kv1.2 channel. Three-dimensional (3D) protein structure
of the Kv1.2 channel shown as a ribbon model. (A) Lateral overview of the channel tetramer (turquoise) and three potassium
ions localized in the channel pore (spheres, gray). The residues Pro405, Pro407, and Tyr417 are shown in stick representation
(red). The S4-S5 linker is highlighted in orange. (B) Close-up view of residue Tyr417 and (C) the mutated residue Cys417
(red sticks), in context with the S4-S5 linker regions of the same and neighboring channel subunits, respectively (orange).
(D–F) Close-up views of the proline(405)–valine(406)–proline(407) (PVP) motif (red sticks; (D)) as well as the amino acid
substitutions Leu405 (E) and Ala407 (F) of the corresponding proline residues. The PVP motif interacts with the S4–S5 linker,
and both prolines of this symmetric motif (D) are important for channel gating. The substitution of Pro405 (E) and Pro407
(F) disrupts its symmetry and structure, likely impairing interactions with S4–S5 during gating-related conformational
changes. All three substitutions are located in the S6 helix and in proximity to the S4–S5 linkers, which is suggestive for the
probable affection of associated interactions leading to altered channel gating.
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Table 3. Genetic and clinical characteristics of novel cases with KCNA2 variants.

Case 1 2 3 4 5 6 7

cDNA Change c.1250A > G c.1219C > G c.1214C > T c.1214C > T c.890G > A c.881G > A c.881G > A

Protein Change p.(Tyr417Cys) p.(Pro407Ala) p.(Pro405Leu) p.(Pro405Leu) p.(Arg297Gln) p.(Arg294His) p.(Arg294His)

Inheritance parental de novo de novo de novo de novo Familial
(sister of #7) familial (brother of #6)

Age at inclusion/Gender 3 y/m 3 y/f 8 y/f 2 y/m 9 y/m 8 y/f 8 y/m

Development before
seizure onset normal na normal normal normal mildly delayed motor

development
delayed speech and motor

development

Epilepsy onset (months) 7.5 0.25 21 7 8 72 24

Seizure types bilateral tonic–clonic
generalized onset tonic

and hypomotor seizures
with cyanosis

prolonged febrile motor
seizure

prolonged focal motor
onset seizures and bilateral

tonic–clonic seizures,
febrile seizures, postictal

hemiplegia

generalized onset bilateral
tonic–clonic, atypical
absences from 2y3m

febrile seizures;
generalized onset

myoclonic and absence
seizures, status epilepticus

febrile seizures; focal and
generalized onset, absence

seizures, myoclonic and
tonic seizures, status

epilepticus

Seizure outcome seizure free at 10 months seizure-free at 2 years ongoing seizure free at 2 years ongoing ongoing ongoing

ID normal severe ID moderate ID normal learning disability mild ID moderate ID

Movement disorders no no no episodic ataxia ataxia mild tremor ataxia, tremor, worsening
on VPA

EEG features normal at 3y
multifocal spikes and

reduced physiologic sleep
characteristics

multifocal spikes in both
centro-temporal regions,
evolving to hemi-CSWS

during follow-up

multifocal spikes,
activation during sleep na

multifocal spikes and
polyspikes frontal

photoparoxysmal reaction,
3–4 Hz spike waves

generalized slowing,
activation of epileptiform

activity by
photostimulation,

multifocal spikes, 3–4 Hz
spike waves

Magnetic resonance
imaging normal normal normal left sided hippocampal

sclerosis normal cystic lesion subcortical
frontal left DD DNET cerebellar atrophy (vermis)

Additional findings SGA/dystrophy dysarthria polydactyly left dysarthria and stuttering muscular hypotonia dystrophy, microcephaly,
muscular hypotonia

Comments reported in ClinVar reported in ClinVar

ID: intellectual disability, n/a: not available; CSWS: continuous spikes and waves during sleep. CSWS was defined by a Spike-Wave-Index (SWI) of at least 85% in an epoch of at least 10 min duration after onset
of alpha attenuation or clinical signs of sleep; DNET: dysembryoblastic neuroectodermal tumor; SGA: small for gestational age; na: not available; f: female; m: male; y: years.
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2.2. Clinical Characteristics of Individuals with Reported and Novel KCNA2 Variants

Mean age at inclusion and publication was 17 years (median age 10 years, range
0–81 years). No individual had died until the last reported study visit. Nearly all (91%)
reported cases developed seizures. Mean age at seizure onset was 13 months (median age
8 months, range 0–156 months). In total, 41 male and 33 female individuals were included
(three cases with missing information). No relevant differences in gender distribution on
clinical manifestation or genotype were observed. Seven individuals were reported as
not having seizures at all, of whom five harbor the variant p.(Arg294His) associated with
hereditary spastic paraplegia and ataxia (HSP) [15,20] and two harbor the homozygous
variant p.(Arg65*) associated with familial intellectual disability [41]. Associated movement
and motor disorders were reported in 61/64 cases (95%), with ataxia in 64% of reported
cases, tremor in 23%, and increased muscle tone (spasticity), in 16%. Febrile seizures were
described in 28% (21/76) of cases. 30% (21/69) of the patients achieved seizure control
(missing data in 11 cases). Of the cases with available data, most individuals (82%, 59/72)
show intellectual disability of various severity. Thirteen individuals were reported with a
normal cognitive development, including all five cases harboring the p.(Met255_Ile257del)
deletion [3]. Cranial magnetic resonance imaging (available in 58 cases) was abnormal in
23 cases (40%), with cerebellar atrophy being most commonly reported (n = 18).

2.3. Phenotypic Features of Reported and Novel Patients, Grouped According to Known Functional
Consequences on Kv1.2

Of all reported alterations of KCNA2, electrophysiological channel characterization
has been available in 13/30 (43%) variants. Six different electrophysiological LOF variants
in KCNA2 have been described [3,13,15,16,20], three different KCNA2 variants caused GOF
in cellular expression systems [3,13,14,16,24–26] and four variants were reported having
mixed functional effects (GOF/LOF) on mutated channels [16,19,34,35]. Of all reported
and novel individuals, 61/76 (80%) harbored variants that have been electrophysiologi-
cally characterized. As proposed before, we grouped patients according to these known
functional consequences on Kv1.2 for phenotypic comparison (Table 4).

Compared to individuals with a mixed dysfunctional type (LOF/GOF), individuals
with LOF variants showed better development before seizure onset (p = 0.012), later onset
of epilepsy (p = 0.033), more favorable epilepsy outcome (seizure-free) (p = 0.014), and less
severe intellectual disability (p = 0.029). Compared to individuals with LOF/GOF variants,
epilepsy onset is significantly later in GOF individuals (p = 0.008), whereas development
before seizures, epilepsy outcome, and intellectual disability did not differ significantly.
Comparing individuals with LOF and GOF variants, development before seizures, epilepsy
onset, seizure outcome, and intellectual disability was not significantly different. Figure 2
illustrates the age at onset of epilepsy in the different subgroups.

Table 4. Phenotypic features of reported and novel patients, grouped according to known functional consequences on Kv1.2.

n = 61 LOF (n = 35) GOF (n = 16) GOF/LOF (n = 10)

Variants

Pro405Leu (16) Arg297Gln (14) Thr374Ala (7)
Arg294His (9) Glu157Lys (1) Leu290Arg (1)

Met255_Ile257del (7) Leu298Phe (1) Leu293His (1)
Gln213 * (1) Leu328Val (1)
Ile263Thr (1)

Gly398Cys (1)

Development before seizure
onset

normal (29/34) normal (9/12) normal (3/8)
impaired (5/34) impaired (3/12) impaired (5/8)

Epilepsy onset age
mean/median (SD) (months)

early childhood
17.4/8.75 (SD 31.2)

(1 outlier with 156 m)

infantile or early childhood
11.6/9.5 (SD 8.6)

neonatal or early infantile
3.1/0.5 (SD 5.6)

(1 outlier with 18 m)

Seizure types
focal only (5/30) focal only (0/13) focal only (5/10)

generalized only (14/30) generalized only (9/13) generalized only (3/10)
both (11/30) both (4/13) both (2/10)

Febrile seizures
yes (13/27) yes (5/12) yes (1/9)
no (14/27) no (7/12) no (8/9)



Int. J. Mol. Sci. 2021, 22, 2824 7 of 16

Table 4. Cont.

n = 61 LOF (n = 35) GOF (n = 16) GOF/LOF (n = 10)

Seizure outcome
never seizures (5/32) **

seizure-free (13/32) seizure-free (2/13) seizure-free (0/9)
uncontrolled (14/32) uncontrolled (11/13) uncontrolled (9/9)

Intellectual disability

normal (9/35) *** normal (0/14) normal (0/10)
mild (9/35) mild (3/14) mild (1/10)

moderate (12/35) moderate (7/14) moderate (0/10)
severe (5/35) severe (4/14) severe (9/10)

Movement disorders

ataxia (18/28) ataxia (16/16) ataxia (4/4)
tremor (7/28) tremor (7/16) tremor (1/5)

spasticity (6/28) ** spasticity (0/16) spasticity (4/7)
episodic ataxia (6/28) ***

CSWS (9/20) (0/11) (0/7)

cMRI

normal (20/26) normal (5/14) normal (5/10) ##

cerebellar atrophy (2/26) cerebellar atrophy (8/14) cerebellar atrophy (5/10)
hippocampal sclerosis (1/26) subcortical white matter lesions (1/14)

DNET (1/26), other (2/26)

Additional findings

- short stature and growth hor-
mone deficiency, subclinical hy-
pothyroidism (Syrbe et al., P4)

- scoliosis, kyphosis, genu val-
gum (Masnada et al., P12)

- facial dysmorphism
(Masnada et al., P20)

- episodic ataxia (Corbett et al.)
- facial dysmorphismes (Syrbe

et al., P2)

- bilateral optic atrophy
(Masnada et al., P22,23)

- hereditary spastic paraplegia
(Helbig at al., P1–5; Manole et al.)

- small nose and mouth, hepatic
lesion of unknown origin (Mas-
nada et al., P15)

- microcephaly

- autism spectrum disorder (Hel-
big et al., P2)

- autism spectrum disorder (Ngo)

The number of cases with specific clinical features is stated in relation to number of cases with available information concerning this feature.
Responsive to treatment was defined as reported significant reduction of seizures. CSWS: continuous spikes and waves during slow sleep.
DNET: dysembryoplastic neuroectodermal tumor. P: patient, m: months; ** p.(Arg294His); *** p.(Met255_Ile257del); ## due to neonatal
epilepsy onset, cMRI was performed in first months of life.
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2.4. Prediction of Functional Relevance of KCNA2 Variants

To evaluate the likelihood of pathogenic variant effects, we combined the distribution
of known pathogenic and benign variants with computational pathogenicity scores for all
biologically possible missense variants of KCNA2. The REVEL meta-score combines variant
annotations of 13 individual pathogenicity scores and showed high overall performance in
the discrimination of pathogenic and benign variants in large clinical datasets [42,43]. High
REVEL scores overlap with areas of pathogenic variant enrichment in KCNA2 (Figure 3).
Several peaks, corresponding to the voltage sensing domain (S4), the pore-loop (S5-S6)
and the ion conducting pore with the gating mechanism (S5 and S6), were identified and
are supported by similar tendencies in the evaluation of further established pathogenicity
scores, such as CADD, M-CAP, PolyPhen, and SIFT (Figure S1). The density of putatively
benign variants from the gnomAD database (green) shows enrichment at the less conserved
N- and C-termini. In one specific region within S5, putatively benign variants are enriched,
mainly being the result of tolerated changes at position Ala329.

Int. J. Mol. Sci. 2021, 22, 2824 9 of 17 
 

 

 
Figure 3. Distribution of pathogenic and benign (tolerated) KCNA2 variants along the primary structure. (A) Density of 
pathogenic variants reported in Pubmed, HGMD, and ClinVar (red). (B) Linearized KCNA2 protein model including cy-
toplasmic (orange) as well as transmembrane and pore (green) domains. The amino acid position and description of pre-
viously published variants and variants reported here are highlighted in red (top) and violet (bottom), respectively. (C) 
Density of tolerated variants reported in gnomAD (light green). (D) Polynomial regression model of the REVEL ensemble 
pathogenicity score for all possible missense variants according to their position in the linearized Kv1.2 protein. Enrich-
ment of disease-associated variants can be observed in the transmembrane domains S4–6 and the pore loop. Distribution 
of pathogenic compared to benign variants is mainly reciprocal. REVEL scores approximately recapitulate pathogenic 
variant distribution. 

3. Discussion 
Recently, different neurological disorders, including epilepsy syndromes, ataxia, and 

hereditary spastic paraplegia were associated to Kv1.2 channel dysfunction. In this study, 
we present additional patients with known and novel KCNA2 variants. By analyzing phe-
notypic, functional, and genetic data from all published reports and novel cases, we refine 
and further delineate phenotypic and functional subgroups. Overall, the most prevalent 
manifestation was early-onset developmental and epileptic encephalopathy in combina-
tion with inconstant movement and motor disorders, mainly ataxia. Similar to other dis-
orders related to voltage-gated ion channel genes (e.g., KCNA1, KCNQ2), a continuous 
spectrum from mild to severe neurologic manifestations and paroxysmal movement dis-
orders can be delineated [44,45]. By comparing phenotypic characteristics from patients 
with functional data on mutational effects, carriers of variants leading to complex and 
mixed channel dysfunction that are associated with a gain and loss of potassium conduct-
ance more often show early developmental abnormalities and an earlier onset of epilepsy 
compared to patients with pure loss-of-function or pure gain-of-function variants, respec-
tively. 

Figure 3. Distribution of pathogenic and benign (tolerated) KCNA2 variants along the primary structure. (A) Density
of pathogenic variants reported in Pubmed, HGMD, and ClinVar (red). (B) Linearized KCNA2 protein model including
cytoplasmic (orange) as well as transmembrane and pore (green) domains. The amino acid position and description of
previously published variants and variants reported here are highlighted in red (top) and violet (bottom), respectively. (C)
Density of tolerated variants reported in gnomAD (light green). (D) Polynomial regression model of the REVEL ensemble
pathogenicity score for all possible missense variants according to their position in the linearized Kv1.2 protein. Enrichment
of disease-associated variants can be observed in the transmembrane domains S4–6 and the pore loop. Distribution
of pathogenic compared to benign variants is mainly reciprocal. REVEL scores approximately recapitulate pathogenic
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3. Discussion

Recently, different neurological disorders, including epilepsy syndromes, ataxia, and
hereditary spastic paraplegia were associated to Kv1.2 channel dysfunction. In this study,
we present additional patients with known and novel KCNA2 variants. By analyzing
phenotypic, functional, and genetic data from all published reports and novel cases, we
refine and further delineate phenotypic and functional subgroups. Overall, the most
prevalent manifestation was early-onset developmental and epileptic encephalopathy
in combination with inconstant movement and motor disorders, mainly ataxia. Similar
to other disorders related to voltage-gated ion channel genes (e.g., KCNA1, KCNQ2),
a continuous spectrum from mild to severe neurologic manifestations and paroxysmal
movement disorders can be delineated [44,45]. By comparing phenotypic characteristics
from patients with functional data on mutational effects, carriers of variants leading
to complex and mixed channel dysfunction that are associated with a gain and loss of
potassium conductance more often show early developmental abnormalities and an earlier
onset of epilepsy compared to patients with pure loss-of-function or pure gain-of-function
variants, respectively.

3.1. Novel Cases of KCNA2 Variants and Clinical Presentation

We here report seven children with three known pathogenic variants and two novel
variants in KCNA2. The variant p.(Tyr417Cys) was identified in a three-year-old boy (#1)
with benign epilepsy of infancy (BFIS) and normal development. No other variants in
known genes for BFIS were identified. The variant was inherited from an unaffected father.
It is classified as a variant of unknown significance (VUS) according to the American
College of Medical Genetics and Genomics (ACMG) (PM2, PP2, PP3) [46]. This variant
is located at the cytosolic border of S6 in a region enriched for pathogenic variation and
is predicted as damaging (Figure 3D, Table S1). The amino acid Tyr417 is spared from
variation in the gnomAD database. Previous functional investigations of the homologous
amino acid exchange in drosophila p.(Tyr485Cys) have shown that cysteine replacement
of tyrosine at this position leads to a slight reduction of single channel conductance (γ),
an increased deactivation rate, and a small decrease in the time constant for “ON gating
currents” [47,48]. The clinical phenotype with self-limiting infantile-onset seizures in this
boy is partially overlapping with the mild end of KCNA2-related epilepsy. Therefore, a
role of the specific KCNA2 variant p.Tyr417Cys in benign infantile epilepsy (BFIS) appears
possible, with a reduced penetrance, similar to other known genetic causes of infantile
seizures such as PRRT2 [49], SCN2A [50], and SCN8A [51]. The novel variant p.(Pro407Ala)
was found in a three-year-old girl (#2) with neonatal-onset developmental and epileptic
encephalopathy and profound intellectual disability (ID). The variant occurred de novo
and has not been described before. It is absent from controls in the gnomAD database
and predicted as damaging. According to ACMG criteria, this variant is likely pathogenic
(PM6, PM2, PP2, PP3) [46]. The variant leads to an exchange from proline to alanine
at position 407 within a region that is enriched for pathogenic variants. It disrupts the
highly conserved proline(405)–valine(406)–proline(407) (PVP) motif, which is essential for
channel gating. Variants affecting prolines in the PVP motif and in closely related residues
have been identified in KCNA2- and recently in KCNA1-associated early-onset epileptic
encephalopathy [16,23,36,39,52]. Previous in vitro data of p.(Pro407Ala) in the Shaker Kv-
channel suggested a non-conducting mutant channel as the underlying dysfunction [53].
This novel variant underlines the importance of the PVP motif regarding channel function.

The variant p.(Pro405Leu) affects the first proline of the PVP motif. We report two
additional children with infantile-onset epilepsy and prolonged febrile seizures, harboring
this recurrent variant. One of the two children had moderate intellectual disability, while
the other one was described as normally developed. The mean age at seizure onset in
all reported individuals with p.(Pro405Leu) was 9 months, and the main seizure types
included focal and generalized seizures as well as febrile seizures. Continuous spikes and
waves during sleep (CSWS) were reported in 8/13 individuals [13,16,23,34,37,38]. While
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both our cases with p.(Pro405Leu) show sleep-activated spikes, CSWS was incomplete or
unilateral, reflecting a milder epilepsy syndrome and suggesting interindividual variability.

We identified the variant p.(Arg297Gln) in a 9-year-old male patient (#5) with infantile
onset epileptic encephalopathy and ataxia, showing significant overlap to previously reported
individuals with this GOF variant, who constantly developed ataxia [3,13,14,16,24–29].

In twins, one boy and one girl (#6 and #7), we identified the recurrent variant c.881G>A;
p.(Arg294His), which was described previously in families with hereditary spastic paraple-
gia [15,20]. Similar to family 3 from Helbig et al., the presenting symptom in both children
was epilepsy with different focal and generalized seizure patterns, including absences and
status epilepticus. While previous reports showed spastic paraplegia (6/7 individuals)
and ataxia (4/7 individuals) as prominent manifestations, we here present two additional
cases with seizures that included tonic–clonic and absence seizures in both children [15].
Interestingly, ataxia was present in the boy only, and ataxia was markedly worsened when
valproate was temporarily applied, resembling absence epilepsy with ataxia (AEA) due to
loss-of-function mutations in CACNA1A [54]. Similar to previous AEA families, intrafa-
milial variability was present, as the girl showed isolated seizures with age-appropriate
cognitive development, the boy had a severe complex developmental disorder, and the
father did not show neurologic symptoms. The further family history revealed a sister
of the unaffected father who had intellectual disability and an unspecified movement
disorder. The mother of the father (grandmother of the reported twins) had a progressive
gait disorder from advanced age resembling spastic paraplegia. Unfortunately, genetic
testing was not available.

3.2. Functional Classification and Phenotypic Spectrum of Published KCNA2 Variants

Previously, three distinct subgroups of KCNA2 variants with a genotype–phenotype
correlation based on the electrophysiological channel properties were suggested [16]. We
here analyze all available clinical reports and accordingly are able to group cases into
these functional subgroups (LOF, GOF, and LOF/GOF). We show significant differences
between subgroups regarding development before seizure onset, age at seizure onset,
seizure outcome (seizure freedom), and intellectual disability. The combined dysfunctional
effects of LOF/GOF variants are leading to more severe phenotypes compared to simple
LOF or GOF variants. However, isolated LOF or GOF effects on Kv1.2 both lead to epileptic
encephalopathy as well. Recently, Shore et al. (2020) provided data, showing how GOF
variants can lead to epilepsy [55]. By expressing known epilepsy-causing KCNT1-gain-
of-function variants in excitatory and inhibitory neurons, they were able to demonstrate
specific mutational effects affecting inhibitory neurons only, especially interneurons with
fast-spiking activity, promoting network hyperexcitability and hypersynchronicity. Cell-
type-specific functional changes from distinct variants might also explain the more severe
epilepsy course in children carrying variants with mixed LOF and GOF effects. It can be
hypothesized that specific effects dominate in different neuronal subpopulations, leading
to an impaired GABA-ergic response from interneurons on one side and to impaired
glutamatergic transmission in excitatory neurons on the other side, affecting different
inhibitory and excitatory networks. Interestingly, the homologous shaker mutation of
the LOF variant p.(Arg294His) was shown to lead to proton currents in addition to the
pure loss-of-Kv1.2 function when expressed in Xenopus laevis oocytes [15,56]. These
effects are difficult to assess by most in vitro models, but in vivo neuron-subtype-specific
dysfunctional effects with a loss of net potassium currents and additional a gain-of function
from leaky proton currents might explain that the children described here exhibit focal and
generalized absence seizures, which were previously attributed to gain-of-function effects
in Kv1.2.

Apart from the electrophysiological classification of variants, which allows assigning
some phenotypic features, recurrent variants in each functional subgroup show distinct
variant-specific characteristics. Individuals with the variant p.(Pro405Leu) are more likely
to have febrile seizures and CSWS than other individuals in the LOF subgroup. Individuals
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with the variant p.(Arg294His) developed spastic paraplegia and ataxia as prominent
manifestations. Seizures were described only in two previously reported cases [15] and in
the two individuals reported here. Five individuals with the variant p.(Met255_Ile257del)
presented with episodic ataxia, normal intellectual abilities and self-limited epilepsy, form-
ing another distinct phenotype. In the GOF subgroup, apart from two individuals, all
carried the recurrent variant p.(Arg297Gln). Therefore, characteristics of this subgroup
are largely based on this variant. In the LOF/GOF subgroup, all but one individual with
the variant p.(Thr374Ala) (n = 7) had neonatal refractory epilepsy. All showed severe
intellectual disability, and in four of seven individuals, spastic cerebral palsy was reported
(see Table S2: Summary of clinical data).

3.3. Prediction of Functional Relevance and Modelling of KCNA2 Variants

By combining the distribution of known pathogenic and benign variants with pre-
diction scores for all possible missense variants, we further define protein regions with
enrichment of pathogenic variants and highly predicted mutational effects, such as the
voltage-sensing domain, the pore-loop, and the pore-forming domains. Both novel vari-
ants described here are affecting residues within these regions. Homology modeling of
p.(Pro407Ala) and p.(Pro417Tyr) suggests effects on protein stability and protein structure
of Kv1.2 (Figure 1). Importantly, we here complement the phenotypes associated with
variants in both prolines of the PVP motif that similar to KCNA1 are linked to severe early
onset developmental and epileptic encephalopathy [52].

4. Materials and Methods
4.1. Database Research

Reports and entries of KCNA2 variants containing clinical and/or genetic data were
identified using PubMed, Human Gene Mutation Database (HGMD), and ClinVar (Figure 4).
PubMed literature research was performed using the keywords “KCNA2” and “voltage-
gated potassium channel Kv1.2”. ClinVar database entries were selected for variants
classified as “pathogenic” or “likely pathogenic”. Reported variants were checked for
duplicate mentions. Data acquisition was finished 30 April 2020. In addition, we collected
clinical and genetic data from seven previously unpublished cases from European epilepsy
centers with putatively causative variants in KCNA2. After the exclusion of one individual
with a paternally inherited variant of uncertain significance (VUS) and all individuals
without sufficient clinical information (37 ClinVar, 8 HGMD/Pubmed), 76 individuals were
included into further statistical analyses (Figure 4).

Individuals were classified according to functional consequences of the mutated Kv1.2
channel when functional data from in vitro analysis were available. Quantitative variables
are illustrated by sample size, mean, and standard deviation. Statistical comparisons
between means of two cohorts were performed with Welch’s two-sample t-test. Frequencies
of descriptive variables are depicted with number, sample size, and percentages. Statistical
comparisons of the frequency of descriptive variables between cohorts were conducted
using the two-tailed Fisher’s exact test.
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4.2. Computational Pathogenicity Analysis and 3D Protein Structure Modeling

To visualize differences in variant distribution between affected individuals and unaf-
fected controls, we compiled all currently known pathogenic and benign KCNA2 variants
and their respective allele count using the databases PubMed, HGMD, ClinVar, and gno-
mAD. gnomAD variants referring to the canonical Ensembl transcript ENST00000485317.1
were selected by the categories “Missense” and “pLOF” (excluding frameshift variants).
Variants were standardized to the NM_004974.3 transcript of the GRCh37/hg19 human
reference genome using the Mutalyzer Nomenclature Checker web tool [57]. Addition-
ally, all biologically possible missense variants of the KCNA2 coding sequence were
computed and translated to the corresponding genomic position. Subsequently, estab-
lished variant effect prediction (VEP) scores (REVEL, CADD, MetaLR, MetaSVM, M-
CAP, PolyPhen-2, SIFT) were annotated using the VEP web tool of Ensembl Release 101
(http://grch37.ensembl.org/Tools/VEP, accessed on 18 January 2021; versions: dbNSFP v.
4.1a, REVEL v. 3.5a, CADD v. 1.6, M-CAP v. 1.3, PolyPhen-2 v. 2.2.2, SIFT v. 5.2.2) in order
to evaluate the likelihood of pathogenic variant effects [58–65]. Resulting VEP scores of the
canonical Ensembl feature and variant distributions were plotted along the primary struc-
ture of the Kv1.2 protein using the geom_smooth and geom_density function, respectively, of
the ggplot2 library in RStudio (v. 1.2.5042; RStudio, Inc., Boston, MA, USA) [66]. The REVEL
meta-score demonstrated high overall performance regarding discrimination between
pathogenic and benign single nucleotide variants in large clinical variant datasets [43].
Therefore, the REVEL score is primarily used in this study to assess the pathogenicity
of variants. A complementary synopsis of all annotated VEP score results is depicted in
Supplementary Figure S1.

Localization and structural consequence of the identified KCNA2 missense variants
p.(Pro405Leu), p.(Pro407Ala), and p.(Tyr417Cys) in the quaternary protein structure were
analyzed and visualized using PyMol (v. 2.5.0a; Schrödinger, LLC, New York, NY, USA)
installed through Anaconda (v. 2020.11 with Python 3.8.5; Anaconda Inc., New York, NY,
USA) and the existing PDB template 3LUT (chain B: α-subunit) of rat Kv1.2.

http://grch37.ensembl.org/Tools/VEP
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5. Limitations

Due to limited and heterogeneous quality of data in publications, phenotypic features
might not have been completely accessible. Therefore, the number of patients with avail-
able information is specified with each clinical feature. Due to differing age at imaging, the
detectability of cerebellar changes might vary between reports. Despite the reasonable abil-
ity of the software programs to predict pathogenicity, they still cannot discriminate among
functional LOF, GOF, and LOF/GOF-type variants. This is a critical limitation of computed
predictions of variant effects in clinical practice and for genetic counseling. Furthermore,
some recurrent variants represent a significant proportion of the cohort and variant-specific
effects may dominate the phenotypic presentation of the whole functional subgroup.

6. Conclusions

Our study provides further insights into the clinical spectrum, genotype–phenotype
correlations, variability, and predicted functional impact of KCNA2 variants. The loca-
tion of variants reported here highlights the importance of the PVP motif in transmem-
brane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures
suggests a continuous clinical spectrum of KCNA2-related disorders. The prediction of
functional relevance of variants allowed us to identify hotspots of functional impact and
recurrent mutations.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/14
22-0067/22/6/2824/s1, Figure S1: synopsis of all annotated variant effect prediction (VEP) scores
REVEL, CADD, MetaLR, MetaSVM, M-CAP, PolyPhen-2, SIFT. Table S1: Variant effect prediction
scores. Table S2: Summary of clinical data.
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