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The antimicrobial resistance (AMR) crisis from bacterial pathogens is frequently

emerging and rapidly disseminated during the sustained antimicrobial exposure

in human-dominated communities, posing a compelling threat as one of the

biggest challenges in humans. The frequent incidences of some common but

untreatable infections unfold the public health catastrophe that antimicrobial-

resistant pathogens have outpaced the available countermeasures, now

explicitly amplified during the COVID-19 pandemic. Nowadays,

biotechnology and machine learning advancements help create more

fundamental knowledge of distinct spatiotemporal dynamics in AMR

bacterial adaptation and evolutionary processes. Integrated with reliable

diagnostic tools and powerful analytic approaches, a collaborative and

systematic surveillance platform with high accuracy and predictability should

be established and implemented, which is not just for an effective controlling

strategy on AMR but also for protecting the longevity of valuable antimicrobials

currently and in the future.
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Introduction

The increasing prevalence of antimicrobial resistance (AMR) among bacterial

pathogens poses one of the greatest threats to public health all over the world (Yue

et al., 2021; Resistance, 2016), mainly because of the overuse of broad-spectrum

antibiotics and potential antimicrobial-bacterium mismatch in empirical selections

(Pan Hang et al., 2018; Jiang et al., 2019; Wang et al., 2019). Scientific reports

indicate that death due to ineffective treatment of multidrug-resistant bacteria reaches

over 100 cases daily in the European Union and the United States of America. Meanwhile,
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the increasing resistance to the “last-resort” antibiotics

continuously concerns public health worldwide (Biswas et al.,

2019; Elbediwi et al., 2019; Elbediwi et al., 2020).

To identify common AMR and guide diagnostics and effective

treatment for bacterial infections, a gold-standard laboratory test used

to determine the antimicrobial sensitivity of AMR organisms, termed

antimicrobial susceptibility tests (AST), has been adopted in clinics

for over 50 years. Traditional AST involves broth microdilution and

disc diffusion on agar to determine the minimum inhibitory

concentration (MIC). The MIC value indicates the lowest

concentration of antibiotics where bacterial growth stops, and the

growth level is usually measured by absorbance or light scattering.

Before and during testing, multiple turnarounds of culturing the

bacteria in the sample and isolating colonies and growth needed to be

accomplished before AST. The whole pipeline takes at least 48 h,

which usually provides the results after using an empirical

prescription of antibiotics that might be misused. It has been

estimated that around one-fifth of prescribed antibiotics from

2013 to 2015 were inappropriate in the United Kingdom

(Smieszek et al., 2018). Also, currently, with over 500 million

infected cases, COVID-19 has increased the setbacks in fighting

against AMR (Knight et al., 2021; Ma et al., 2021). As many patients

suffering from COVID-19 are being prescribed inappropriate

antibiotics, this scenario might surge drug-resistant infections

during the pandemic (Kariyawasam et al., 2022), particularly in

developing countries where people lack antimicrobial stewardship

programs and reliable diagnostics. Numerous AMR-associated

outbreaks have been reported during the COVID-19 pandemic,

such as carbapenemase-producing Enterobacteriaceae (Farfour

et al., 2020; Tiri et al., 2020), highlighting the urgent demand for

an efficient AMR surveillance system.

With decreasing sequencing costs and advancements in

bioinformatics toolkits, whole-genome sequencing (WGS) for

AMR diagnosing has been considered an efficient avenue for

combating AMR (Schurch and van Schaik, 2017). The genotype-

based alternative promises a quicker AMR detection than

phenotypic AST by bypassing routine culturing for early

detection and providing genomic insights into the mechanisms

of AMR action, as well as critical clinical information, including

pathogen species and virulence factors (Li et al., 2022). Utilizing the

increasing WGS data and robust computerized analysis, machine

learning has emerged to address the global AMR increase (Ren et al.,

2021). It is a subfield of artificial intelligence focusing on developing

algorithms to provide accurate and reliable predictions for clinical

decisions. Conceptually, the genotype-based machine learning

pipeline primarily requires the following steps: data selection

(e.g., single-nucleotide polymorphisms and MIC value); encoding

to be interpreted by algorithms; data training for model

construction; evaluation and optimization by other dataset (Ren

et al., 2021). The key challenge of these genotypic strategies that rely

on the detection of AMR genes or SNPs to predict AMR phenotypes

is the prevalent discrepancy between genotype and phenotype,

which may produce detrimental effects on patients by prescribing

inappropriate or unnecessary broad-spectrum antimicrobials (Yee

et al., 2021). The phenotype of an organism is the observed

expression of its genotype but is affected by multiple

environmental variables (Davis et al., 2011; Rapun Mas et al.,

2019; Urmi et al., 2020). The significance of the

genotype–phenotype relationship emphasizes both their inherent

correlation and the intricate uncertainty that should not be ignored

but evaluated especially upon fighting AMR. Furthermore, AMR

strains like Pseudomonas aeruginosa exhibit high plasticity of

resistance phenotype driven by environmental changes (Dotsch

et al., 2015). Overall, these phenomena suggest that bacteria may

prefer different survival strategies under pressure circumstances.

Various environmental signals, including antimicrobial and non-

antimicrobial compounds, could significantly affect various

susceptible phenotypes (Paudyal and Yue, (2019); Berendonk

et al., 2015). AMR bacteria is an essential evolutionary outcome

under selection pressure, and numerous unknown factors are

involved, which implies limitations of single-dimension

surveillance and diagnostic approaches. Therefore, more

information on specific bacteria-host or -environment dynamics

should also be considered to predict AMR.

The COVID-19 pandemic has seriously affected global

efforts against AMR (Tomczyk et al., 2021), magnifying the

insufficiency of available AMR surveillance capabilities.

Accurate and rapid identification of antimicrobial resistance is

still highly demanded, and a fine-tuned surveillance system

remains the top priority of global public health. Since the

culture-dependent traditional approaches cannot cope with

the new challenge, various emerging novel methods have

shown potential to solve the dilemma. Herein, we summarize

these methods and propose an informed database/platform of

resistant strains coordinated with reliable rapid molecular assays,

multi-omics analysis, and machine learning to improve the

performance of the established AMR surveillance system.

Traditional phenotypical diagnostics

Traditional phenotypical diagnostics require isolating the initial

bacterial colony from a clinical sample after incubation on a solid

medium overnight. For the following broth microdilution assay, the

monomicrobial cell is suspended under serial 2-fold dilutions with

testing antibiotics in micro-wells. The lowest concentration of

antibiotics in which bacteria cannot grow is recorded as the MIC

value. For disc diffusion assay, the bacteria is spread onto an agar

plate containing a fixed antibiotic concentration. After culturing

overnight, the diameter of the circle zone of inhibition is

measured. These two results are usually the basis for selecting

effective antibiotics for bacterial infections. These traditional

diagnoses of antimicrobial susceptibility of AMR strains have long

relied on bacteria culturing, which is a time-consuming and labor-

intensive process (Burnham et al., 2017). Moreover, the time lag of

bacteria growth required for the conventional standard test may
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change the susceptibility to antimicrobials, particularly for important

pathogens such as Yersinia pestis (Inglesby et al., 2000) and

Mycobacterium tuberculosis (Votintseva et al., 2017). Although the

culture-based antimicrobial susceptibility test used in clinical

laboratories produces reproducible results, these assays in vitro

cannot approximate the complicated interaction between

microorganisms and the host in the tissue (Burnham et al., 2017),

whichmay ultimately direct wrong drug selection (Wang et al., 2019;

Elbediwi et al., 2021; Xu et al., 2021; Chen et al., 2022).

To tackle the dilemma of traditional phenotypical diagnostics,

microbiologists have made novel efforts on establishing effective

AST methodologies. Thore et al. (1977) found that ampicillin

treatment induces a significant decrease of intracellular ATP, and

an increase in inhibitory zone diameters, according to which they

developed the luciferase assay-aided AST by measuring intracellular

ATP of bacteria. For antifungal drug testing on Candida albicans,

Pore established a flow cytofluorometric susceptibility test (FCST)

by determining the cellular fluorescence intensity owing to

antibiotic-caused membrane damage and the resulting uptake of

propidium iodide or rose Bengal (Pore, 1990). To rapidly detect

antibiotic resistance ofM. tuberculosis, Riska et al. (1999) used phage

with the luciferase reporter to infect the bacteria, and the causal

detectable light indicates the infection quantitatively. Fredborg et al.

(2013) introduced a real-time optical detection system to image

bacterial growth and antimicrobial susceptibility. The automatically

generated graphs supported by imaging material showed the

antibiotic effects on bacteria, and it was able to screen

96 bacteria–antibiotic combinations at once. Idelevich et al.

(2017) developed a methodology based on the

BacterioScanTM216R laser scattering technology and following

statistical analysis to rapidly discriminate the resistant and

susceptible phenotypes of Gram-positive bacteria. Kang et al.

(2019) built a droplet microfluidic device consisting of four

integrated microdroplet arrays with each holding over

TABLE 1 Brief summary of different phenotypic detection technologies.

Technology Short description Advantage Disadvantage References

Disk diffusion method
with short incubation

Measure the inhibition zones after short-
time incubation

Relatively rapid A poorly controlled, unstandardized
technic

Barry
et al. (1973)

The firefly luciferase ATP
assay

Growth of microorganisms is paralleled
by an increase in ATP levels, and the
level of ATP can be determined by the
light produced by luciferase assay

Simple and highly sensitive In many bacterial strains,
accumulation of extracellular ATP may
be prevented by the presence of ATP-
ase activity

Thore
et al. (1977)

Flow cytometry Use flow cytometry to detect the
membrane damage caused by drugs
through increased cellular fluorescence

New and rapid;
Improved sensitivity and
standardization of the susceptibility test
for the relatively large-celled fungi

PI and RB might be toxic to fungi upon
binding to internal cell contents

Pore, (1990)

Luciferase Reporter
Phage

When infected with mycobacteria, it will
produce quantifiable light, the Bronx
Box can detect the light

Rapid, reliable, inexpensive, simple, and
low-tech manner

Lack of further validation Riska
et al. (1999)

Digital time-lapse
microscopy

System introduces real-time tracking
bacterial growth and antimicrobial
susceptibility and generated graphs

The oCelloScope system is faster,
portable, and requires low sample
volumes to perform high-throughput
bacterial susceptibility testing

The system is only suited for the
imaging of fluid samples

Fredborg
et al. (2013)

Microfluidic agarose
channel system

Immobilize bacteria in microfluidic
culture chamber, track single-cell growth
by microscopy, and analyze the time
lapse images of single bacterial cells to
determine MICs

Fast and accurate Low throughput and not friendly to use Choi
et al. (2013)

Forward Laser Scattering Use narrow angle forward laser
scattering to measure the light scattered
from bacteria suspended in a liquid
sample

The device is easy-to-use and has
compact design and greatly shortens the
time of AST

Unable to detect multiple resistance
phenotypes

Idelevich
et al. (2017)

MALDI-TOF MS direct-
on-target microdroplet
growth assay

Incubate the microorganisms on
MALDI-TOF MS target and then detect
the microorganisms grown by MALDI-
TOF MS.

Rapid and accurate This study uses only two different
species

Idelevich
et al. (2018)

Accelerate Pheno™
system

Transfer the BCB supernatant to a vial
that is introduced into the device, then
test automatically

Easy-to-use and fast The number and characteristics of
included samples in the study are
limited

Descours
et al. (2018)

Highly parallelized
droplet microfluidic
platform

Load water-in-oil droplets into four
parallel arrays and then monitor the
bacterial growth through the time-lapse
imaging function

Fast and consumes less; screen four
bacteria/drug combinations
simultaneously

Only allow to detect the presence of a
small proportion of resistant
phenotypes; operation complexity

Kang
et al. (2019)
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8,000 docking sites, which was capable of screening four antibiotics/

pathogens simultaneously and assessing antibiotic sensitivity in

15–30 min. Greater flexibility can be achieved by operating

microdroplet arrays individually or jointly. Combined with

different aptamers, it has been divided into droplet microfluidics

active microfluidics, paper microfluidics, and capillary-driven

microfluidics (Han et al., 2021). But it has not been fully applied

in clinical settings because of fabrication and operational complexity

and less portability (Needs et al., 2020). More phenotypical

diagnostics methods are summarized in Table 1.

DNA-based detection

Offering speed and accuracy advantages compared with the

traditional gold-standard phenotypic assay, molecular detection on

the genetic determinants of resistance phenotype has beenwidely used

in clinical settings. These DNA-based molecular assays can be

primarily classified into three major platforms according to their

underlying mechanics: polymerase chain reaction (PCR) or RT-PCR

(Waseem et al., 2019), microfluidics-supported (Bai et al., 2022), and

clustered regularly interspaced short palindromic repeats (CRISPR)-

based methodologies (Kaminski et al., 2021). PCR has been

extensively used today as a laboratory routine to identify bacteria

frommultiple environments and resistance genes (Rohde et al., 2017).

Multiplex PCR, an optimized PCR by adding several primers, was

described to detect nine clinically antibiotic resistance genes of

Staphylococcus aureus in a single run including mecA (encoding

methicillin resistance), aacA-aphD (aminoglycoside resistance),

tetK, tetM (tetracycline resistance), erm(A), erm(C) (macrolide-

lincosamide-streptogramin B resistance), vat(A), vat(B), and vat(C)

(streptogramin A resistance) (Strommenger et al., 2003). With the

high-throughput trait of microfluidic technology and rapid

amplification at low temperature (37–42°C) of recombinase

polymerase amplification (RPA), RPA-based microfluidics has

been reported to identify M. tuberculosis by targeting 16 S rRNA

with a sensitivity of 11 CFU/ml in 25min (Tsaloglou et al., 2018);

10 copies of methicillin-resistant S. aureus DNA mixed with human

whole blood were detected in 30min by probing related SNP (Yeh

et al., 2017); the major pathogenic bacteria in urinary tract infections

Escherichia coli, Proteus mirabilis, P. aeruginosa, and S. aureus were

successfully detected with detection limits of 100 CFU/ml from urine

samples within 40min by similar assay (Chen et al., 2018). The two

leading platforms CRISPR-Cas13 based SHERLOCK (specific high-

sensitivity enzymatic reporter unlocking) and CRISPR-Cas12 based

DETECTR (DNA endonuclease-targeted CRISPR trans reporter)

have realized that pathogen detections such as Zika and dengue

viruses, bacterial isolates (E. coli;Klebsiella pneumoniae; P. aeruginosa;

M. tuberculosis; S. aureus), AMR genes (K. pneumoniae

carbapenemase and New Delhi metallo-beta-lactamase 1 (NDM-

1), and even could detect cancer mutations with attomolar

sensitivity and single-base mismatch specificity (Gootenberg et al.,

2017; Chen et al., 2018). This CRISPR-based diagnostics pipeline

involves pre-amplification of the target sequence, target recognizing,

and cleaving by Cas nuclease, and result visualization. Once the target

sequence is base-paired with the guide RNA of the CRISPR complex,

the Cas protein cleaves the surrounding reporters (described as

“collateral cleavage”), resulting in a detectable signal as a positive

detection. CRISPR-Cas12 has already been used to diagnose M.

tuberculosis with a sensitivity of two copies (Ai et al., 2019) and

identify subspecies of the bacterium by targeting rpoB and erm genes

(Xiao et al., 2020). Curti et al. (2020) successfully applied CRISPR-

Cas12a to identify carbapenem-resistant genes such as blaKPC,

blaNDM, and blaOXA of K. pneumoniae at a pM level within

30min. Shen et al. (2020) proposed a Cas13a-based system

termed as APC-Cas by integrating an allosteric probe, and it was

able to detect Salmonella inmilk samples with single-cell sensitivity. A

brief introduction of other differentmolecular assays is summarized in

Table 2.

WGS emerges as a powerful tool for understanding the genetic

makeup of bacteria AMR. As the high-throughput sequencing

technology developed in the mid-2000 s, it can illustrate a

landscape of the whole resistome in a couple of days with a

sophisticated downstream bioinformatic pipeline (Chan, 2016;

Goodwin et al., 2016). The new advancement in sequencing

technology shortens the time of the whole procedure from days to

a few hours (Shendure et al., 2017). According to these known genetic

determinants, mass software tools have been designed to detect and

predict drug resistance (Henry et al., 2014; Sallet et al., 2019). An

immense amount of sequencing data generated annually is used to

build a global genotype–phenotype database contributing to a

worldwide surveillance system on the AMR strains (Gardy and

Loman, 2017). Once the public-health-threatening “criminal” is

identified by fingerprinting with a genetic test, its AMR profile will

be provided for treatment by the database in time. The Antibiotic

Resistance Monitoring, Analysis, and Diagnostics Alliance (https://

joinarmada.org/), a nonprofit global organization combatting

superbugs with a database of bacterial genomes, has been

established to create a specific “criminal database” of AMR

pathogens, collecting an unprecedented amount of bacterial strains

and details of their antibiotic resistance profiles, genetic identity and

epidemiology from a global network of hospitals, veterinarians,

scientists, and other advocates. Alcock et al. (2020) developed the

Comprehensive Antibiotic Resistance Database providing data of

curated reference sequences and SNPs, models, and algorithms,

helping users with genotype analysis and phenotype prediction of

AMR. The notable AMR databases also include ResFinder (Zankari

et al., 2012), ARG-ANNOT (Gupta et al., 2014), the and National

Center for Biotechnology Information Pathogen Detection Reference

Gene catalog (Sayers et al., 2022). These primary AMR databases

curate information from the scientific research into the collection for

further sequence analysis and knowledge integration. WGS has also

been applied for the risk assessment of probiotic lactic acid bacteria

(Peng et al., 2022). However, to detect the genetic determinants of

AMR, knowledge or prior research regarding which gene is

responsible for the resistance is required for the method before
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diagnostics. Since complex features and mechanisms of AMR remain

obscure, the genotype–phenotype method seems less valuable than

expected for AMR identification (Wu et al., 2021; Hu et al., 2022).

Machine learning facilitates the
underappreciated antimicrobial
resistance prediction

Learning essential characteristics directly from the data of

genomic sequences, machine learning obviates the need for prior

knowledge of resistant strains caused by unknown mechanisms.

It has been proven valuable for predicting AMRwith an unbiased

method (Martens et al., 2016; Her and Wu, 2018; Wheeler et al.,

2018). Unlike direct detection of AMR genes, machine learning

often takes more extensive features indiscriminately into AMR

identification, such as SNP, K-mer, and pan-genome (Her and

Wu, 2018; Nguyen et al., 2019; Ren et al., 2021), and even some

parameters affecting the performance and reliability of machine

learning-based antibiotic susceptibility tests need to be evaluated

(Hicks et al., 2019). Different from the traditional DNA

alignment approach, machine learning is mathematically

oriented by algorithms including logistic regression (LR),

support vector machine (SVM), random forest (RF), and

TABLE 2 A brief introduction of different molecular detection technologies.

Technology Target Description Performance References

Multicomponent nucleic acid
enzyme-gold nanoparticle
(MNAzyme-GNP) platform

Methicillin-resistant
Staphylococcus aureus

Amplified target gene is chemically
denatured and blocked to prevent
rehybridization. When activated by
blocked amplicons, MNAzyme
cleaves the linker DNA, rendering
GNPs monodispersed. In the absence
of the target gene, the linker DNA
remains intact owing to inactive
MNAzyme and causes GNPs to
aggregate

100 DNA copies/μL Abdou
Mohamed et al.
(2021)

CRISPR-Cas9 triggered two-Step
Isothermal amplification method

Escherichia coli O 157:H7 The target virulence gene sequences
are recognized and cleaved by the
CRISPR-Cas9 sy (Sun et al., 2020)
stem and trigger strand displacement
amplification and rolling circle
amplification

4 CFU/ml Sun et al. (2020)

A clustered regularly interspaced short
palindromic repeat (CRISPR)-
mediated surface-enhanced Raman
scattering (SERS) assay

S. aureus, Acinetobacter
baumannii, and Klebsiella
pneumoniae with multidrug-
resistance

The Au MNP-dCas9/gRNA probe
and genomic DNA mixed in a single
reaction tube. Next, methylene blue
(MB) is added to the tube. Finally, the
MDR bacterial gene-bound Au
MNP-dCas9/gRNA probe is collected
with the assistance of an external
magnet, and the SERS measurement
is accomplished

fM level Kim et al. (2020)

FLASH (Finding Low Abundance
Sequences by Hybridization)

S. aureus with antimicrobial
resistance

Combines CRISPR/Cas9 and
multiplex PCR

35 copies Quan et al.
(2019)

A paper-based chip integrated with
loop-mediated isothermal
amplification (LAMP) and the “light
switch”molecule [Ru (phen)2dppz]2+

Methicillin resistant S. aureus,
E. coli, Listeria
Monocytogenes, and
Salmonella

The amplification reagents can be
embedded into test spots of the chip
in advance, thus simplifying the
detection procedure. [Ru (phen)
2dppz]2+ was applied to intercalate
into amplicons for product analysis,
enabling this assay to be operated in a
wash-free format

100 copies/μL Li et al. (2018)

Droplet Digital PCR Clarithromycin-resistant
Helicobacter pylori

A method to simultaneously quantify
H. pylori clarithromycin-resistant
(mutant) and -susceptible (wild-type)
23 S rRNA gene alleles in both
stomach and stool samples using
droplet digital PCR.

Discriminate the clarithromycin
resistance strain DNAs (A2143G,
A2142G, and A2142C) mixed with
the wild-type strain at ratio of 0:1, 1:
100, 1:10, 1:1, 10:1, 100:1, and 1:0

Sun et al. (2018)

Digital real-time loop-mediated
isothermal amplification (dLAMP)
assay

E. coli AST results can be obtained by using
digital nucleic acid quantification to
measure the phenotypic response of
samples exposed to an antibiotic for
15 min

Ultrafast (7 min) Schoepp et al.
(2017)
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convolutional neural network (CNN) (Her and Wu, 2018). In

order to confirm the WGS data to the valid format of existing

classification algorithms, these data are usually encoded before

analysis by the algorithms as mentioned above for model

construction, and standard encoding methods include Label,

One-Hot, and frequency matrix chaos game representation

(FCGR), etc., (Her and Wu, 2018). The final prediction model

will be tested and evaluated by other datasets, and the model

established might vary for different coding methods and

algorithms/classifiers involved. Leveraged with big data from

WGS or other NGS technologies, machine learning facilitates

potential AMR prediction and helps direct informed drug

decisions (Moradigaravand et al., 2018; Ren et al., 2021).

Recent literature in the field is presented in Table 3.

Clinical application of machine learning for AMR

diagnosing, preventing, and understanding still stands in the

infancy stage because of the complexity of AMR itself and the

deployment of machine learning for clinical practice. That

genomic-based machine learning aiming to predict the MIC

value is the foremost strategy for AMR prediction (Coelho

et al., 2013; Pesesky et al., 2016; Nguyen et al., 2019). But

challenges/limitations remain to be overcome. Training data,

(e.g., MIC value) might not be available for all laboratories and

sections, which would affect the clinical effectiveness of the

model, which suggests unified standardization of operating

protocols or guidelines is highly demanded. For algorithms

used in the model, different ones reach different outcomes,

indicating a comparative study of algorithms should be

conducted before applying for better accuracy. In addition, the

prediction result should be understandable to intended users. For

the breadth of machine learning prediction, studies have

primarily predicted the most common antibiotics used on a

few common bacterial pathogens, but the clinical encountered

pathogens far outrange the prediction covering. Special effort

should also be taken on the highly clinically significant

organisms, including vancomycin-non-susceptible S. aureus

(Shariati et al., 2020) and the ones with AMR phenotypic

plasticity, including P. aeruginosa (Khaledi et al., 2020).

TABLE 3 Recent progresses on ML for AMR prediction.

Strain Extracted
feature

Algorithm Predicting target Result References

E. coli Pan-genome Support Vector Machine;
Naïve Bayes (NB); Adaboost;
Random Forest

Meropenem; gentamicin;
ciprofloxacin; trimethoprim/sulfa;
ethoxazole ampicillin; cefazolin;
ampicillin/sulbactam; ceftazidime;
cefepime; piperacillin/tazobactam;
tobramycin; ceftriaxone

Support Vector Machinen for
12 drugs’ AUC: 0.67–0.82

Her and Wu,
(2018)

Naïve Bayes (NB) for 12 drugs’
AUC:0.69–0.85

Adaboost for 12 drugs’ AUC:
0.54–0.86

Random Forest for 12 drugs’
AUC: 0.51–0.82

Nontyphoidal Salmonella k-mer XGBoost Ampicillin; amoxicillin-clavulanic
acid; ceftriaxone; azithromycin;
chloramphenicol; ciprofloxacin;
trimethoprim-sulfamethoxazole;
sulfisoxazole; cefoxitin; gentamicin;
kanamycin; nalidixic acid;
streptomycin; tetracycline; ceftiofur

XGBoost for 12 drugs’ Accuracy:
0.33–0.91

Nguyen et al.
(2019)

E. coli SNP Support Vector Machine;
Logistic Regression; Random
Forest; Convolutional
Neural Network

Ciprofloxacin; cefotaxime;
ceftazidime; gentamicin

Support Vector Machine for
4 drugs’ Accuracy: 0.75–0.88

Ren et al. (2021)

Logistic Regression for four drugs’
Accuracy: 0.77–0.85

Random Forest for 4 drugs’
Accuracy: 0.77–0.92

Convolutional Neural Network
for four drugs’ Accuracy:
0.71–0.84

K. pneumoniae; A.
baumannii

k-mer Machine Classification;
Random Forest; Random
Forest Regression

Ciprofloxacin; azithromycin Three model’s Accuracy for CIP:
≥0.93; Three model’s Accuracy
for AZI: 0.57–0.94

Hicks et al.
(2019)

Bacitracin Vancomycin Protein
sequences

Support Vector Machine AMR or non-AMR Classification accuracies
87%–90%

Chowdhury
et al. (2020)

Neisseria gonorrhoeae pan-genome Logistic Regression; Random
Forest; Gradient Boosting
Decision Tree; Support
Vector Machine

Penicillin; tetracycline; cefixime;
ciprofloxacin; azithromycin

AUC and Recall values of the
training and testing datasets
were >0.80 in at least one machine
learning model for all antibiotics

Li et al. (2020)
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Furthermore, data on AMR to new antibiotics (e.g., eravacycline,

ceftazidime-avibactam, and cefiderocol) are also required to

examine in clinical settings. With the exponential increase of

available biological data, massive investments in computational

power, critical advancements in algorithm performance, and

increasing global involvement worldwide, machine learning

will accelerate the clinical diagnosis of AMR to a new level.

Transcriptomic and proteomic
approaches

The DNA-based method only detects the existence of these

potential resistance DNA traits without providing information

regarding efficient transcription, expression, and antimicrobial

susceptibility. The feedback in bacterial transcriptome and

proteome to antibiotics exposure offers real-time dynamic

information of relevant genes. Their expression change in

mRNA and protein levels is endowed with key diagnostic

values for AMR detection. Some efforts have also been made

in transcriptome and proteome, but remain limited. Steinberger-

Levy et al. (2016) established a research model by exposing

53 strains of Y. pestis to the growth-inhibiting concentrations

of ciprofloxacin for different time periods and investigates the

expression changes of specific marker genes by transcriptomic

DNA microarray analysis. Eleven transcripts with significant

change were identified as the potential biomarkers, of which

four mRNAs (recA, pla2, recN, and dinI) were selected to

determine the susceptibility by performing quantitative RT-

PCR, and the results are consistent with MIC values. Rohde

et al. (2016) used fluorescence in situ hybridization and

immunofluorescence tests to locate and quantify the mRNA

and protein existence of the TEM β-lactamase, conferring

ampicillin resistance in the E. coli. Chen et al. (2020)

performed a shotgun proteomics assay and WGS on four

isolates of Campylobacter jejuni and analyzed the data in the

Comprehensive Antibiotic Resistance Database for AMR

detection. It was found that both genomic and proteomic

approaches can identify molecular determinants responsible

for resistance to tetracycline and ciprofloxacin, in line with

their phenotypes. These methods require several steps and

analyses, which are more suitable for basic research, but not

feasible for the field application. For rapid RNA detection, the

RNA-targeting CRISPR-associated enzyme Cas13a directly binds

to the target RNA and releases the positive signal (Shinoda et al.,

2021). Combined with RT-RPA that transforms the RNA to

cDNA and amplifies DNA with primers, the DNA-targeting

enzyme Cas12a can also be applied to the RNA detections

(Malci et al., 2022). In clinical practice, rapid molecular

diagnostics help distinguish viral infections from bacterial

infections, preventing unnecessary treatment of antibiotics.

Only molecular-based methods cannot differentiate which

bacteria contain the AMR element (plasmids containing AMR

gene) in the mixed bacterial infection of clinical use. If the

carrying AMR genes among various bacterial populations can

be identified specifically, we might use a more targeting or

effective strategy against AMR increase, suggesting this field

might need further investigation.

Current challenge

A comprehensive analysis has suggested more factors to

make more precision diagnostics and informed preclinical

decisions (Sommer et al., 2017). To deal with this compiling

problem, a full-scale assessment system should be set up to

predict AMR precisely. Establishing a database on

genotype–phenotype data is a good start, but a more

comprehensive platform of AMR strain is highly needed for

the precision diagnostics of AMR. Utilizing the multi-dimension

data collected from the genome, transcriptome, and proteome

profiles of AMR bacteria isolated from hospitals, doctor offices,

clinical laboratories, communities, and veterinary sources, a

‘criminal database’ of AMR pathogens can be geographically

and phylogenetically established. After fingerprinting those

known genetic makers by rapid molecular test and sampling

information, the database will report with the best match

containing current and historical essential details, including

WGS report, pathogen, MIC phenotype, drug use and

treatment outcomes, clinical population, and other accessory

information. With the data collected from multiple sources,

bacterial AMR patterns will be well analyzed by machine

learning, enabling reliable digital models of a particular drug,

pathogen, and clinical population. Machine learning will act as

an alternative to pinpoint that unknown resistance. Surveillance

and diagnostic interaction significantly improve antimicrobial

selection and epidemiological monitoring in the pipeline. Once

database standardization is well-established, this constantly

updated global detection platform combining diagnostics,

surveillance, and prediction of AMR would improve proactive

identification andmitigate the emerging crisis of AMR (Figure 1).

From the clinical perspective, the priority is confirming

whether antimicrobial therapies are needed in a particular

case; the second is which drug is suitable for an optimized

treatment if a bacterial infection is already present.

Apparently, the most clinical urgency for patients and

physicians is not knowing which bacteria is resistant to what

antimicrobial but determining which narrow-spectrum drug can

eliminate the pathogen. Most diagnostic methods aim to identify

drug-resistant determinants of superbugs, but few studies

explored if there are any drug-susceptible determinants or

other multi-omics traits in AMR strains. These drug-

susceptible feature data can be used for model training in

machine learning, and molecular-based assays can detect

drug-susceptible markers directly. More innovative efforts are

needed in this area in the future.
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Future direction

In the coming decade, advancements in technical and

computational tools for multi-omics approaches are

continually improving knowledge regarding the diverse AMR

mechanisms and integrating a deep mechanistic understanding

of AMR determinants with a broader systematic analysis of

microorganisms. The ultimate goal will lead to a revolutionary

change in AMR diagnostics, significantly guiding the surveillance

of AMR threats and finally slowing down the rising crisis.
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FIGURE 1
ProposedAMR surveillancemodel. Variousdata onantibiotic resistancehavebeencollected into thedatabase,whichprovidesmarkermolecules to
detect AMR with clarifiedmechanism and fuels the model training of machine learning to predict the AMR with an unknownmechanism. The results of
rapidmolecular detectiononmulti-traits andother informationhelpfingerprint thepathogens, and thedatabase interfacewill report thebestmatchedor
advised treatment decision directly. Taking advantage of the rapidity ofmolecular assays and the precision ofmachine learning fueled by a constant
flow of multi-dimensional data, the AMR surveillance platform optimizes drug selection, antimicrobial stewardship, and epidemiological monitoring.
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