
Bile Acids Specifically Increase Hepatitis C Virus RNA-
Replication
Patrick Chhatwal1, Dorothea Bankwitz1, Juliane Gentzsch1, Anne Frentzen1, Philipp Schult2,

Volker Lohmann2, Thomas Pietschmann1*

1 Department of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and

the Helmholtz Centre for Infection Research, Hannover, Germany, 2 Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany

Abstract

Background: Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs
have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid
metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus
production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on
individual steps of virus replication.

Methods: We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in
the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles
(HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to
characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine
infection of Con1 particles.

Results: BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons
both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering
replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length
GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs.

Conclusions: Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full
length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may
influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.
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Introduction

Infections caused by HCV represent a serious health hazard

worldwide. With ca. 160 million chronically infected patients [1] ,

HCV is one of the major causes of chronic liver diseases. HCV is a

positive strand RNA virus with a genome of about 9.6 kb [2]. It is

a highly variable virus and therefore isolates are classified into six

major genotypes that differ in their nucleotide sequence by up to

35% [3]. Treatment of hepatitis C is based on a combination of

pegylated interferon-a (IFN- a) and ribavirin. First viral protease

inhibitors have been licensed in 2011 and substantially improve

therapy response. However, since drug resistant variants are

rapidly selected during monotherapy [4], these drugs complement

but do not replace the previous IFN-based regimen. HCV patients

that have high serum levels of BAs respond poorly to IFN therapy

[5] and are more prone to develop hepatic fibrosis [6]. BAs

therefore were suggested to play an important role in pathogenesis

and therapy response of HCV [7,8].

BAs are synthesized in hepatocytes using cholesterol as

precursor and are then secreted from the liver via the bile duct.

To increase solubility, these molecules are conjugated with glycine

or taurin prior to secretion [9]. The primary BAs in humans are

cholic acid (CA) and chenodeoxycholic acid (CDCA). Intestinal

bacteria dehydroxylate primary BAs thus converting them to

secondary BAs, such as deoxycholic acid (DCA) and lithocholic

acid (LCA). A tertiary BA, ursodeoxycholic acid (UDCA), is of

minor importance, because it only represents 3% of the total bile

acid pool in humans [10]. Besides their well-established functions

in resorption of lipid-soluble nutrients and cholesterol catabolism,

BAs also play an important role as signaling molecules

(summarized in [11]). For instance, the nuclear farnesoid X-

receptor (FXR) is activated by physiological concentrations of bile
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salts [12]. As a nuclear receptor, it regulates multiple genes which

are involved in lipid, glucose and bile acid metabolism. Notably,

the activation of FXR also leads to an upregulation of

apolipoprotein CII, which activates the lipoprotein lipase (LPL)

[13], an enzyme that has been implicated to promote HCV entry

and reduce infectivity of cell-culture derived hepatitis C virus

particles (HCVCC) [14]. Moreover, BAs repress secretion of

apolipoprotein B containing lipoproteins through inhibition of the

microsomal triglyceride transfer protein (MTP) [15]. As a

consequence, they may influence secretion of infectious HCV

particles which depends on MTP and apoB secretion [16].

Collectively, these data suggest that endocrine functions of BAs

regulate host cell pathways which may influence RNA-replication,

virus production and infectivity of HCV particles and in turn

treatment efficacy and viral pathogenesis.

The influence of BAs on HCV GT1 and GT2a subgenomic

replicons has been reported previously [7,17]. These data

suggested that selectively GT1 was stimulated by BAs while

GT2a was refractory to regulation by BAs. Moreover, it was

unclear which step(s) of the viral life cycle were influenced.

Therefore, we investigated the effect of BAs on different stages of

the HCV replication cycle and analyzed GT-dependent viral

factors essential for regulation by BAs.

Results

Bile acids increase HCV GT1 RNA-replication
Regulation of HCV replication by BAs has been analyzed solely

in Huh-7 cells. To exclude a cell type-dependence of the reported

regulation of HCV by bile acids, we assessed the influence of BAs

also using HuH6 cells, a human hepatoblastoma cell line

permissive to HCV RNA-replication [18]. To control for possible

cytotoxicity of BAs we employed a Huh-7-derived cell clone

expressing a secreted gaussia luciferase enzyme (G-Luc) thus

permitting assessment of cell density and viability which is

proportional to the level of G-Luc in the culture fluid of these

cells [19]. These cells were transfected with either a subgenomic

Con1 replicon (SG-Con1/ET; GT1b) (Fig. 1A) or a subgenomic

JFH1 replicon (SG-JFH1; GT2a) (Fig. 1B), and the influence of

two different primary (top panels) or three different secondary or

tertiary (bottom panels) BAs in concentrations ranging from

25 mM–400 mM was determined using firefly luciferase assays. As

expected, all BAs augmented HCV GT1b RNA-replication in

Lunet G-luc cells in a dose-dependent fashion. Maximal increase

of replication was observed with CDCA treatment of cells

reaching 9-fold higher levels compared to DMSO-treated cells at

a dose of 200 mM (Fig. 1A). In HuH6 cells the enhancement of

GT1b replication could not be determined by transient luciferase

assays due to insufficient RNA-replication of the GT1b replicon in

these cells (data not shown). In contrast, replication efficiency of

the GT2a replicon was not upregulated irrespective of the BA used

and of whether Lunet G-luc (Fig. 1B) or HuH6 (Fig. 1C) host cells

were employed. To rule out that these differences between Con1

and JFH1 replicons was attributable to the chosen assay system

(transient replication of luciferase reporter replicons) we monitored

HCV RNA replication of Con1 and JFH1 selectable replicons in

stable replicon cell lines in the presence or absence of 200 mM

CDCA using quantitative RT-PCR (Figure S1). Comparable to

the luciferase-based assay, we only observed stimulation of the

Con1 replicon but not the JFH1 replicon.

To determine if RNA translation or RNA-replication of the

GT1b replicon was stimulated by BAs, we transfected Lunet G-luc

cells either with SG-Con1/ET or SG-Con1/GND replicons.

Since SG-Con1/GND carries an inactivating mutation in the

active center of the viral RNA dependent RNA polymerase NS5B,

transfection of this variant was used to determine whether BAs

influence viral RNA translation and/or stability independent of

regulation of RNA-replication. Since BAs had no impact on

luciferase expression of SG-Con1/ET or SG-Con1/GND repli-

cons up to 24 hours after transfection, but selectively enhanced

SG-Con1/ET at later time points (Fig. 1D), we conclude that BAs

may stimulate RNA-replication but not translation or RNA

stability of GT1b replicons.

Influence of BAs on the complete HCV life cycle
To assess the influence of BAs on the complete HCV replication

cycle, we used Lunet G-luc and HuH6 cells transfected with a full-

length intragenomic bicistronic full-length GT2a virus expressing

firefly luciferase, designated as Luc-Jc1 [20] (Fig. 2A). Primary BAs

CA and CDCA which had strongly regulated GT1b replicons

were added to the cells at 4 h and their effect was determined at

48 h post transfection. At this latter time point, culture fluid of the

transfected cells containing BAs and virus particles produced

during the experiment was transferred to naı̈ve cells which were

analyzed 48 h later to determine possible influences of BAs on the

complete virus life cycle (Fig. 2A).

CA enhanced the replication (measurement after 48 h) as well

as the complete life cycle (Fig. 2B) of Luc-Jc1 up to 4-fold in a

dose-dependent manner. CDCA resulted in a moderate enhance-

ment at 25 mM and decreased replication at higher concentrations

most probably due to cytotoxicity. Given that RNA-replication of

the GT2a replicon was not affected by these BAs (compare Fig. 1)

it was surprising that RNA-replication of the GT2a chimeric virus

Luc-Jc1 was increased. To rule out that this was due to secondary

rounds of infection that may be stimulated by these BAs and that

may contribute to the luciferase signal determined 48 h post

transfection we analyzed influences of both BAs on Luc-Jc1

transfected cells lacking CD81, an essential HCV entry factor

(Lunet N cells [21]). However, even in these cells luciferase activity

of Luc-Jc1 was increased by both BAs indicating that RNA-

replication of the GT2a reporter virus was augmented (Figure S2).

Replication was also enhanced in HuH6 cells, albeit only up to 2-

fold (Fig. 2C). This finding rules out that the enhancement of Luc-

Jc1 replication was cell type dependent. Since HuH6 cells cannot

be infected by GT2a viruses due to low endogenous CLDN1

expression [22], we measured the infectivity of Luc-Jc1 particles

produced in BA-treated HuH6 cells by inoculation of Lunet G-

Luc cells and observed an up to 6-fold enhanced infectivity

(Fig. 2C). Collectively, these results show that in contrast to

subgenomic GT 2a constructs (Fig. 1), replication of GT 2a full

length HCV was enhanced in the presence of BAs. Therefore, the

enhancing effect of BAs on HCV replication is not restricted to

GT1 HCV.

Effect of BAs on HCV particle production and entry
To determine whether the enhanced HCV GT2a infectivity

observed in the presence of BAs was due to the increased particle

production or due to higher infectivity of the released particles, we

determined extracellular levels of core protein of Luc-Jc1

transfected and BA-treated Lunet G-Luc cells. Even at higher

concentrations, BAs did not elevate particle release as determined

by the quantity of extracellular core protein (Fig. 3A). However,

the released particles were more infectious which is evident from

increased accumulation of luciferase activity in the cells inoculated

with particles produced in the presence of high doses of BAs

(Fig. 3B). These data indicate that BAs do not modulate the

abundance of virus particles. Instead they increase infectivity

Bile Acids Increase HCV RNA-Replication
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Figure 1. Genotype and cell type dependent influence of bile acids on HCV RNA-replication. Lunet G-luc cells [19] were transfected with
either SG-Con1/ET (A) or SG-JFH1 replicons (B) and seeded on a 96-well plate. After 4 h the medium was changed and different BAs (CA = cholic acid;
CDCA = chenodeoxycholic acid; DCA = deoxycholic acid; LCA = lithocholic acid; UDCA = ursodeoxycholic acid) in concentrations ranging from 25 mM–
400 mM were added. 48 h later cell viability was measured by gaussia luciferase assays. The symbol { designates concentrations with a cell viability of
less than 50% of the DMSO control. 72 h after electroporation cells were lysed and replication was determined using the firefly luciferase assay. Data
were normalized to DMSO control. Con1-derived genome segments are depicted in white, JFH1-derived sequences in black, and non-HCV elements
are depicted in grey (PI, polio IRES; EI, encephalomyocarditis virus IRES; luc, firefly luciferase). (C) HuH6 cells were transfected with JFH1 replicon RNA
and seeded on a 96-well plate. After 4 h, BAs were added and after 72 h cells were lysed and replication was measured using the firefly-luciferase
assay. D: Lunet G-luc cells were transfected with Con1/ET (left panel) or Con1/GND (right panel) replicons and seeded on a 12-well plate. Bile acids or
DMSO were added 4 h after electroporation. Cells were lysed at given time points; luciferase activity was determined and normalized for the 4 h
value. In each case mean values of triplicates and the standard deviation is given.
doi:10.1371/journal.pone.0036029.g001
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either by changing particle properties, by enhancing cell entry

and/or by increasing RNA-replication in the inoculated cells.

To investigate if the BAs augment virus cell entry, we used two

complementary experimental systems. First, we measured the

infection of retroviral HCV pseudoparticles (HCVpp) into Huh7-

Lunet hCD81 G-Luc cells that had been pre-treated with CA and

CDCA (Figure S3.). Since pseudoparticles consist of retroviral

cores carrying HCV glycoproteins on their surface, only the early

steps of virus entry are HCV dependent, i.e. virus binding, uptake

and virus-membrane fusion, whereas all later steps are dependent

on retroviral proteins which rigorously excludes influences of BAs

on other steps of the HCV replication cycle. Notably, these

particles are produced in human embryonal kidney cells (293T

cells) which do not express lipoproteins and are unlikely to

properly mimic possible influences of lipoproteins. Therefore, we

also used single round-infectious HCV trans-complemented

particles (HCVTCP) that are produced upon transfection of the

SG-JFH1 replicon into Huh-7-derived packaging cells which

express the structural proteins core, E1 and E2 as well as p7 and

NS2 [23]. Since the RNA-replication of SG-JFH1 is not

Figure 2. Influence of bile acids on HCV whole life cycle. A: Experimental setup and schematic drawing of the Luc-Jc1 reporter virus genome
carrying a firefly luciferase gene and of the gaussia luciferase construct. Lunet G-luc cells were transfected with the chimeric full-length reporter virus
genome and seeded on a 96-well plate. 4 h post-electroporation the medium was removed and new medium containing bile acids was added. After
48 h, RNA-replication in the transfected cells was determined by firefly luciferase assays. At the same time, culture fluid of the cells was collected to
determine cell viability through G-luc activity and to inoculate naı̈ve Lunet G-luc cells. 48 h later efficiency of virus production and infection was
determined by measuring firefly luciferase in the inoculated cells. B: RNA-replication (left) and virus production/infection (right) in the presence or
absence of given doses of BAs determined in Lunet G-luc cells. Replication and whole life cycle data were normalized to DMSO control. The symbol {
designates concentrations with a cell viability of less than 50% of the DMSO control. C: Analysis of the influence of given BA doses on Luc-Jc1
replication in HuH6 cells (left) and on the infectivity of secreted particles upon inoculation of Lunet G-luc cells. Means values of triplicates and the
standard deviation is given.
doi:10.1371/journal.pone.0036029.g002
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modulated by BAs (Fig. 1B), this experiment was aimed to reveal

possible influences specifically on cell entry of HCV particles

produced from lipoprotein-expressing host cells. Nevertheless,

irrespective of the particle type (HCVpp or HCVTCP) and the

duration of BA-pretreatment we did not observe a consistent and

reproducible influence on HCV cell entry (Figure S3). In

summary, these results indicate that BAs do not modulate

production of infectious particles or cell entry of HCV in tissue

cultures. Therefore, the stimulation of infection observed when

GT2a particles were produced in the presence of BAs is likely due

to stimulation of RNA-replication.

Influence of viral determinants on BAs mediated
stimulation of replication

The results described above indicate that RNA-replication of

GT2a replicons is not affected by BAs whereas replication of full

length GT2a reporter virus genomes as well as GT1b replicons

was stimulated by BAs. Notably, the latter two replicate

substantially less efficiently compared with subgenomic GT2a

replicons (data not shown). Therefore, it was conceivable that the

highly efficient RNA-replication of the GT2a replicon masks

regulation of GT2a protein function in RNA-replication by BAs.

To identify viral determinants important for regulation by BAs we

used intergenotypic JFH1/Con1 replicon chimeras where the

59NTR and/or the 39NTR X-tail sequence of JFH1 were

exchanged individually or in combination with the ones of the

Con1 isolate [24] (Fig. 4A). Importantly, in these constructs the

protein coding sequence of the JFH1 replicon is fully conserved. As

expected, the JFH1 luciferase replicon carrying Con1-derived

59NTR and X-tail (JFH1 59xCon) replicated less efficiently

compared to the parental replicon JFH1 NS3-39 (Fig. 4B).

However, unlike the parental replicon, RNA-replication of the

GT2a/1b chimeric genome was increased by addition of BAs up

to 10-fold (Fig. 4B and 4C). Since insertion of the Con1 59NTR or

the Con1 X-tail alone into the JFH1 replicon did not

downregulate RNA-replication efficiency and at the same time

did not render these chimeras susceptible to regulation by BAs, we

conclude that the Con1 genome segments individually do not

confer regulation by BAs. However, GT2a replicons carrying these

elements in combination are reduced in replication efficiency thus

Figure 3. Influence of BAs on HCV particle production and infectivity. Cells were transfected, seeded and treated as described in Fig. 2.
Release of core protein as a measure of viral particles in the culture fluid was determined by a commercial core-specific ELISA (A). Infectivity of release
particles was assessed by inoculation of naı̈ve Lunet G-luc cells (B). Mean values of duplicates and the standard deviation are shown.
doi:10.1371/journal.pone.0036029.g003

Figure 4. Viral determinants required for BA- mediated stimulation. A: Schematic representation of JFH1 NS3-39, Con1/ET JFH1/Con1
intergenotypic chimeras. Replication enhancing mutations of Con1/ET are marked as black dots. All viral proteins were JFH1-derived and either the
59NTR or the terminal end of the 39 NTR (X-tail) or both were exchanged by those of Con1. B: Lunet G-luc cells were transfected and seeded on a 12-
well plate. Indicated bile acids were added after 4 h and luciferase activity was measured 72 h post-electroporation. C: Data were normalized to
DMSO control.
doi:10.1371/journal.pone.0036029.g004
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rendering these replicons responsive to BA-mediated stimulation

of RNA-replication of GT2a-derived replicon proteins. Collec-

tively, these data provide firm evidence that both GT1 and GT2a

HCV are regulated by BAs.

BAs stimulate replication of Con1 genomes with or
without replication enhancing mutations

With the exception of JFH1, most HCV consensus genomes

replicate poorly in cell culture requiring specific replication

enhancing mutations (REMs) to increase replication to levels

sufficient for experimental analyses. Notably, at least in case of

Con1, many of these REMs interfere with production of infectious

progeny particles and highly cell culture adapted Con1 genomes

are attenuated in vivo [25,26]. Given these circumstances we

wanted to explore if BAs can be used to stimulate replication of

wild type HCV genomes that have poor replication efficiency in

cell culture. To this end we transfected Lunet G-Luc cells with

subgenomic Con1 luciferase replicons carrying either wild type

NS3 to NS5B proteins, a single REM in NS4B (K1846T) or the

highly adapted replicon with mutations in NS3 and NS4B

(E1202T, T1280I, K1846T), designated ET. Interestingly, cultur-

ing cells until 72 h post transfection in the presence of 200 mM

CDCA increased replication of the wild type luciferase replicon ca.

10-fold, the highly adapted ET genome ca. 50-fold and the

K1846T-adapted replicon more than 200-fold (Figure 5). Next we

explored if CDCA also stimulates replication of full length Con1

(FL-Con1) genomes with our without REMs and if this facilitates

production of infectious viral progeny and quantification of

infection events in cell culture. Thus, wild type full length Con1

(FL-Con1/wt), FL-Con1/K1846T and as reference the replication

defective FL-Con1/GND mutant were transfected into Lunet G-

Luc cells. Subsequently transfected cells were cultured in the

presence or absence of 200 mM CDCA (Figure 6). Replication of

both wild type and K1846T genomes was slightly increased by

CDCA as is evident from ca. 2-fold higher levels of intracellular

core protein at 72 h post transfection. Notably, the slight increase

of intracellular core when cells were cultured with CDCA did not

result in higher levels of secreted core protein. In contrast both for

wild type and the K1846T mutant ca. 2-fold lower amounts of

core protein were detectable in the culture fluid. Collectively, these

data indicate that CDCA slightly stimulates replication of these full

length Con1 genomes at the expense of slightly decreased release

of core protein.

Similar results were obtained when we transfected these

genomes into Lunet cells expressing the MAVS-GFP indicator

of cellular HCV infection described by Jones et al [27] (Figure 7).

More specifically, these cells express a GFP with nuclear

localization signal fused to the C-terminus of MAVS, which

includes a mitochondrial localization signal and the cleavage site

for the HCV NS3/4A protease [27]. As a consequence, expression

Figure 5. CDCA increases replication of Con1 wild type and cell culture adapted replicons. Given subgenomic Con1 replicons with or
without replication enhancing mutations were transfected into Lunet G-Luc cells. At 4 h post transfection cells culture media were replaced with
culture fluid with or without 200 mM CDCA. RNA replication was determined by luciferase assays and is expressed relative to the luciferase activity
determined 4 h post transfection.
doi:10.1371/journal.pone.0036029.g005
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of the HCV NS3/4A protease results in cleavage of the MAVS-

GFP protein and subsequent re-localization of GFP from the

mitochondria into the nucleus, which is a simple biomarker to

determine if a cell expresses the NS3/4A protease [27]. The

impact of CDCA treatment on the number of HCV expressing

cells was determined at 10 days after transfection, since the

background levels of residual nuclear GFP, relocated after initial

translation of NS3/4A from the transfected RNA was negligible at

this time point. CDCA treatment increased the number of HCV

expressing cells for the K1846T-adapted genome (79% versus

52% cells with nuclear localized GFP, Figure 7A). In contrast, for

the wild type genome no significant stimulation was observed,

possibly due to the very low replication of this genome.

To explore if CDCA facilitates infection of particles released

after transfection of these genomes, we co-cultured Lunet cells

transfected with these genomes with naı̈ve Lunet MAVS-GFP

cells. In this setup detection of nuclear localized GFP in the latter

cells indicates productive infection by viral progeny produced from

the transfected Lunet cells. Interestingly, four days after initiation

of the co-culture we observed a few Lunet-MAVS-GFP cells with

nuclear localized GFP when co-cultured with cells transfected the

wild type or the K1846T-adapted genome (Figure 7B). At least in

case of the K1846T mutant supplementation of CDCA conferred

a moderate, but statistically significant (p = 0.0486), increase in the

number of cells with nuclear GFP. These results indicate that

particles produced in the presence of CDCA are infectious and

that the moderate stimulatory effect of this BA on HCV

replication likely facilitates detection of infected cells in the

MAVS-GFP-based HCV infection bioassay.

Discussion

The interplay between HCV and BAs has attracted consider-

able scientific attention. This was primarily due to the clinical

observation that high serum levels of these compounds correlated

with poor response rates to IFN-based therapies [5,6,8]. Previous

reports have highlighted that at least replication of GT1

subgenomic replicons was increased by high doses of BAs [7,17].

However, efforts to show a broader cross-genotype regulation of

HCV replication by bile acids failed since except for GT2a no

alternative and robust cell based HCV replication systems are

available. As highly efficient JFH1-based GT2a replicons appar-

ently did not respond to treatment with BAs it was unclear if the

findings for GT1 replicons are more generally applicable for other

viral strains. Likewise, it was unclear at what stage or stages of the

viral replication cycle these molecules may influence HCV. Our

findings indicate that conjugated and non-conjugated BAs as well

as primary, secondary and tertiary BAs upregulate replication of

HCV GT1b replicons in Huh-7 cells. Comparing the influence of

BAs between replication competent and replication-inactive Con1-

replicons, we show that the stimulation by BAs was not due to

increased viral RNA stability or RNA translation. This implies

that steps directly connected with RNA-replication like for

instance establishment of membrane alterations for RNA-replica-

tion, recruitment of essential cellular co-factors or activity of

essential viral factors are improved in the presence of BAs. More

work is needed to find out by which mechanisms BAs facilitate

HCV RNA-replication.

Figure 6. CDCA stimulates replication of full length Con1 genomes with or without adaptive mutations. Given full length Con1
genomes were transfected into Lunet G-Luc cells. At 4 h post transfection cells culture media were replaced with culture fluid with or without 200 mM
CDCA. Intracellular (A) and extracellular (B) levels of HCV core protein reflecting viral translation/RNA replication and secretion of virions, respectively,
were determined using a commercial ELISA.
doi:10.1371/journal.pone.0036029.g006
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Using the intragenotypic chimeric infectious GT2a/2a chimera

Jc1 we noted a moderate yet dose-dependent and reproducible

stimulation of RNA-replication of this full length genome by BAs.

Since this effect was maintained in cells that lack endogenous levels

of CD81, a crucial cell entry factor for HCV, we can rule out that

this effect was due to increased virus production and secondary

rounds of infection. Further analyses established that BAs did not

augment the number of secreted viruses or increase cell entry.

Importantly, we used HCVpp and HCVTCP particles to rule out

that BAs modulate cell entry through interplay with lipoproteins

which cannot be well studied with HCVpp. Although it has been

described previously that high levels of BAs increase the activity of

cellular lipoprotein lipases which in turn have been shown to

decrease HCV infectivity [14] and despite of the observation that

BAs downregulate secretion of ApoB containing lipoproteins [15]

we did not find entry or assembly to be affected. This could be due

to the host cells used by us expressing abundant lipoproteins and

cell entry factors so that a subtle regulation of these factors by BAs

may not be sufficient to have an impact on these steps of the HCV

replication cycle. Alternatively, the cancer cell lines used by us

may not reflect the complete spectrum of the regulatory functions

on lipoprotein biosynthesis and secretion operating in vivo.

Therefore, additional work is needed, ideally with primary human

hepatocytes, to fully rule out that these steps of the HCV

replication cycle are regulated by BAs.

In addition, we provide evidence that the regulation of HCV

RNA-replication is likely not limited to GT1 isolates as described

previously but also affects GT2a genomes. This conclusion is

based on our observation that JFH1-based GT2a replicons are

susceptible to regulation by BAs provided their extraordinary

efficient RNA-replication is reduced by genetic manipulation of

the non-translated regions. Importantly, we reduced RNA-

replication of these replicons by manipulating viral non-coding

regions to rule out that non-GT2a proteins may confer regulation

by BAs to these chimeric genomes. Besides we show that each

individual non-coding RNA segment derived from Con1 is not

sufficient to confer regulation of GT2a genomes by BAs. Since

both genomes carrying either the Con1 59NTR or the X-tail

replicate vigorously in transfected cells, we hypothesize that like for

the parental GT2a replicon, the high replication efficiency masks

the influence of BAs on these replicons. The conclusion that not

only GT1 but also GT2a replication is enhanced by BAs in cell

culture is also supported by the increased replication of full length

GT2a genomes both in a Huh-7-derived cell line as well as in an

alternative HCV-permissive human hepatoblastoma cell line

(HuH6). Finally, we report that not only cell culture adapted

Con1 genomes but also wild type Con1 replicons and full length

genomes are stimulated by BAs. Moreover, this stimulation of

replication – albeit moderate – did not increase release of core

protein. In contrast, similar to replication enhancing mutations

which lower or even prevent secretion of HCV core protein from

Con1-transfected cells [26], incubation with BAs slightly decrease

core release [26]. Nevertheless, at least for the K1846T-adapted

genome addition of CDCA slightly increased the number of

Figure 7. Detection of HCV replication and virus infectivity in the presence of CDCA using Lunet GFP-NLS-MAVS- reporter cells. A:
Lunet MAVS-GFP reporter cells were transfected with given HCV Con1 full length genomes. Ten days after transfection relocalization of GFP to the
nucleus was assessed by fluorescence microscopy. Numbers below the panels depict the percentage of cells displaying GFP in the nucleus +/2
standard deviation. B: Lunet cells were transfected with given genomes, co-seeded with naı̈ve Lunet GFP-NLS-MAVS (1:1) and cocultured in the
presence or absence of CDCA cells for four days. Subsequently the number of cells showing a nuclear localized GFP was determined by counting of
50 randomly chosen microscopic fields. The left panel shows an example of two infected cells (white arrow) displaying nuclear localized GFP and a
non-infected cell (black arrow) after co-culturing with Lunet cells transfected with Con1/K1846T. The right panel depicts mean values and standard
deviations from 2 independent experiments. A significant difference in infection efficiency by addition of 200 mM CDCA is indicated by an asterisk
(p = 0.0486).
doi:10.1371/journal.pone.0036029.g007
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detectable HCV infected cells. In the future it will be interesting to

find out if replication of viral genomes from different viral

genotypes is also stimulated by BAs and by which mechanism and

extent these compounds facilitate HCV RNA-replication. In this

regard the moderate stimulatory effect of BAs on replication of

wild type full length HCV genomes may facilitate the identifica-

tion of novel primary isolates that are replication competent in cell

culture. Considering that during bile duct obstructions serum

levels of BAs ranging up to 400 mM are reached [28,29],

endocrine functions of BAs may in these patients at least

transiently modulate virus replication. This in turn may influence

treatment response and the ability of the virus to acquire drug

resistance and should be considered when tailoring optimal

treatment for patients with these complications.

Materials and Methods

Plasmids and replicons
The plasmids pFK-Luc-Jc1 [20], pFK-I341PI-Luc/NS3-3/

JFH1, pFK-I341PI-Luc/NS3-3/Con1/ET (replicon with E1202T,

I1280T and K1846T mutations), pFK-I341PI-Luc/NS3-3/Con1/

E (replicon with K1846T mutation), pFK-I341PI-Luc/NS3-3/

Con1/GND [18], the intergenomic genotype 1b/2a (Con1/JFH1)

replicons [24], pFK-Con1/wt, pFK-Con1/K1846T and pFK-

Con1/GND [26]have been described previously. pWPI-GFP/

MAVS-BLR was generated by cloning a GFP gene fused to a

nuclear localization signal of SV40 large T antigen and the C-

terminal membrane insertion sequence of MAVS (also known as

Cardif, VISA and IPS-1) into pWPI-BLR [30], a selectable

derivative of the bicistronic lentiviral vector pWPI (a gift from

Didier Trono). This construct was used to generate cell lines

constitutively expressing a GFP-NLS-MAVS fusion protein to

monitor HCV infection upon NS3/4A cleavage, as described

recently [27] .

Cell culture
Huh7-Lunet N#3 hCD81 Gaussia luciferase (designated Lunet

G-luc cells here) [19], Huh7-Lunet N#3 [21], HuH6 [18] and

293T (were obtained from the ATCC; ATCC-Number: CRL-

11268) [31] cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM; Invitrogen, Karlsruhe, Germany) supplemented

with 2 mM L-glutamine, non-essential amino acids, 100 U of

penicillin per ml, 100 mg of streptomycin per ml and 10% fetal calf

serum (DMEM complete). Lunet hCD81-GFP-NLS-MAVS cells,

constitutively expressing human CD81 and a GFP-NLS-MAVS

fusion protein were cultured in DMEM complete supplemented

with 1 mg/ml G418 and 5 mg/ml blasticidine to maintain

expression of the transgenes.

In vitro transcription and electroporation
In vitro transcription and transfection by electroporation was

performed as described previously [32].

Whole life cycle dual luciferase assay
The whole life cycle dual luciferase assay was performed as

described recently [19] in the presence of different concentrations

of bile acids solved in DMSO. The DMSO concentration was 1%.

Preparation of retroviral pseudoparticles
Murine leukemia virus (MLV) -based retroviral pseudoparticles

were generated as described previously [19] using pcDNA3D-
cE1E2-J6, pcz-VSV-G or pHIT456 plasmids expressing HCV E1,

E2 of the J6CF (GT2a) isolate, the G-protein of vesicular stomatitis

virus, or the amphotropic envelope protein of MLV, respectively.

Preparation of HCV trans-complementated particles
(HCVTCP)

HCVTCP were generated as described previously [32].

Detection of HCV core protein by ELISA
The virus containing supernatant was inactivated by addition of

Triton X-100 at a final concentration of 1% (v/v). The amount of

released core protein was determined using the commercially

available core ELISA ARCHITECT HCV core AG test (Abbott,

Wiesbaden, Germany).

Quantification of HCV RNA by real time RT-PCR
Viral RNA was prepared from cells using a Nucleo Spin RNAII

kit (Macherey-Nagel) according to the manual’s instructions. 5 mL of

the RNA sample was used for HCV-specific quantitative reverse

transcription-PCR (qRT-PCR) analysis using a LightCycler 480

device (Roche). HCV-specific qRT-PCRs were conducted in

duplicate measurements as published [33] utilizing a one-step

RT-PCR LightCycler 480 RNA Master Hydrolysis Probes kit

(Roche) and the following HCV-specific probe (Molecular Biosystems)

and primers (MWG-Biotech): HCVMGB2 [59-6FAM (carboxy

fluoresceine)-CACGGCTAGCTGTG-MGB-39]; XTF5 (59-

GTGGCTCCATCTTAGCCCTAGT-39); and HCMgR2 (59-

TGCGGCTCACGGACCTTT-39).

To normalize for equal quantities of total RNA in the samples,

the GAPDH-specific mRNA was detected in parallel employing

GAPDH-specific oligonucleotides (S-GAPDH, 59-GAAGGTG-

AAGGTCGGAGTC-39; A-GAPDH, 59-GAAGATGGTGAT-

GGG ATTTC-39) and a GAPDH-specific probe (TIB Molbiol),

640-GAPDH-BBQ probe (59-LC640-CAAgCTTCCCgTTCT-

CAgCCT-BBQ-39). Reactions were performed in three stages by

using the following conditions: stage 1 (RT), 3 min at 63uC; stage

2 (initial denaturation), 30 s at 95uC; stage 3 (amplification), 45

cycles of 10 s at 94uC and 20 s at 58uC. The amount of HCV

RNA was calculated by comparison to serially diluted in vitro

transcripts and normalized to the amount of GAPDH, which

served as a housekeeping gene. HCV Core protein within cell

lysates and culture fluids was quantified with a commercially

available diagnostic kit (Architect Anti-HCV; Abbott).

Evaluation of HCV replication and infection using the
Lunet MAVS-GFP cells

To determine viral fitness under the influence of bile acids,

Lunet GFP-NLS-MAVS cells were electroporated with full length

Con1/wt, Con1/K1846T or Con1/GND RNA. 4 h post

transfection 200 mM CDCA or 1% DMSO were added. The

cells were screened for GFP translocation to the nucleus after day

10 by fluorescence microscopy in three randomly chosen fields of

vision (,300 cells per field). To address the effect of bile acids on

the generation of infectious virus, Lunet cells were transfected as

described above and co-seeded with naı̈ve Lunet GFP-NLS-

MAVS cells in a 1:1 ratio. After 4 h 200 mM CDCA or 1%

DMSO were supplemented. The infection rate was determined

after four days by counting cells with nuclear GFP localization in

50 randomly chosen microscopic fields (106 magnification). An

unpaired t-test was performed to generate the statistics. P-

values,0.05 were considered statistically significant.

Supporting Information

Figure S1 Influence of CDCA on Con1 or JFH1 replicon
cell lines. Stable Con1 (left) or JFH1 (right) replicon cell lines

were incubated with culture fluid supplemented with CDCA at a
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final dose of 200 mM. Cells were collected before (0 h) or after 24,

48 and 72 h of treatment. Total RNA was prepared and the

abundance of HCV RNA was assessed. HCV genome equivalents

per mg of total RNA are given. Mean values of duplicate

measurements including the SEM are given.

(TIF)

Figure S2 Influence of bile acids on HCV in transfected
Huh7-LunetN#3 cells. A: Huh7-LunetN#3 cells lacking

CD81 were transfected with Luc-Jc1. A: Replication efficiency

was determined as described in Fig. 2 B: 48 h after transfection

culture fluid was collected and used to inoculate Lunet G-luc cells.

Luciferase activity was determined 48 h later.

(TIF)

Figure S3 Influence of bile acids on HCV entry. A–C:
HCV GT2a pseudoparticles (A), VSV-G pseudoparticles (B) MLV

pseudoparticles (C) or HCVTCP (D) were used to inoculate Lunet

G-luc cells pre-incubated for 24 h or 48 h with indicated bile

acids. After 48 h, the cells were lysed and the firefly luciferase

activity was determined.

(TIF)
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