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Abstract

The famous Bradley-Terry model for pairwise comparisons is widely used for ranking

objects and is often applied to sports data. In this paper we extend the Bradley-Terry model

by allowing time-varying latent strengths of compared objects. The time component is mod-

elled with barycentric rational interpolation and Gaussian processes. We also allow for the

inclusion of additional information in the form of outcome probabilities. Our models are eval-

uated and compared on toy data set and real sports data from ATP tennis matches and

NBA games. We demonstrated that using Gaussian processes is advantageous compared

to barycentric rational interpolation as they are more flexible to model discontinuities and

are less sensitive to initial parameters settings. However, all investigated models proved to

be robust to over-fitting and perform well with situations of volatile and of constant latent

strengths. When using barycentric rational interpolation it has turned out that applying

Bayesian approach gives better results than by using MLE. Performance of the models is

further improved by incorporating the outcome probabilities.

Introduction

Modelling pairwise comparisons is an important practical problem and well established in

research literature [1, 2]. The foundations were built in the 1950s by Bradley and Terry [3] and

Luce [4], though the first idea goes back to Thurstone [5]. The classical approach is the Brad-

ley-Terry model [3]. The model links the pairwise comparison probabilities with the compared

objects’ latent strengths, which are in the model’s most simple variant assumed to be constant.

The Bradley-Terry model has been extended in several ways: handling ties [6], ranking indi-

vidual players in multi-player competitions [7, 8], and stochastic non-transitivity of compari-

sons [9]. It has also been shown that Bradley-Terry model can be seen as a special case of a

more general model. A very recent example of such treatment demonstrates a pairwise com-

parison model where the Weibull distribution is applied [10]. Another common generalization

is to allow for the latent strengths to vary with time and it is the focus of our work. The quintes-

sential application domain for time-varying strength models is sports, where ranking is impor-

tant both for seeding competitions and for fan engagement. However, a player’s strength
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acknowledges the financial support from the

https://orcid.org/0000-0002-7963-908X
https://doi.org/10.1371/journal.pone.0251945
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251945&domain=pdf&date_stamp=2021-05-20
https://doi.org/10.1371/journal.pone.0251945
https://doi.org/10.1371/journal.pone.0251945
http://creativecommons.org/licenses/by/4.0/


changes with age, experience, fatigue, and injuries. And a team’s strength changes with players

joining or leaving a team.

The classical time-varying approach is the ELO rating, designed by Arpad Elo [11, 12]. It

was adopted, for example, by the International Chess Federation (FIDE) [13] and UEFA [14].

The ELO rating uses a scaled version of the Bradley-Terry model. After each comparison the

underlying latent strength is changed with accordance to the previous strength and the output

of the comparison. Glickman developed a non-iterative Bayesian algorithm [15]. This model

assumes a normal distribution of the latent strengths conditional on the strength at the previ-

ous comparison with the standard deviation dependent on the elapsed time between compari-

sons. Based on this algorithm the Glicko and Glicko-2 rating systems ware developed, where

the latter improves on ability to capture sudden changes [16]. One downside of incremental

algorithms is that covariance is not taken into account when approximating probability distri-

butions of latent strengths. This was addresses by Coulom [17] who used a Wiener process for

the prior of latent strengths and applied it to the Bradley-Terry model, using maximum a pos-

teriori (MAP) inference with Newton’s approximation method. This approach has proven to

be better than ELO and Glicko when applied to the game of Go. More recently, Baker and

McHale applied deterministic approach to time-varying latent strengths by using barycentric

rational interpolation (BRI) [18]. This approach was applied to football where pairwise com-

parisons were based on the Poisson distribution of the number of goals scored. Baker and

McHale also applied BRI to tennis [19], using a symmetric beta distribution for ranking,

deduced as a special case of Stern’s gamma model, which can also be reduced to the Bradley-

Terry model or Thurstone model. They also showed that BRI outperformed spline interpola-

tion. A model based on the number of goals scored was also used by Owen [20] and Koopman

[21], who used an incremental approach to model time dependence of latent strengths with a

focus on outcome forecasting rather than hindcasting as in the case of Baker. Cattelan et al.

[22] also used an incremental approach to model team’s ability by using an exponentially

weighted moving average processes applied to the Bradley-Terry model. Inference was done

via maximum likelihood estimation and they applied their model to basketball and football.

In this paper we extend the Bradley-Terry model to allow for time-varying strengths by

combining it with barycentric rational interpolants (BRI) [23] or Gaussian processes (GP)

[24]. We also extend the model to handle not only binary comparison outcome data but also

outcome probabilities, if available to be derived, for example, from bookmakers’ odds. Com-

pared to the majority of related work which is motivated by forecasting, our approach

addresses hindcasting. When the focus is on forecasting, the main goal is to minimize the

short-term prediction error and for these purpose modelling is based on incremental

approach. However, incremental methods are not suitable for hindcasting where it is vital to

take into account the covariance between model’s parameters. With hindcasting we are not

interested in just the next game output, but rather in the underlying dynamics of latent

strengths where a longer period needs to be considered. Research with focus on hindcasting is

sparse—Baker and McHale [18, 19] and Coulom [17] who model time-varying latent strengths

deterministically with interpolation and the Wiener process, respectively. Compared to Baker

and McHale [18, 19] we combined barycentric rational interpolation (BRI) with the Bradley-

Terry model and we use Bayesian inference. We also model time-varying strengths with

Gaussian processes (GPs). This is similar to Coulom [17], but with two significant differences.

First, using GPs is more general, because a Wiener process is a special case of GPs when the

kernel function is given by k(t, t0) = min(t, t0) [25]. And second, we utilize Markov Chain

Monte Carlo (MCMC) instead of structural approximation of the posterior and MAP estima-

tion. Notably, our Bayesian models are implemented in Stan [26] and we utilize Markov Chain

Monte Carlo for inference. We empirically evaluate and compare the models on toy data and
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two real-world sports data sets: ATP (Association of Tennis Professionals) tennis and NBA

(National Basketball Association) basketball.

Methodology

The Bradley-Terry model

Pairwise comparison data are a set of observations, where each observation is the outcome of a

pairwise comparison between two objects, where one of the objects is deemed to be superior to

the other. We will not consider ties in this paper.

The classical model for such data is the Bradley-Terry model [3] which assumes that the

comparison outcome probabilities are governed by unobserved (latent) strengths of the

objects. Given a comparison between objects a and b, we have

Pða is superior to bÞ≜
ya

ya þ yb
; ð1Þ

where θa and θb are the latent strengths of objects a and b, respectively. In its most basic vari-

ant, these strengths are assumed to be constant.

Introducing time-varying latent strengths. We will focus on the extensions of the Brad-

ley-Terry model where the latent strengths vary with time. The pairwise comparisons observa-

tions are then 4-tuples (ti, ai, bi, yi), where ti 2 R is the time when the comparison was made,

ai, bi 2 {1, . . ., K} are the two objects being compared, from a set of K objects, and yi 2 {0, 1} is

the outcome of the comparison. If object ai was deemed to be superior to object bi, then yi = 1,

otherwise yi = 0. Times ti are not necessarily unique—two comparisons can be made at the

same time.

The Bradley-Terry model is a non-deterministic model. The comparison outcome is mod-

eled as a random variable Yi with support {0, 1}. In general, the probability mass function of Yi

is

pðyijθ; ai; bi; tiÞ ¼ PðYi ¼ yijθ; ai; bi; tiÞ; ð2Þ

but because Yi is Bernoulli, we will use the shorthand notation

pi≜ pð1jθ; ai; bi; tiÞ; ð3Þ

where θ = θ(t) = (θ1(t), . . ., θK(t)) and θj(t) are the unknown time-dependent latent strengths

of the objects.

We can now generalize Eq (1) to

pi ¼
yaiðtiÞ

yaiðtiÞ þ ybiðtiÞ
: ð4Þ

In Eq (4) we explicitly write ti to stress the latent strengths’ dependency on time. To simplify

the notation, we will from now on assume this time dependency and omit the times whenever

possible.

In order for pi to be probabilities, the latent strengths have to be positive. Because it is more

convenient to work with real parameters θ, we typically rewrite Eq (4) as

pi ¼
eyai

eyai þ eybi
¼

1

1þ eybi � yai
¼ logit� 1

ðyai � ybiÞ;
ð5Þ

where logit−1 is the cumulative distribution of the standard logistic distribution, also known as
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the inverse logistic function or inverse logit:

logit� 1
ðxÞ≜

1

1þ e� x
: ð6Þ

This Bradley-Terry model can be viewed as logistic regression with one input variable—the

difference between the latent strengths of objects being compared.

Model identifiability. Since the outcome probabilities depend only on the difference in

latent strengths they are invariant to translation. In order to be able to identify parameters θ,

we have to set a reference. We set the latent strength of the K-th object to be 0 [22].

Covariates. In Eq (5) the outcome probability depends solely on the latent strengths of

the two objects being compared. In practice, other factors might affect the outcome. For exam-

ple, home team advantage or weather. We will account for these covariates with a linear term

pi ¼ logit� 1
ðyai � ybi þ β>xiÞ; ð7Þ

where xi is a vector of covariates for the i-th observation and β is a vector of coefficients.

Covariates are assumed to be known and measured without error and coefficients are parame-

ters of the model.

Note that the purpose of this work is not to study the effect that different covariates might

have in a particular domain. However, for NBA data we do include a covariate for home team

advantage, which is known to have a strong effect on sports match outcome probabilities. The

home team advantage covariate xhta,i can be coded as + 1, −1, or 0 when team a is playing at

home, team b is playing at home, or when the game is played in a neutral venue, respectively.

Baseline model (BASE)

Our baseline for comparison will be the Bradley-Terry model where we assume that an object’s

latent strength is constant θ = (θ1, θ2, . . ., θK) and we fit the parameters using maximum likeli-

hood estimation. Given n observations, the likelihood is

Lðθ; β; yÞ ¼ pðyjθ; βÞ ¼
Yn

i¼1

pðyijθ; βÞ ¼
Yn

i¼1

pyii ð1 � piÞ
1� yi ; ð8Þ

where the pi ¼ logit� 1
ðyai � ybi þ β>xiÞ as in Eq (7). Then the log-likelihood is

‘ðθ; β; yÞ ¼
Xn

i¼1

yi log ðpiÞ þ ð1 � yiÞ log ð1 � piÞ: ð9Þ

Finding the maximum likelihood estimates reduces to the optimization problem

dðθ; βÞBASE ¼ argmax
ðθ;βÞ

‘ðθ; β; yÞ

yK ¼ 0;

ð10Þ

which we solved using L-BFGS optimization.

Barycentric rational interpolation model (BRI)

BRI is an alternative to splines. A detailed comparison between BRI and splines is discussed in

[27]. BRI is infinitely differentiable, which is a drawback when modelling a process with sud-

den changes in values. Still, it has been shown that BRI has the same or slightly lower errors in

curve fitting than splines. BRI was used to model the attack and defence ability of football
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teams combined with comparisons of goals scored by the teams modelled with Poisson distri-

bution [18]. A similar study was conducted for ranking tennis players [19].

We start by introducing m nodes in time ðt�k ; lkÞ; k ¼ 1; 2; . . . ;m, where λk represents the

quantity of interest at time t�k . We use the t� notation to make it explicit that these nodes need

not correspond to the times of the observations in our data. In practice, we typically use fewer

nodes than observations.

The purpose of BRI is to interpolate between these nodes in order to get the quantity of

interest at any time. In our case the quantity of interest are unobserved—the latent strengths of

objects. We will perform BRI for each object separately. We then write the evolution of the j-th

object’s latent strength over time in the general barycentric form by interpolation between

coordinates [27]

yjðtÞ ¼
Pmj

k¼1 wjkljk=ðt � t�jkÞ
Pmj

k¼1 wjk=ðt � t�jkÞ
: ð11Þ

The number of nodes mj does not have to be the same for every object, but for our applica-

tions we do not lose by assuming that it is. Selecting the number and location of the nodes is

analogous to spline interpolation [27]. Domain knowledge can be used but automated optimal

placement is infeasible and has to be dealt with heuristically. We positioned the nodes equally

spaced in time and empirically selected the best m from a finite set of possibilities. As a conse-

quence, the notation t�jk reduces to t�k and weights are given in a simpler form wjk = (−1)k, 8j
[18].

The general form of the log-likelihood is similar to Eq (9) but λ = {λjk;} are now the parame-

ters

‘ðλ; β; yÞ ¼
Xn

i¼1

yi log ðpiÞ þ ð1 � yiÞ log ð1 � piÞ; ð12Þ

where pi ¼ logit� 1
ðyai � ybi þ β>xiÞ and

yjðtÞ ¼
Pm

k¼1
ð� 1Þ

k
ljk=ðt � t�kÞ

Pm
k¼1
ð� 1Þ

k
=ðt � t�kÞ

; 8j 6¼ K: ð13Þ

Finding the maximum likelihood estimates reduces to the optimization problem

dðλ; βÞBRI ¼ argmax
ðλ;βÞ

‘ðλ; β; yÞ

yKðtÞ ¼ 0;8t;

ð14Þ

which we solved using L-BFGS optimization.

Bayesian barycentric rational interpolation model (BRIbayes). We also inferred from the

BRI model using the Bayesian framework, treating the λ and β as random variables. The
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model and prior distributions are

yijλ; β; ti; ai; bi; xi; t� � Bernoulliðlogit� 1
ðyai � ybi þ β>xiÞÞ

yjðtÞ ¼
Pm

k¼1
ð� 1Þ

k
ljk=ðt � t�kÞ

Pm
k¼1
ð� 1Þ

k
=ðt � t�kÞ

; 8j 6¼ K

yKðtÞ ¼ 0; 8t;

λj � N ðμl; s2
l
IÞ;8j 6¼ K

β � N ð0; s2
b
IÞ:

ð15Þ

It is standard to assume that β coefficients are centered around 0. The prior constants s2
l

and s2
b

are user-defined constants. If little or no prior information is available, they can be set

to some relatively large value. In the case of β this value depends on the scale of the covariates.

In the case of λ this value can be small, because even differences in the order of 10 result in

near 1 (or 0) probabilities due to the inverse logit transformation. Note that this model could

easily be extended to use regularization on the covariates by placing a hyper-prior on β.

We implemented the model in the Stan probabilistic programming language and inferred

from it using the built in variant the No-U-turn Sampler (NUTS), an extension of the Hamilto-

nian Monte Carlo sampling algorithm [26, 28, 29].

Gaussian process model (GP)

GPs are a well-studied field with a rich theory [24]. The shape of a GP is determined primarily

by its kernel function which is very flexible. By applying different kernel functions we can get

for instance a Wiener proces [25] or a certain spline [30]. GPs are also closely connected to

some of the more well-known models such as neural networks or support vector machines,

but are more intuitive and easy to interpret [24]. On the other hand applying GPs is time

demanding due to the covariance matrix inversion which is Oðn3Þ where n is the number of

covariate points [24].

Instead of using BRI we now place a GP prior on each object’s latent strength

yjðtÞ � GPðmðtÞ; kðt; t0ÞÞ; 8j;

where m(t) is the mean function and k(t, t0) is the covariance function [24]. The mean function

is usually taken to be m(t) = 0;8t.
The likelihood of the model is the same as in Eq (8), so the posterior distribution is

pðθ; βjyÞ / Lðθ; β; yÞ
YK

j¼1

GPð0; kðt; t0ÞÞÞ ¼
Yn

i¼1

pyii ð1 � piÞ
1� yi

 !
YK

j¼1

GPð0; kðt; t0ÞÞ; ð16Þ

where pi ¼ logit� 1
ðyai � ybi þ β>xiÞ and we abuse the notation GP to denote the multivariate

normal (MVN) probability density function of a GP.

To predict latent strengths θ� ≜ θ(t�) for times t�, we have to compute the posterior predic-

tive density [31]

pðθ�; jyÞ ¼
Z

pðθ�jθÞ
Z

pðθ; βjyÞ dβ
� �

dθ; ð17Þ

where p(θ|y) =
R
p(θ, β|y)d β is the marginal posterior obtained by integrating the posterior
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density over β (and any kernel hyper-parameters). The conditional multivariate Gaussian dis-

tribution p(θ�|θ) is given by

θ�jθ � N ðKt� ;t
K � 1

t;t θ;Kt� ;t�
� Kt� ;t

K � 1
t;t K

>
t;t�
Þ: ð18Þ

K�,� are covariance matrices obtained by evaluating kernel functions on different combinations

of given times t and t�.
Eq (17) is only tractable when the likelihood p(y|θ) is normal [31, 32], so no closed form

solution exists for our model and we have to resort to numerical methods. One approach is to

use structural approximation methods such as Laplace approximation or variational inference,

see [24, 31] for a quick overview. For instance, Laplace approximation algorithm uses a qua-

dratic approximation and by optimization locates the mode of the posterior p(θ|y). Variational

inference minimizes the divergence between a Gaussian approximation and the posterior dis-

tribution, but the likelihood function has to be factored as pðyjθÞ ¼
Qn

i¼1
pðyijyiÞ [31]. These

methods can be quite accurate, especially when the posterior is uni-modal, but they can also

give biased results when posterior distribution has a more complex shape. To overcome

restrictions of structural approximations we use MCMC sampling algorithms. These methods

are more computationally intensive but guarantee convergence in distribution to the posterior

in the limit of long runs [31].

The model and prior distributions are governed by

yijθ; β; ti; ai; bi; xi � BernoulliðpiÞ

pi ¼ logit� 1
ðyai � ybi þ β>xiÞ

yjj‘;s � MVNð0;Kðt; t0js; ‘ÞÞ; 8j 6¼ K

yKðtÞ ¼ 0; 8t

s � N ð0; s2
s
Þ; s > 0

‘ � GIGðagig; bgig; qgigÞ

b � N ð0; s2
β IÞ:

ð19Þ

The choice of prior distributions requires additional explanation. For the kernel function k
(t, t0|σ, ℓ) we considered the most commonly used squared exponential kernel

kðrÞ ¼ s2 exp
� r2

2‘
2

� �

; ð20Þ
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where r = |t − t0|, and three Matérn kernels

k
n¼

1

2

ðrÞ ¼ s2 exp �
r
‘

� �
;

k
n¼

3

2

ðrÞ ¼ s2 1þ

ffiffiffi
3
p

r
‘

� �

exp �
ffiffiffi
3
p

r
‘

� �

;

k
n¼

5

2

ðrÞ ¼ s2 1þ

ffiffiffi
5
p

r
‘
þ

5r2

3‘
2

� �

exp �
ffiffiffi
5
p

r
‘

� �

:

ð21Þ

Note that limν!1 kν(r) = k(r). Each kernel also has hyper-parameters that need to be prop-

erly chosen, that are deviation σ and length-scale ℓ. For σ we have set prior mean to 0, but only

consider positive non-zero values. This choice is due to the fact that latent strength can either

be close to constant corresponding to stagnation or very wavy when some significant changes

occur.

We put a generalized inverse Gaussian (GIG) prior on the length-scale ℓ estimation. The

GIG probability density function is given by

pðx j a; b; qÞ ¼

a
b

� �q
2

2Kqð
ffiffiffiffiffi
ab
p
Þ
xq� 1 exp �

1

2
axþ

b
x

� �� �

; ð22Þ

where x; a; b 2 Rþ, q 2 Z and Kq represents a modified Bessel function of second kind. We

chose the GIG distribution, because it has a sharp left tail putting very little probability mass

on close-to-zero length-scales. The right-hand side the GIG has a thin tail which allows us to

keep out the very large length-scales. We set qgig = 1 and determined agig and bgig by optimiza-

tion such that the mode of the GIG was equal to the distance between time nodes (see subsec-

tion Auxiliary nodes for more efficient computation). Fig 1 shows how the parameters agig and

bgig allow for enough flexibility for our purposes even when keeping qgig fixed to 1.

Gaussian process model with outcome probabilities (GPprob). Sometimes additional

data are available in the form of probabilistic predictions p̂i, which estimate the unknown out-

come probabilities pi. For example, probabilities derived from odds in sports, which are

known to be good estimates of outcome probabilities [33].

Probabilistic predictions, even if moderately biased, should provide more information than

binary outcomes. We extend the model from Eq (19) to allow for the inclusion of such data:

p̂ijt � Betaðpi t; ð1 � piÞ tÞ

t � Uniformð0; tmaxÞ:
ð23Þ

We assume that the probability estimates are beta-distributed with the mean equal to the

unknown true probability. The hyper-parameter τ can be interpreted as the quality of the

source of probability estimates—smaller values indicate better probabilities.

Auxiliary nodes for more efficient computation. In certain domains, for example, in

most professional sports, the comparisons are few and far apart and a single comparison pro-

vides very little information about the latent strengths, so we need a relatively long period of

time to get a good estimate of latent strength. In the context of GPs, we can deal with this by

increasing the length-scale. However, a larger length-scale results in more correlation in the

posterior and therefore less efficient exploration of the posterior via MCMC.
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To allow for more efficient computation, we introduce auxiliary nodes (time points), simi-

lar to BRI. The likelihood is computed only at these nodes and each observation is assigned to

the nearest auxiliary node. In the extreme case where an auxiliary node is placed at each obser-

vation, the method reduces to the initially described model.

Empirical evaluation

We empirically evaluated and compared the models on three data sets: a toy data set and two

real world data sets: ATP (Association of Tennis Professionals) and NBA (National Basketball

Association). We collected ATP data for the 20 players with the most games in the 5 seasons in

the period from 2015 to 2019, for a total of 673 matches. We collected NBA game outcomes

for 5904 regular season games in the 5 seasons period from 2013 to 2018. For the NBA data we

also obtained bookmakers’ wining odds for every match in the selected seasons period. The

resources for data are the following:

• ATP: https://datahub.io/sports-data/atp-world-tour-tennis-data

• NBA: https://www.basketball-reference.com/

• NBA odds: https://www.betexplorer.com/

The raw data are available as supplementary material S1, S2, S3 and S4 Datasets.

Fig 1. GIG probability density function. The GIG probability density function with q = 1 and different values of a and b.

https://doi.org/10.1371/journal.pone.0251945.g001
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Toy data

In the toy data set we compare 3 objects. The main feature of the data is a discontinuity in the

latent strengths of the first and the second object. The latent strengths are:

y1ðtÞ ¼ � 2Hðt � 250Þ þ 1;

y2ðtÞ ¼ 2Hðt � 167Þ � 1;

y3ðtÞ ¼ 0;

ð24Þ

where H(�) stands for the Heaviside function and t 2 {0, 1, 2, . . ., 499}.

The 3rd object’s latent strength is held at constant value of 0. For the 1st object latent

strength θ1(t) is constant at value 1 for times 0� t� 250 and then jumps to value −1 for 250<

t< 500. The shape for the 2nd object is complementary, i.e. θ2(t) jumps from value −1 to 1 at

time 167. The difference in latent strengths of value 1 corresponds to approximately a 73%

chance of winning for the object with the higher latent strength.

In order to simulate comparison data we need to determine which objects are to be com-

pared. Given three objects there are 3 possible combinations of pairwise comparisons. Each of

the combinations was selected with a 50% probability for each time point ti 2 t. Win probabili-

ties pi are given with Eq (5) and the outputs of comparisons are determined with a sample

from yi|pi* Bernoulli(pi).
Model evaluation and parameter tuning. We evaluated the models using the log-score

and train-test (holdout) estimation repeated 10 times to account for train-test split variability.

We approximated the standard error of the estimates using hierarchical bootstrap, accounting

for inter-observation and inter-train-test split variability.

The models have several tunable parameters. For every experiment and every train-test split

separately, their values were selected before training the model from a predetermined set of

candidate values using internal train-test estimation on the training set, repeated 5 times.

A summary of experiments’ settings for each data set is in Table 1. For the ATP and NBA

data set we used half of the data for training. For the toy data set we used only 10% of data for

the training—because these data are simulated, we could generate as many training observa-

tions as necessary to reduce the standard errors of the log-score estimates. For all three data

sets we used a 90%-10% train-test split for internal selection of parameters.

Table 1. Experiments’ parameters settings.

Toy ATP NBA

Train data ratio [%] 10 50 50

Internal train data ratio [%] 90 90 90

#train-test splits 10 10 10

#internal train-test splits 5 5 5

Models BASE, BRI, BRIbayes, GP, GPprob BASE, BRI, BRIbayes, GP, BASE, BRI, BRIbayes, GP, GPprob

#nodes (1, 2, 3, 5, 10, 15, 20) (1, 5, 10, 20, 30, 50) (1, 5, 10, 20, 30, 50)

Kernels kν n 2 1

2
; 3

2
; 5

2
;1g

�
n 2 1

2
; 3

2
; 5

2
;1g

�
n 2 1

2
; 3

2
; 5

2
;1g

�

Prior parameters ðμl; s
2
l
;s2

b
; s2

s
Þ (0, 4, 1, 1) (0, 4, 1, 1) (0, 4, 1, 1)

Experiment settings and candidate tunable parameter values.

https://doi.org/10.1371/journal.pone.0251945.t001
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We did not use the GPprob model on the ATP data, because the data do not include out-

come probabilities. For toy data we used a different set of nodes than with ATP and NBA data

due to different time spans.

In the priors we set μλ = 0 since the reference object with θK(t) = 0, 8t was selected ran-

domly with no prior knowledge on relation to other objects’ latent strengths. The correspond-

ing variance was set to s2
l
¼ 4. This is based on the assumption that teams in a competition are

homogeneous in strength. It roughly corresponds to that a bottom 25% team has at least a 10%

chance to beat a top 25% team. The variance hyper-parameter s2
b

for the home advantage prior

was set to 1, which corresponds to�27% of increase in win probability. The same value was

set to s2
s

for the kernels’ hyper-parameter σ which gives our prior belief on the rate of variation

of the latent strength. For the Bayesian models we used 200 warmup and 800 sampling itera-

tions. Effective sample sizes and R-hat diagnostics did not indicate any issues with MCMC.

For the GPprob model the hyper-parameter τmax was set to 1000.

Results

Tunable parameter values. The selected tunable parameters for each train-test split are

shown in Tables 5–7 in S1 Appendix, for toy, ATP, and NBA data sets, respectively:

• Toy: The parameters vary a lot between train-test splits. This is expected since there are dis-

continuities in the latent strengths and only 10% of the data were used for training. The two

BRI-based models are similar as are the two GP models—any differences are difficult to dis-

cern due to the high variability. For the GPprob model the number of nodes is mostly larger

than with other models. Additional information in the form of probabilities allows for a

smaller length-scale and a more detailed curve.

• ATP: A single node is consistently selected for both BRI-based models with a single excep-

tion in case of BRIbayes. The number of selected nodes for the GP model varies more, but 1

and 5 nodes are the most common, also suggesting a larger length-scale and that the models

do not find a lot of variability in players’ latent strengths.

• NBA: The number of nodes for the BRI-based models varies from 1 to 5 and the number of

nodes for the GP model varies from 5 to 20. This suggests that NBA data has more variability

in latent strengths than ATP data. For the GPprob model the maximum allowed number of

nodes (50) is consistently selected with only one exception where 30 nodes is selected. Addi-

tional information in the form of probabilities allows for a smaller length-scale and a more

detailed curve. This also suggests that our estimate of the model performance is biased (pes-

simistic)—allowing a larger number of nodes could lead to even better performance.

Model performance. We organized the model performance results into upper-triangular

tables where each row and column correspond to one of the models. Above-diagonal elements

are the mean log-score differences between the row and column models. These elements facili-

tate a direct comparison of the two models. Diagonal elements are the estimated log-scores for

a particular model. The results on toy data set are in Table 2.

All the models outperform the benchmark model BASE. In increasing order of perfor-

mance, the models are BASE, BRI, BRIbayes, GP, and GPprob. The latter was expected to out-

perform the other models, because it uses more information. GP is better than the BRI-based

models at handling the discontinuity in the latent strength. Fig 2 shows an illustrative example.
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We note that in this particular illustration 2 nodes were selected for the BRI model and

thus a linear solution, while for BRIbayes and GP models 3 nodes were selected resulting in

solutions with a closer fit.

The results on ATP data are in Table 3. As the selected parameters already suggested, the

models find no meaningful variability in latent strengths and none of the models outperform

the baseline model BASE, which assumes constant latent strengths. This can either be due to

the top players indeed being consistent throughout the observed period or due to lack of infor-

mation. Additional information could be incorporated, such as matches with players outside

the top players and court-type, which plays an important role. However, this example illus-

trates that the more flexible models are robust to over-fitting the data and do not perform

Table 2. Model performance on toy data set.

BASE BRI BRIbayes GP GPprob

BASE −0.709±0.006 − 0.040 ± 0.033 − 0.105 ± 0.017 − 0.122 ± 0.012 − 0.176 ± 0.011

BRI −0.669±0.032 − 0.066 ± 0.029 − 0.082 ± 0.026 − 0.136 ± 0.032

BRIbayes −0.603±0.014 − 0.017 ± 0.010 − 0.071 ± 0.011

GP −0.587±0.009 − 0.054 ± 0.009

GPprob −0.533±0.008

Diagonal elements are the estimated log-scores. Above-diagonal elements are the estimated difference between the log-scores of the corresponding row and column

models. Standard errors of the estimates are provided and differences greater than 1 standard error are in bold.

https://doi.org/10.1371/journal.pone.0251945.t002

Fig 2. Model comparison of estimated latent strength for the 1st object in the toy data set. For models BRIbayes, GP and GPprob we show the

posterior mean. The red line represents the true latent strength. The points represent the training data. GP fits the true latent strength better than

BRIbayes. GPprob, which uses additional probability data fits the true latent strength best.

https://doi.org/10.1371/journal.pone.0251945.g002
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worse than a constant latent-strength model. We also note that in case of the BRI model only

one node was chosen for all train-test splits giving the same result as the BASE model.

In Fig 3 we show latent strengths of top 5 tennis players obtained with the BASE model.

These results show that from 2015 to 2019 Novak Djoković was the best player followed by

Roger Federer, Andy Murray, Rafael Nadal, and Feliciano Lopez.

The results on NBA data are in Table 4. Unlike ATP data set, the selected tunable parameter

values suggested that there is some variability in latent strengths to be modelled. Similar to toy

data set the models are, in order of increasing performance, BASE, BRI, BRIbayes, GP, and

Table 3. Model performance on ATP data set.

BASE BRI BRIbayes GP

BASE −0.581±0.014 −0.000±0.000 −0.000±0.006 0.008±0.010

BRI −0.581±0.014 −0.000±0.006 0.008±0.010

BRIbayes −0.580±0.013 0.008 ± 0.006

GP −0.589±0.011

Diagonal elements are the estimated log-scores. Above-diagonal elements are the estimated difference between the

log-scores of the corresponding row and column models. Standard errors of the estimates are provided and

differences greater than 1 standard error are in bold.

https://doi.org/10.1371/journal.pone.0251945.t003

Fig 3. The five players with the highest latent strength according to the BASE model.

https://doi.org/10.1371/journal.pone.0251945.g003
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GPprob. Again, the GPprob model was expected to outperform the other models, because it uses

more information and the GP model is better than the BRI-based models. As an additional

benchmark we include a comparison with probabilities from bookmaker win odds (Odds).

Our model when using these probabilities outperforms them. The other models give 3%—6%

lower log-scores. The latent strengths of 5 selected NBA teams are shown in Fig 4.

Table 4. Model performance on NBA data set.

BASE BRI BRIbayes GP GPprob Odds

BASE −0.627±0.002 − 0.005 ± 0.002 − 0.009 ± 0.003 − 0.022 ± 0.002 − 0.047 ± 0.002 − 0.042 ± 0.002

BRI −0.622±0.003 − 0.004 ± 0.002 − 0.017 ± 0.002 − 0.042 ± 0.003 − 0.037 ± 0.003

BRIbayes −0.618±0.004 − 0.013 ± 0.003 − 0.038 ± 0.003 − 0.033 ± 0.003

GP −0.605±0.002 − 0.025 ± 0.002 − 0.019 ± 0.002

GPprob −0.580±0.003 0.005 ± 0.001

Odds −0.586±0.003

Diagonal elements are the estimated log-scores. Above-diagonal elements are the estimated difference between the log-scores of the corresponding row and column

models. Standard errors of the estimates are provided and differences greater than 1 standard error are in bold.

https://doi.org/10.1371/journal.pone.0251945.t004

Fig 4. Comparison of latent strengths of selected five NBA teams using the GPprob model. For each team a line and a ribbon are shown which

represent a posterior mean and the corresponding standard deviation. The Golden States Warriors (GSW) were for most of the period the best out of

these five teams. A drop can be seen in Miami Heat’s (MIA) strength going from the 2014 to the 2015 season, while the Cleveland Cavaliers’s (CLE)

strength increases. These changes correspond with LeBron James leaving Miami Heat and returning to Cleveland Cavaliers.

https://doi.org/10.1371/journal.pone.0251945.g004
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Conclusions

In this paper we extended the Bradley-Terry model using BRI and GPs to model latent

strengths as the time-varying components of the model. In addition the model also allows for

the inclusion of covariates and outcome probabilities. The use of outcome probabilities is over-

looked in related work, although they are often available and substantially improve the model’s

performance as we demonstrated on toy and real data from NBA games. Even a biased esti-

mate of the outcome probability provides more information than observing a single realization

of the process.

We empirically demonstrated the advantages of GPs over BRI and the benefits of using a

Bayesian approach to BRI instead of MLE. The BRI-based models are more sensitive to node

selection than the GP-based models, the Bayesian BRI model less so than the MLE-based

model. All the investigated models are robust to over-fitting and perform well even when the

latent strengths are constant. As expected, BRI does not handle discontinuities as well as GPs.

However, it is worth noting that this issue is not as pronounced when modelling latent

strengths in a log-odds setting as it is when modelling observed data. Due to the exponential

transformation, relatively sharp changes in observed performance can be modelled well by a

smoother change in latent strength. This is an argument in favour of BRI as a useful alternative

to splines and GPs when modelling latent strengths.

In our research we focused on hindcasting rather than forecasting. That is why we evaluated

our models based on their performance on left-out games. If the goal was forecasting, we

acknowledge that other approaches tailored to forecasting would give better results. Note,

however, that our GPprob model gives better results than log-scores calculated form bookmak-

ers’ odds. The down-side of our approach is the time complexity which comes with the

MCMC methods and calculations of covariance matrix inverses. On the other hand our results

are valuable to get a quantitative insight about the underlying strength dynamics of players or

teams, which can be used for seeding competitions and matchmaking, scouting or visually

engaging coaches and fans.

We could further improve our models in two ways. One direction is to use some other

probability distribution function for modelling the comparison outcome which might be more

suited to specific data. Another upgrade of the model would be to incorporate transitivity

effect, which is often present in sports data.
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References
1. David HA. The Method of Paired Comparisons. New York: Oxford University Press; 1988.

2. Cattelan M. Models for paired comparison data: A review with emphasis on dependent data. Statistical

Science. 2012; 27(3):412–433. https://doi.org/10.1214/12-STS396

3. Bradley RA, Terry ME. The Rank Analysis of Incomplete Block Designs: I. The Method of Paired Com-

parisons. Biometrika. 1952; 39:324–345. https://doi.org/10.2307/2334029

4. Luce RD. Individual Choice Behavior: A Theoretical Analysis. New York, NY, USA: Wiley; 1959.

5. Thurstone LL. A Law of Comparative Judgement. Psychological Review. 1927; 34:278–286. https://doi.

org/10.1037/h0070288

6. Rao PV, Kupper LL. Ties in Paired-Comparison Experiments: A Generalization of the Bradley-Terry

Model. Journal of the American Statistical Association. 1967; 62(317):194–204. https://doi.org/10.1080/

01621459.1967.10482901

7. Herbrich R, Minka T, Graepel T. TrueSkill(TM): A Bayesian Skill Rating System. In: Advances in Neural

Information Processing Systems 20. MIT Press; 2007. p. 569–576.

8. Minka T, Cleven R, Zaykov Y. TrueSkill 2: An improved Bayesian skill rating system. Microsoft; 2018.

9. Makhijani R, Ugander J. Parametric Models for Intransitivity in Pairwise Rankings. In: The World Wide

Web Conference; 2019. p. 3056–3062.

10. Ullah K, Aslam M, Sindhu TN. Bayesian analysis of the Weibull paired comparison model using informa-

tive prior. Alexandria Engineering Journal. 2020; 59(4):2371–2378. https://doi.org/10.1016/j.aej.2020.

02.032

11. Elo AE. The rating of chessplayers, past and present. New York: Arco Pub.; 1978.

12. Aldous D. Elo Ratings and the Sports Model: A Neglected Topic in Applied Probability? Statistical Sci-

ence. 2017; 32(4):616–629. https://doi.org/10.1214/17-STS628

13. Glickman ME. A Comprehensive Guide to Chess Ratings. American Chess Journal. 1995; 3:59–102.

14. Chen C, Kok JN, Heiser W. Elo Rating System for UEFA Women’s Euro 2017. The Predictive Power of

Elo Ratings for the Performance of Teams and Players in the 2017 UEFA Women’s Championship. Uni-

versiteit Leiden, The Netherlands; 2018.

15. Glickman ME. Parameter Estimation in Large Dynamic Paired Comparison Experiments. Journal of the

Royal Statistical Society: Series C (Applied Statistics). 1999; 48(3):377–394.

PLOS ONE A Bayesian approach to time-varying latent strengths in pairwise comparisons

PLOS ONE | https://doi.org/10.1371/journal.pone.0251945 May 20, 2021 16 / 17

https://doi.org/10.1214/12-STS396
https://doi.org/10.2307/2334029
https://doi.org/10.1037/h0070288
https://doi.org/10.1037/h0070288
https://doi.org/10.1080/01621459.1967.10482901
https://doi.org/10.1080/01621459.1967.10482901
https://doi.org/10.1016/j.aej.2020.02.032
https://doi.org/10.1016/j.aej.2020.02.032
https://doi.org/10.1214/17-STS628
https://doi.org/10.1371/journal.pone.0251945


16. Glickman ME. Dynamic paired comparison models with stochastic variances. Journal of Applied Statis-

tics. 2001; 28(6):673–689. https://doi.org/10.1080/02664760120059219

17. Coulom R. Whole-History Rating: A Bayesian Rating System for Players of Time-Varying Strength. In:

Lecture Notes in Computer Science. vol. 5131; 2008. p. 113–124.

18. Baker RD, McHale IG. Time varying ratings in association football: the all-time greatest team is. . . Jour-

nal of the Royal Statistical Society: Series A (Statistics in Society). 2015; 178(2):481–492. https://doi.

org/10.1111/rssa.12060

19. Baker RD, McHale IG. A dynamic paired comparisons model: Who is the greatest tennis player? Euro-

pean Journal of Operational Research. 2014; 236(2):677–684. https://doi.org/10.1016/j.ejor.2013.12.

028

20. Owen A. Dynamic Bayesian forecasting models of football match outcomes with estimation of the evolu-

tion variance parameter. IMA Journal of Management Mathematics. 2011; 22(2):99–113. https://doi.

org/10.1093/imaman/dpq018

21. Koopman SJ, Lit R. A dynamic bivariate Poisson model for analysing and forecasting match results in

the English Premier League. Journal of the Royal Statistical Society: Series A (Statistics in Society).

2015; 178(1):167–186. https://doi.org/10.1111/rssa.12042

22. Cattelan M, Varin C, Firth D. Dynamic Bradley–Terry modelling of sports tournaments. Journal of the

Royal Statistical Society: Series C (Applied Statistics). 2013; 62(1):135–150.

23. Floater M, Hormann K. Barycentric rational interpolation with no poles and high rates of approximation.

Numerische Mathematik. 2007; 107:315–331. https://doi.org/10.1007/s00211-007-0093-y

24. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. MIT Press; 2006.

25. Shreve SE. Stochastic Calculus for Finance II: Continuous-Time Models. Springer; 2004.

26. Stan Development Team. Stan Modelling Language Users Guide and Reference Manual; 2019. Avail-

able from: https://mc-stan.org.

27. Baker RD, Jackson D. Statistical application of barycentric rational interpolants: an alternative to

splines. Computational Statistics. 2014; 29:1065–1081. https://doi.org/10.1007/s00180-014-0480-7

28. Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian

Monte Carlo. J Mach Learn Res. 2014; 15(1):1593–1623.

29. Betancourt MJ. Generalizing the No-U-Turn Sampler to Riemannian Manifolds; 2013. Available from:

https://arxiv.org/abs/1304.1920v1.

30. Kimeldorf GS, Wahba G. A Correspondence Between Bayesian Estimation on Stochastic Processes

and Smoothing by Splines. Annals of Mathematical Statistics. 1970; 41(2):495–502. https://doi.org/10.

1214/aoms/1177697089

31. Titsias M, Lawrence DN, Rattray M. Markov chain Monte Carlo algorithms for Gaussian processes. In:

Inference and Estimation in Probabilistic Time-Series Models; 2008. p. 9.

32. Titsias M, Lawrence N, Rattray M. Efficient Sampling for Gaussian Process Inference using Control

Variables. In: Advances in Neural Information Processing Systems. vol. 21; 2008. p. 1681–1688.
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