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REVIEW

Genetic and molecular biology of systemic 
lupus erythematosus among Iranian patients: 
an overview
Meisam Gachpazan1, Iman Akhlaghipour2, Hamid Reza Rahimi1, Ehsan Saburi1, Majid Mojarrad1, 
Mohammad Reza Abbaszadegan1 and Meysam Moghbeli1* 

Abstract 

Background:  Systemic lupus erythematosus (SLE) is a clinicopathologically heterogeneous chronic autoimmune 
disorder affecting different organs and tissues. It has been reported that there is an increasing rate of SLE incidence 
among Iranian population. Moreover, the Iranian SLE patients have more severe clinical manifestations compared 
with other countries. Therefore, it is required to introduce novel methods for the early detection of SLE in this popula-
tion. Various environmental and genetic factors are involved in SLE progression.

Main body:  In present review we have summarized all of the reported genes which have been associated with clin-
icopathological features of SLE among Iranian patients.

Conclusions:  Apart from the reported cytokines and chemokines, it was interestingly observed that the apoptosis 
related genes and non-coding RNAs were the most reported genetic abnormalities associated with SLE progression 
among Iranians. This review clarifies the genetics and molecular biology of SLE progression among Iranian cases. 
Moreover, this review paves the way of introducing an efficient panel of genetic markers for the early detection and 
better management of SLE in this population.
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Background
Autoimmune disorders are associated with immune sys-
tem attack to the body’s own organs, tissues, and cells 
[1, 2]. They have an increasing frequency in industrial-
ized countries. Systemic lupus erythematosus (SLE) is a 
heterogeneous autoimmune disorder characterized by 
antinuclear, anti-double-stranded DNA, and antiphos-
pholipid antibodies [3]. The incidence rate of SLE varies 
in different geographical regions from 1 to 10 per 100,000 
person annually [4].  North America has the highest 
rate of SLE incidence (23.2/100,000) and prevalence 

(241/100,000) [5, 6], while Africa and Ukraine have the 
lowest incidences (0.3/100,000 persons/year) [7, 8]. In 
Asia, the Chinese and Asian Indians have higher SLE 
prevalence in comparison with Arabs [9–12]. Various 
clinical symptoms are observed in SLE patients such as 
renal failure, arthritis, thrombosis, and neurologic com-
plications. There are different environmental and genetic 
risk factors associated with SLE etiology. SLE is more 
prevalent in women (about nine times more than men) 
and more diagnosed between 15 and 44  years old [4]. 
Smoking [13], alcohol consumption [14], metals [15], air 
pollution [16], obesity [17], diet [18], infections [19], pes-
ticides [20], and silica [21] are environmental risk factors 
associated with SLE. Genetic factors have also important 
roles during SLE progression which are mainly associated 
with combined effect of various genes. Single-nucleotide 
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polymorphisms (SNPs) that are associated with SLE 
pathogenesis are also mainly located in noncoding DNA 
sequences of immune system genes [22]. The prevalence 
of SLE in Iran as a middle-east country is reported 40 per 
100,000 persons. SLE has more severe symptoms among 
Iranian patients compared with European Caucasians. It 
seems that the higher severity of SLE among Iranians can 
be associated with some environmental risk factors such 
as ethnic and diet in which Iranians as a non-white popu-
lation has higher SLE severity compared with European 
population (white). Moreover, low carbohydrate/fiber, 
high protein/fat intakes, and micronutrients deficiencies 
among Iranians can also be associated with high sever-
ity of SLE in this population [23–27]. Poor sleep quality 
and vitamin D deficiency has been reported among Ira-
nian SLE patients [28, 29]. Regarding the severe clinical 
complications among Iranian SLE patients, it is required 
to introduce a diagnostic panel of genetic markers for the 
early detection of SLE. Therefore, in present review we 
have summarized all of the reported genes with signifi-
cant effects on SLE progression among Iranian cases. We 
also categorized them based on their cell and molecular 
functions to clarify the biology of SLE among Iranian 
population. Moreover, we categorized the reported fac-
tors based on their outcomes into genetic/epigenetic 
aberrations and cytokines/chemokine abnormalities 
(Tables 1, 2).

Main text
Cytokines
Cytokines are soluble glycoproteins that function in auto-
crine/paracrine states between leukocytes and other cells 
which are involved in leukocyte growth and migration 
[31, 32]. Moreover, various other biological processes 
such as angiogenesis and inflammation are associated 
with cytokines production via lymphocytes, mono-
cytes, keratinocytes, and endothelial cells [33]. IL-1 is 
a pro inflammatory cytokine involved in autoimmune 
responses [34]. The IL-1 receptor antagonist (IL-1RN) is 
a suppressor of IL-1 activity [35]. A significant correla-
tion has been observed between IL-1RN rs315952 poly-
morphism and SLE among Iranian patients in which the 
CT genotype was protective. Patients with hematological 
symptoms had significantly higher frequency of rs315952 
T allele. There was also a significant decreased frequency 
of rs315952 CT genotype in SLE cases compared with 
controls [36]. There was a significant correlation between 
IL-2 serum level and SLE disease activity among Iranian 
cases. The serum level of IL-2 was significantly correlated 
with Prednisone consumption [37].

IL-4 is a pleiotropic cytokine produced by various 
cells such as T cells, basophils, and NK cells [38, 39] 
which has pivotal role in regulating the T helper 2 (Th2) 

development [40, 41]. It has been shown that there were 
significant increased frequencies of C allele at -33 and 
-590 as well as T allele at -1098 SNPs among a sample 
of SLE cases compared with controls. There were also 
increased frequencies of 33 CC, 590 CC, and 1098 TT 
genotypes, while decreased frequencies of 33 TC, 590 
TC, and 1098 TG genotypes. IL-4 gene polymorphisms 
may lead to the reduced frequencies of TTC, GCC and 
TTT haplotypes, while there was significant increased 
rate of TCC haplotype in SLE cases [42].

IL-10 is a cytokine mainly secreted by monocytes and 
B lymphocytes which suppresses the other pro-inflam-
matory cytokines in activated macrophages and T lym-
phocytes [43, 44]. IL-10 is involved in SLE pathogenesis 
through induction of B lymphocytes proliferation and 
autoantibodies production by damaged organs [45, 46]. It 
has been reported that the GG genotype of IL-10 (1082) 
and CC genotype of IL-10 (819) polymorphisms were 
correlated with increased SLE susceptibility among Ira-
nian patients. There were IL-10 plasma up regulations in 
CC and AA genotype carriers of -592 and -1082, respec-
tively. The CC and TT genotype carriers at − 592 and 
− 819 regions respectively had also increased SLEDAI 
score [47]. Disturbed immune tolerance and T/B lym-
phocytes activation results in production of autoantibod-
ies. V-Set Domain Containing T Cell Activation Inhibitor 
1 (VTCN1) is an inhibitor of T cell responses, cell-cycle 
progression, and cytokine production [48–51] that can be 
up regulated by IL-10 and IL-6 [52]. The STAT4 is a tran-
scription factor induced by IL-12 and IL-23 which has a 
pivotal function in Th1 and Th17 differentiation [53–57]. 
Therefore, STAT4 can also be involved in SLE pathogen-
esis [57]. It has been reported that there was a significant 
correlation between rs7574865TT and GT genotypes and 
risk of SLE in a sample of Iranian subjects [58].

T helper and regulatory T cells are the main regulators 
of inflammation during SLE progression. Th1 cells related 
cytokines are associated with cell-mediated immunity 
[59], whereas Th17 cells are involved in organ damage 
through IL-17 production [60]. It has been reported that 
there was increased IL-17 levels in a sample of Iranian 
SLE patients receiving glucocorticoid treatments com-
pared with newly diagnosed and healthy cases. There was 
also a significant direct association between IL-17 and 
IFN-γ plasma levels while a negative association between 
IL-17 and IL-10 cytokines [61]. Glomerulonephritis is an 
important organ involvement in SLE which is associated 
with poor prognosis and end-stage disease [62]. Regula-
tory T cells have critical role in regulation of unwanted 
immune responses and can be involved in lupus nephritis 
(LN) progression [63, 64]. Th17 cells as effector T helper 
cells have been observed in damaged organs of SLE cases 
[65]. Up regulations of Th1 and Th17 cytokines induced 
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Table 1  All of  the  genetic aberrations with  significant effects on  clinicopathological features of  SLE among  Iranian 
patients

Study (et al.) Year Gene Population Results

Tahmasebi [36] 2013 IL-1RN 213 NCa

207 SLEb
Polymorphism was correlated with SLE progression

Mahmoudi [42] 2014 IL-4 140 NC
59 SLE

Polymorphism was correlated with SLE progression

Mohammadi [47] 2019 IL-10 131 NC
116 SLE

Polymorphism was correlated with SLE progression

Mirkazemi [58] 2013 STAT4 281 NC
280 SLE

Polymorphism was correlated with SLE progression

Alesaeidi [76] 2015 MECP2 392 NC
492 SLE

Polymorphism was correlated with SLE progression

Sahebari [79] 2010 FAS 50 NC
114 SLE

Different serum levels of Fas between cases and controls

Moudi [82] 2013 FAS, FASL 149 NC
106 SLE

Polymorphism was correlated with SLE progression

Araste [86] 2010 FAS 249 NC
212 SLE

Polymorphism was correlated with SLE progression

Fathi [90] 2020 PDCD1 564 NC
253 SLE

Polymorphism was correlated with SLE progression

Mahmoudi [91] 2015 PDCD1 50 NC
202 SLE

Polymorphism was correlated with SLE progression

Rajabi [102] 2012 TNFSF4, TRAF2 57 NC
57 SLE

Increased and decreased levels of TNFSF4 and TRAF2 expressions respectively

Namazi [107] 2017 APRIL 64 NC
60 SLE

Increased serum APRIL levels

Salimi [110] 2018 ERa 186 NC
170 SLE

Polymorphism was correlated with SLE progression

Shojaa [114] 2017 CTLA‐4 304 NC
180 SLE

Polymorphism was correlated with SLE progression

Salimi [118] 2014 XRCC1 180 NC
163 SLE

Polymorphism was correlated with SLE progression

Jahantigh [122] 2015 XRCC5, XRCC7 180 NC
163 SLE

Polymorphism was correlated with SLE progression

Salimi [131] 2016 Osteopontin 180 NC
163 SLE

Polymorphism was correlated with SLE progression

Mirfeizi [135] 2012 UMCP-1 67 SLE Increased UMCP-1 levels

Noroozinia [143] 2016 CD34 73 SLE CD34 expression was associated with activity index

Sharifipour [147] 2013 LCN2 52 SLE Increased urinary LCN2/creatinine level

Bahrehmand [156] 2012 MMP-2 101 NC
109 SLE

Polymorphism was correlated with SLE progression

Bahrami [175] 2020 PTPN22 93 NC
55 SLE

Polymorphism was correlated with SLE progression

Sandoughi [185] 2016 eNOS 194 NC
106 SLE

Polymorphism was correlated with SLE progression

Bahrehmand [197] 2013 PON1 83 NC
109 SLE

Polymorphism was correlated with SLE progression

Tanhapour [199] 2018 ApoE, PON1 117 NC
101 SLE

Polymorphism was correlated with SLE progression

Khoshmirsafa [203] 2019 miR-16, miR-21, and miR-155 30 NC
55 SLE

Increased expression of miR-16, miR-21, and miR-155 while miR‐141 down 
regulation

Vahed [206] 2018 miR-125a, miR-142-3p, miR-146a 26 NC
26 SLE

Increased circulating miR-125a and miR-146a levels while reduced level of 
circulating miR-142-3p

Nakhjavani [209] 2019 miR-21, miR-150, miR-423 26 NC
26 SLE

Reduced levels of circulating miR-150 while increased levels of circulating miR-
21 and miR-423

Akhtari [214] 2016 KIR, HLA 273 NC
230 SLE

Polymorphism was correlated with SLE progression

Rezaieyazdi [215] 2008 HLA 83 NC
40 SLE

Polymorphism was correlated with SLE progression
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nephrogenic conditions in LN. It has been reported that 
there were IL-17, IL-6, and interferon gamma (IFN-γ) up 
regulations in class IV glomerulonephritis SLE in com-
parison with non-nephritis SLE subjects in a sample of 
Iranian population [66].

IL-18 has a pivotal role in progression of cutaneous 
lupus erythematosus (CLE) and SLE [67, 68]. It has been 
reported that there were significant direct associations 
between serum levels of IL-18 and platelet counts among 
a sample of Iranian SLE patients with high disease activ-
ity, while inverse correlation between IL-18 and C3 levels 
[69]. One of the feasible mechanisms of SLE progression 
is Th1 and Th2 imbalanced that leads in B lymphocyte 
cell activity. IL-18 has a key function in Th1 response 
toward toxic shocks. It induces INF-γ production by T 
and NK cells and proliferation of activated T cells [70]. 
It has been shown that there were significant increased 
serum levels of IL-18 among Iranian SLE cases compared 
with healthy subjects. Serum levels of IL-18 were also 
associated with SLE disease activity index (SLEDAI) and 
high activity indexes. Active SLE patients had also higher 
levels of IL-18 compared with chronic cases. Moreover, 

the SLE cases with renal involvement had significantly 
higher serum level of IL-18 compared with cases without 
renal complication [71].

Adiponectin is an adipocyte-derived cytokine involved 
in renal complications of SLE [72]. There were signifi-
cant increased urinary levels of adiponectin in Iranian 
SLE patients with renal complication compared with 
cases lacking renal involvement [73]. IFN-γ is a soluble 
cytokine produced by various cells such as Th cells, mac-
rophages, and NK cells which is involved in NK induction 
and leukocyte migration. Methyl CpG binding protein 2 
(MECP2) recruits the histone deacetylase to promoter 
regions of target genes which induces heterochromatin 
formation and transcriptional inhibition [74]. It can also 
suppresses the gene expression via DNA methyltrans-
ferase1 (DNMT1) recruitment. MECP2 down regulates 
the IFN-γ secretion by Th cells that results in a par-
tial immune suppression [75]. It has been reported that 
there were significant correlations between rs1734787 
and rs1734791 polymorphisms of MECP2 and SLE pro-
gression among Iranian patients in which the C allele 
of rs1734787 and T allele of rs1734791 polymorphisms 

Table 1  (continued)
a  Normal control (NC)
b  Systemic lupus erythematosus (SLE)

Table 2  All of the reported cytokines/chemokines abnormalities during SLE progression among Iranian patients

a  Normal control (NC)
b  Systemic lupus erythematosus (SLE)

Study (et al.) Year Gene Population Results

Sedighi [37] 2014 IL-2 73 NCa

73 SLEb
IL-2 was significantly correlated with Prednisone consumption

Mohammadi [61] 2019 IL-17 20 NC
40 SLE

Increased IL-17 levels is SLE patients receiving glucocorticoids

Rastin [66] 2016 IL-6‚ IL-17, IFN-γ 40 SLE IL-17, IL-6, and IFN-γ up regulations

Aghdashi [69] 2013 IL-18 25 NC
25 SLE

Serum levels of IL-18 were correlated with platelet counts and C3 levels

Jafari-Nakhjavani [71] 2016 IL-18 50 NC
113 SLE

Increased serum levels of IL-18

Loghman [73] 2016 Adiponectin 50 SLE Increased urinary levels of adiponectin

Sahebari [80] 2012 Fas, IL-18 50 NC
114 SLE

Increased serum levels of Fas and IL-18

Hatef [81] 2013 IL-18, Fas 46 NC
32 SLE

Increased serum levels of Fas and IL-18

Abediazar [128] 2019 CXCL10 39 NC
25 SLE

Increased levels of CXCL10

Hajialilo [142] 2018 VCAM-1, ET-1 40 NC
60 SLE

Up regulations of serum VCAM-1 and ET-1

Yazdanpanah [167] 2017 TLR3, TLR7, TLR9 20 NC
20 SLE

TLR7 and TLR9 up-regulations

Mortezagholi [169] 2016 TLR9 38 NC
35 SLE

Increased expression of TLR9
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increased the SLE risk. Moreover, there were significant 
frequencies of CTAT and AAAT haplotypes in cases and 
controls, respectively [76].

Apoptosis and DNA repair
Fas/APO-1 belongs to the tumor necrosis factor (TNF) 
family of proteins that play a significant role in cell death, 
peripheral tolerance, and autoimmune response [77]. 
FAS is expressed normally at a low level on resting cells, 
while is highly expressed by activated T cells [78]. A sig-
nificant different serum levels of Fas has been observed 
between a sample of Iranian SLE cases and control group 
[79]. Another study has been reported that there were 
increased serum levels of Fas and IL-18 in a sample of 
Iranian SLE patients compared with controls which were 
also associated with disease activity and erythrocyte 
sedimentation rate (ESR) [80]. Increased serum Fas and 
IL-18 levels were also significantly observed in patients 
with proteinuria in comparison with cases without pro-
teinuria [81]. A significant different frequency of FAS 
A-670G AA genotype compared with GG genotype has 
been shown between Iranian SLE patients and controls. 
The SLE patients had also significantly increased fre-
quency of A allele compared with G allele. Regarding the 
FASL C-844T polymorphism, CC genotype and C allele 
were significantly more frequent in SLE patients com-
pared with healthy subjects. The AA/CC genotypes of 
FAS A-670G/FASL C-844T increased SLE susceptibility 
more than other genotypes [82]. The interaction of Fas 
and FasL results in apoptosis [83]. Soluble fas (sFas) is 
a variant without transmembrane domain [84] which is 
observed in supernatants of B and T cell lines [85]. The 
promoter region polymorphisms of the Fas have been 
assessed among Iranian SLE patients which showed sig-
nificant higher frequencies of 1377 G allele and GG geno-
type in patients compared with controls. There were also 
reduced frequencies of − 1377 − 670 (A-G)/ − 1377 − 670 
(A-G) haplotype among patients compared with healthy 
cases. Moreover, patients had significantly increased lev-
els of sFas and Fas ligand compared with controls. There 
was lower levels of anti-SSB/La in-670GG genotype car-
riers. Therefore, Fas promoter polymorphisms were sug-
gested as risk factors of SLE among Iranian patients [86].

Programmed cell death 1 (PD‐1) is an immunosup-
pressive factor associated with autoimmune disorders 
[87, 88]. It has a significant role in regulation of T cells 
function [89]. The correlation between PDCD1 SNPs and 
SLE progression was assessed among Iranian population. 
It has been reported that there was significant increased 
frequency of PD1.5 C/C genotype in SLE patients com-
pared with healthy cases, while the PD1.5 C/T and T/T 
genotypes frequencies were reduced in SLE patients. 
There was also significant correlations between GACT 

and GGCC haplotypes of PDCD1 and SLE susceptibility, 
while GGCT was protective during SLE progression [90]. 
Another group has been reported that there was a sig-
nificant inverse correlation between PD1.1 GG genotype 
and juvenile-onset SLE (JSLE) susceptibility among a sub 
population of Iranian cases. The PD-1.1 A allele was also 
more frequent among cases in comparison with controls 
[91].

TNF superfamily member 4 (TNFSF4) has critical roles 
in regulation of T-cell proliferation and activation which 
promotes CD4 + T cells survival in inflammation sites 
[92]. It also induces naive CD4 + T cells for the secre-
tion of IL-4, IL-5, and IL-13 [93, 94]. Moreover, TNFSF4 
stimulates B-cell proliferation that results in cell hyper-
activity in autoimmune disorders [95–97]. The TNF and 
TNF receptor have important roles in lymphocyte apop-
tosis during immune regulation [98]. TNF-R signaling 
is mediated by TNF-R-associated factor 2 (TRAF2) that 
is an adaptor protein and ubiquitin ligase [99]. TRAF2 
is also associated with non-canonical NF-kB pathway 
through TNF-α [100]. There is an interaction between 
TNFSF4 and TRAF2 to modulate apoptosis through 
NF-KB pathway which is involved in T-cell-mediated 
autoimmunity [101]. There was increased and decreased 
levels of TNFSF4 and TRAF2 expressions respectively in 
PBMCs of Iranian SLE patients compared with controls. 
A positive association was also between TNFSF4 expres-
sion levels and atherosclerotic symptoms in SLE patients. 
TRAF2 down regulation was also associated with renal 
involvement and atherosclerosis. The SLE cases with 
severe clinical symptoms had lower levels of TRAF2 
expression which showed a negative association between 
SLEDAI and TRAF2 down regulation [102].

A proliferation-inducing ligand (APRIL) is belonged to 
the TNF superfamily involved in B lymphocyte prolifera-
tion and antibody production [103]. Heparin sulfate have 
been also reported as APRIL receptor [104–106]. There 
was significant increased serum APRIL levels in a sam-
ple of Iranian children with SLE compared with healthy 
cases [107]. Estrogen inhibits the apoptosis in PBMCs of 
SLE patients and ERα up regulation have been observed 
among SLE cases [108, 109]. It has been reported that 
the CC/GG and TC/AA genotypes and TT haplotype of 
ERaPvuII and XbaI polymorphisms were correlated with 
increased risk of SLE among Iranian subjects [110].

Cytotoxic lymphocyte antigen-4 (CTLA-4) has criti-
cal roles in regulation of T cell activation, apoptosis, and 
peripheral tolerance [111, 112]. CTLA-4 up regulation in 
active SLE patients shows a key role during SLE progres-
sion [113]. There was an association between CTLA4-
318C/T polymorphism and SLE pathogenesis among a 
sub population of Iranian cases in which the CC geno-
type was significantly correlated with SLE susceptibility, 
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while the CT genotype and T allele were more frequent 
among healthy cases [114].

Deregulation of DNA repair system results in DNA 
breaks that produces immunogenic antigens and induces 
autoimmune response [115]. XRCC1 is one of the mem-
bers of base excision repair (BER) system [116] involved 
in repair of DNA damages caused by various factors 
such as active oxygen and alkylating agents [117]. It has 
been reported that there were significant decreased fre-
quency of XRCC1 Arg/Gln genotype in a sample of Ira-
nian SLE patients compared with controls which had also 
decreased frequency in malar rash positive compared 
with SLE cases without malar marsh [118]. Homologous 
recombination (HR) and non-homologous end joining 
(NHEJ) are the main mechanisms of double-strand break 
(DSB) repairs [119, 120]. Autoantibodies against Ku as 
one of the members of NHEJ are reported in SLE patients 
[121]. It has been shown that there were significant cor-
relations between XRCC7 6721G > T and XRCC5 VNTR 
polymorphisms and SLE susceptibility in a sample of Ira-
nian subjects. The 0R allele of XRCC5 VNTR polymor-
phism was more frequent in SLE patients in comparison 
with controls which introduced 0R allele as a risk factor 
of SLE [122].

Chemokines and adhesion factors
Lupus nephritis (LN) is observed in about 35% of early 
diagnosed SLE patients and up to 60% of patients after 
10  years [123]. CXCL10 is a chemokine produced by 
several cells such as fibroblasts and monocytes which is 
associated with angiogenesis reduction and T cells migra-
tion to the inflammatory sites [124, 125]. The CXCL10 up 
regulation has been observed in autoimmune disorders 
[126]. The vasculoprotective role of vitamin D is associ-
ated with decreased CXCL10 secretion by macrophages 
in SLE patients [127]. There were significant elevated and 
decreased levels of CXCL10 and vitamin D respectively 
in a sample of Iranian SLE patients in comparison with 
controls and SLE cases without nephritis. CXCL10 was 
also associated with SLE disease activity index (SLEDAI) 
and renal activity [128].

Osteopontin (OPN) is a chemokine with pivotal roles 
in regulation of bone biology, inflammation, and immune 
response. It induces and suppresses the Th1 and Th2 
responses, respectively [129]. CD44 is the most impor-
tant receptor of OPN to regulate cellular chemotaxis and 
adhesion [130]. There was a significant increased fre-
quency of OPN rs1126616CT genotype among a group 
of Iranian LN patients compared with controls. LN cases 
had also higher frequency of rs1126616TT genotype 
compared with controls. Moreover, increased serum 
OPN level was observed in SLE patients with LN and 

joint complications in comparison with SLE cases with-
out these symptoms [131].

Urinary monocyte chemoattractant protein 1 (UMCP-
1) is an efficient marker of renal complication among 
lupus cases which is expressed by several renal cells 
such as endothelial and mesangial cells [132, 133]. It is 
involved in monocyte and T cells recruitment and activa-
tion in acute and chronic inflammation [134]. It has been 
reported that there were significant elevated UMCP-1 
levels in a group of Iranian LN patients compared with 
LN negative cases [135].

VCAM-1 is belonged to the immunoglobulin-like 
superfamily produced by various cells such as endothe-
lial cells and macrophages, which stimulates leuko-
cytes adhesion to the vascular endothelium [136–139]. 
Endothelin-1 (ET-1) is also an endothelial cell-derived 
factor associated with endothelial dysfunction which has 
a key role during SLE progression [140, 141]. There were 
significant up regulations of serum VCAM-1 and ET-1 
in a sample of Iranian SLE cases compared with healthy 
subjects [142]. CD34 is an intercellular adhesion factors 
expressed in various cells such as hematopoietic cells, 
endothelial cells, and fibroblasts. CD34 expression was 
observed in all of a sample of Iranian LN patients which 
had an inverse association with activity index. Therefore, 
CD34 can be protective in LN cases. High CD34 expres-
sion was also observed in patients with higher SBP and 
lower WBC count [143].

Renal involvement is an important reason of mortal-
ity in SLE patients that is still a big challenge of manage-
ment because of heterogeneity and complicated course 
[144]. The Lipocalin-2 (LCN2) is a transporter expressed 
in neutrophils and renal cells that is up regulated dur-
ing inflammation [145]. LCN2 promotes cell migration 
through chemokines up regulations in brain in which 
the LCN2 amplifies neuro inflammation and inflamma-
tory cells recruitment through CXCL10 up regulation 
in CNS cells [146]. It has been observed that there were 
increased urinary LCN2/creatinine level in Iranian LN 
patients compared with cases without nephritis which 
was also significantly associated with proteinuria [147].

Coronary heart disease (CVD) and stroke are the main 
reasons of SLE related deaths [148–150]. Matrix metallo-
peptidases (MMPs) are zinc-dependent enzymes associ-
ated with degradation of extracellular matrixes [151, 152]. 
MMP-2 is produced by macrophages and has critical 
roles in SLE progression [152–154]. CCL11 and CXCL12 
can up regulate the MMP-2 through PI3K/Akt signal-
ing pathway [155]. A significant correlation has been 
observed between MMP-2 G1575A polymorphism and 
CVD progression in Iranian SLE patients. Both MMP-2 
1575A allele and G/AþA/A genotype increased SLE sus-
ceptibility and CVD progression compared with G/G 
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genotype. SLE patients had also significantly increased 
rate of G1575A allele compared with controls. Moreo-
ver, increased serum levels of MMP-2 and neoptrin were 
observed among SLE patients with CVD in comparison 
with patients without CVD [156].

Toll‑like receptors
It has been reported that the abnormal induction of 
innate immunity through toll-like receptors (TLRs) has 
an important role during SLE progression [157–159]. 
The nucleic acids and immune factors are the most com-
mon auto antigens in SLE patients which promote innate 
immune responses through TLRs [160, 161]. TLR3, 
TLR8, and TLR7 are involved in RNA molecules detec-
tion, whereas the TLR9 identifies un-methylated CpG 
islands [160]. Endosomal TLRs can also be associated 
with recognition of self-nucleic acids produced following 
tissue damage and infections [162, 163]. TLRs commit-
ment by PAMPs/DAMPS can activate self-reactive B and 
T cells which promotes the SLE progression [164, 165]. 
Decreased serum levels of Vitamin D have been observed 
in active phase of SLE [166]. It has been reported that 
there were TLR7 and TLR9 up-regulations in the PBMCs 
of Iranian SLE compared with control cases. Vitamin D3 
also reduced the TLR3, TLR7, and TLR9 expressions in 
PBMCs of SLE cases in comparison with healthy subjects 
[167]. B cells have critical functions in pathogenesis of 
SLE in which their deregulation results in production of 
auto-antibodies [168]. TLR binding with specific ligands 
up regulate the pro inflammatory cytokines in autoim-
mune disease [160]. There was significant increased 
expression of TLR9 in CD4 + ,CD8 + T, and CD19 + B 
lymphocytes of SLE patients compared with control 
cases among Iranian population [169].

PTPN22 is a tyrosine phosphatase associated with 
negative regulation of T-cell activation [170]. It has an 
important role in up-regulation of type 1 IFNs following 
TLR binding in myeloid cells that is involved in suppres-
sion of inflammatory arthritis [171]. The PTPN22 poly-
morphisms have been reported in autoimmune disorders 
such as SLE, type 1 diabetes, and rheumatoid arthritis 
[172–174]. The rs1310182 AA and rs12760457 TT geno-
types of PTPN22 were significantly correlated with PSLE 
among Iranian patients [175]. NO is a free radical pro-
duced by NO synthetases (NOS) [176]. NO has a key 
role in various cellular processes such as T lymphocyte 
activation, signal transduction [177], and apoptosis [178]. 
Endothelial NOS regulates TLR4-mediated IL-6 produc-
tion through a NO-independent signaling [179].NO pro-
duction by monocytes plays a pivotal function in T cell 
deregulation and continuous mitochondrial hyperpolari-
zation in SLE patients [180, 181]. Vascular dysfunction 
in SLE patients is correlated with anti-endothelial cell 

antibody (AECA) [182, 183]. NO stimulates the cell death 
in endothelial cells through AECA [184]. It has been 
reported that there was a significant correlation between 
intron 4 VNTR polymorphism of eNOS and SLE pro-
gression in a sub population of Iranian patients in which 
SLE cases had higher frequencies of a allele and ba and aa 
genotypes compared with controls [185].

Antioxidant agents
Various environmental risk factors such as UV and xeno-
biotic compounds have pivotal roles during SLE progres-
sion [186]. Deregulation of antioxidant system results in 
elevated reactive oxygen species (ROS) during SLE pro-
gression [187–189]. Glutathione S-transferases (GSTs) 
are involved in detoxification of carcinogenic compounds 
through glutathione binding [190, 191]. GSTM1 and 
GSTP1 are associated with detoxification of polycyclic 
aromatic hydrocarbons, whereas the GSTT1 detoxifies 
simple hydrocarbons. They can also reduce the ROS lev-
els which is a critical cell process for DNA maintenances 
toward oxidative damages [192, 193]. There was a signifi-
cant different frequency of GSTT1 null genotype between 
SLE cases and healthy subjects among a sub population 
of Iranian cases. GSTT1 null/GSTM1null/GSTP1 Ile/Val 
genotypes increased SLE susceptibility in this population 
[194]. Paraoxonase-1 (PON1) hydrolyzes lipid peroxides 
to maintain LDL against the oxidation. PON1 as an anti-
oxidant that reduces the LDL oxidation is a critical regu-
lator of atherosclerosis [195, 196]. It has been observed 
that there was a correlation between PON1 55 M/M gen-
otype and SLE susceptibility in a sample of Iranian SLE 
cases. PON1 55  M/M genotype significantly increased 
the risk of SLE in comparison with L/L genotype carri-
ers. There was also higher frequency of 55 M/M genotype 
in SLE patients with hypertension compared with cases 
without hypertension. Since, the M/M genotype car-
riers had high levels of neopterin and LDL-C, they had 
increased risk of hypertension [197]. Apolipoprotein E 
(ApoE) has also key roles in T lymphocyte proliferation 
and immune responses [198]. It has been observed that 
the ApoE4 and PON-55M alleles increased SLE suscep-
tibility in a sample of Iranian patients. Neopterin and 
MDA had also higher serum levels in SLE patients with 
ApoE ε3/ε4 and ε3/ε3 genotypes in comparison with con-
trols [199].

Non‑coding RNAs
MicroRNAs (miRNAs) are a super family of non-
coding RNAs (ncRNAs) with pivotal roles in immune 
responses and SLE pathogenesis. They are involved in 
lupus progression through deregulation of lymphocyte 
function, TLRs, and NF-κB signaling pathway [200]. 
MicroRNA deregulations in T and B cells have been 
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reported during SLE progression toward LN [201, 202]. 
There were significant increased expressions of miR-
16, miR-21, and miR-155 while miR-141 down regula-
tion in a sample of Iranian SLE patients compared with 
controls. MiR-21 and miR-155 had significantly higher 
levels of expressions in active LN compared with inac-
tive LN patients. There was also an inverse association 
between miR-155 and C3/C4 serum levels [203]. CCL5 
is an inflammatory chemokine that can be up regulated 
in SLE patients following the KLF13 suppression by miR-
125a [204]. The miR-142-3p regulates the CD4 + T and 
CD4 + CD25 + Treg cells functions that can be associ-
ated with SLE progression through B cell hyper stimula-
tion [205]. It has been reported that there were increased 
circulating miR-125a and miR-146a levels among a sub 
population of Iranian LN cases compared with controls. 
There was also a reduced level of circulating miR-142-3p 
in LN patients compared with controls. Moreover, miR-
142-3p levels were significantly correlated with disease 
activity index [206]. MiR-21 and miR-150 are involved 
in immune responses via targeting PDCD4 and c-MYC, 
respectively [207, 208]. Reduced levels of circulating 
miR-150 has been shown among Iranian LN patients 
which showed active EMT and renal fibrosis. There were 
also significant increased levels of circulating miR-21 and 
miR-423 in a sample of Iranian LN patients in compari-
son with controls [209].

Human leukocyte antigens
Human leukocyte antigen (HLA) system has a criti-
cal role in regulation of innate and adaptive immunity 
through antigen presentation of intracellular and extra-
cellular peptides. Natural killer (NK) cells regulate the 
activity of T lymphocytes and dendritic cells and lympho-
cyte-related autoimmune responses [210, 211]. Killer cell 
immunoglobulin (Ig)-like receptors (KIR) are important 
factors expressed by NK cells which identify HLA class 
I ligands [212, 213]. KIR and HLA polymorphisms were 
assessed in a sample of Iranian SLE cases that showed 
reduced frequency of HLA-A-Bw4 in SLE patients. The 
KIR3DL1þ; HLA-B-Bw4Thr80þ and KIR2DS1þ; HLA-C2þ 
carriers had significantly higher hematological and renal 
complications. Male carriers of KIR3DP1þ had also sig-
nificant increased prevalence of renal disorders [214]. 
The HLADQB1 variation was also assessed in a sample of 
Iranian SLE patients and controls that showed a signifi-
cant correlation between HLADQ6 (*0601–*0609) and 
SLE. There was also decreased frequency of DQ7 (*0301–
*0304) in SLE patients compared with controls. Moreo-
ver, high frequency of DQ5-DQ6 was observed in SLE 
patients. The DQ6 was the common HLA DQB1 allele 
correlated with SLE susceptibility among Iranians [215].

Conclusions
SLE is a chronic autoimmune disorder with a rising prev-
alence among Iranian population. However, there was 
not any report about the genetics of SLE in this popula-
tion. Regarding the critical role of genetic factors during 
SLE progression, it is required to clarify the molecular 
biology and genetics of SLE. Therefore, we summarized 
all of the genes associated with clinicopathological fea-
tures of SLE which have been reported among Iranian 
patients. For the first time, it was interestingly observed 
that the apoptotic related genes and non-coding RNAs 
have critical roles during SLE progression among Irani-
ans. This review paves the way of introducing a diagnos-
tic panel of genetic markers for the early detection and 
better management of SLE among Iranian population.
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