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Non-Gaussian models of diffusion 
weighted imaging for detection and 
characterization of prostate cancer: 
a systematic review and meta-
analysis
V. Brancato, c. cavaliere*, M. Salvatore   & S. Monti  

The importance of Diffusion Weighted Imaging (DWI) in prostate cancer (PCa) diagnosis have been 
widely handled in literature. in the last decade, due to the mono-exponential model limitations, 
several studies investigated non-Gaussian DWI models and their utility in PCa diagnosis. Since their 
results were often inconsistent and conflicting, we performed a systematic review of studies from 2012 
examining the most commonly used Non-Gaussian DWI models for PCa detection and characterization. 
A meta-analysis was conducted to assess the ability of each Non-Gaussian model to detect PCa lesions 
and distinguish between low and intermediate/high grade lesions. Weighted mean differences and 
95% confidence intervals were calculated and the heterogeneity was estimated using the I2 statistic. 
29 studies were selected for the systematic review, whose results showed inconsistence and an 
unclear idea about the actual usefulness and the added value of the Non-Gaussian model parameters. 
12 studies were considered in the meta-analyses, which showed statistical significance for several 
non-Gaussian parameters for pca detection, and to a lesser extent for pca characterization. our 
findings showed that Non-Gaussian model parameters may potentially play a role in the detection 
and characterization of PCa but further studies are required to identify a standardized DWI acquisition 
protocol for pca diagnosis.

Prostate cancer (PCa) is the second most common cancer among men1. Accurate detection and assessment of 
cancerous lesion aggressiveness according to the Gleason grading system2 is important for the most appropri-
ate treatment strategy3. Currently, the most commonly used prostate cancer screening paradigm consists of the 
serum prostate-specific antigen (PSA) test, digital rectal examination, transrectal ultrasound (TRUS), and pros-
tatic biopsies.

However, since these methods are often inaccurate and also invasive, there is a growing need for non-invasive 
tools to improve diagnosis of prostate cancer in terms of both detection and characterization.

Recently, a multiparametric Magnetic Resonance Imaging (MRI) based approach combining anatomic T1 or 
T2-weighted imaging with functional methods as Diffusion Weighted Imaging (DWI) and Dynamic Contrast 
Enhanced (DCE) imaging has significantly strengthened the role of MRI in diagnosis of PCa. There are several 
studies4–6 showing that multiparametric MRI is a useful tool that helps to detect prostate cancer foci, especially in 
patients with prior negative biopsy and permanently high PSA values. The classification used for evaluating the 
prostate as seen in MRI is known as PI-RADS (Prostate Imaging Reporting and Data System)7. This classification 
is based on a score from 1 to 5, with 1 indicating most probably benign lesions and 5 indicating lesions with a very 
high probability of malignancy. The use of PI-RADS, however, requires radiologists with high level of experience 
in MRI.

DWI technique exploits the diffusion phenomenon, which depends on the microscopic mobility of water 
molecules. Depending on how much water molecules movement is limited by tissue structure, the DWI signal 
intensity changes, and this has been proven useful in PCa to distinguish benign from malignant lesions and to 
characterize aggressiveness in terms of distinction between high- and low-grade tumors and correlation of tumor 
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with Gleason Score (GS)8–14. Not only correlation with GS is important but it is of clinical importance to separate 
low Gleason grade PCa lesions from intermediate and high Gleason grade lesions15.

Several diffusion models have been studied in the field of PCa. Gaussian model has been largely used for 
cancer detection and characterization and has allowed meaningful results to be achieved. ADC values of PCa are 
generally lower than those of prostatic Normal Tissue (NT)8,16 and also reflect tumor aggressiveness, showing a 
negative correlation with GS9,17. However, the assumption at the basis of conventional DWI are not always accu-
rate: water molecules experience vastly different environments in tissues, so in vivo water diffusion is much more 
complicated and often presents Non-Gaussian behavior. In terms of signal intensity, at low b-values (≤200 s/
mm²) the signal attenuation is greater than expected, while it is lower at larger b-values (≥1500 s/mm²) (Fig. 1). 
Consequently, Non-Gaussian diffusion models have been proposed to better describe diffusion signal behavior, 
which can be directly related to tissue physiologic and pathologic characteristic. The most commonly used mod-
els are the Intravoxel Incoherent Motion (IVIM), the Diffusion Kurtosis Imaging (DKI), the Biexponential (BE), 
and the Stretched Exponential (SE).

There is a significant amount of studies aiming to investigate diagnostic performances of Non-Gaussian 
models, but their results suffer from inconsistency, insignificance and a not clear physical interpretation of 
Non-Gaussian parameters.

On this basis, the aim of our review is to evaluate the diagnostic performance of Non-Gaussian DWI models 
in terms of detection and characterization of prostate cancer (PCa). Specifically, after a detailed assessment, selec-
tion and systematic review of studies examining both Non-Gaussian and standard Gaussian DWI models, which 
will be shortly introduced in the following subsection, published data related to the most commonly used models 
parameters were statistically analyzed to evaluate their ability to detect PCa lesions and distinguish between low 
grade lesions (GS ≤ 6) and intermediate/high grade lesions (GS ≥ 7).

Diffusion Weighted MRI Mathematical Models in PCa
The most commonly used mathematical models used to fit DWI signal are listed below:

 1. Mono-exponential Model (ME)18

= − ·S b
S

b ADC( ) exp( )
0

 2. Intravoxel Incoherent Motion Model (IVIM)19

= − − + − +· · · · ⁎S b
S

f exp b D f exp b D D( ) (1 ) ( ) ( ( ))
0

 3. Biexponential Model (BE)20–22

= − + −· · · ·S b
S

f exp b D f exp b D( ) ( ) ( )slow slow fast fast
0

 4. Stretched Exponential model (SE)23

Figure 1. Example of fitted curve of diffusion weighted imaging (DWI) signal against the b-values. According 
to Gaussian model, when plotted against the b-values, the diffusion magnetic resonance (MR) signal ( S Sln( / )0 ) 
would follow a straight line whose slope is the ADC (apparent diffusion coefficient). Non-Gaussian DWI 
models were introduced to describe the deviation of measured data from this expected line. Abbreviations: 
DWI, diffusion weighted imaging.
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 5. Diffusion Kurtosis Imaging (DKI)24
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In all the equations, S(b) is the measured signal intensity at a certain b, S0 the signal intensity at b = 0 and b is 
a factor that measures the degree of diffusion weighting applied. In the ME model, i.e. the standard gaussian 
model, ADC is the Apparent Diffusion Coefficient, an average value related to diffusion. In the IVIM model f is 
the perfusion fraction, D the molecular diffusion coefficient and D* the pseudo-diffusion coefficient. Dfast and 
Dslow are, respectively, fast and slow diffusion coefficients of the BE model and f fast and fslow their amplitudes. DDC 
is the distributed diffusion coefficient of the SE model, and α is the heterogeneity index. Finally, in the DKI 
model, DK is the diffusion coefficient corrected for kurtosis, and K is the kurtosis coefficient. See Supplementary 
Material-S1- for more details on Non-Gaussian DWI models.

Methods
Search strategy and selection criteria. A systematic search for relevant published studies examining 
and, if any, comparing mono-exponential DWI and Non-Gaussian DWI models in PCa diagnosis was conducted. 
The most relevant scientific electronic databases (PubMed, Cochrane Library, MEDLINE, ScienceDirect, Google 
Scholar) were comprehensively explored and used to build the search. Only studies published after 2012 were 
selected. The search strategy included the key terms listed in Supplementary materials -S2-. The literature search 
was restricted to English language publications and studies of human subject.

Two reviewers, after having independently screened identified titles and abstracts, assessed the full text of the 
articles that evaluated mono-exponential DWI and at least one Non-Gaussian model, between IVIM, BE, SE, 
DKI, for diagnosis of PCa (detection and/or characterization of aggressiveness) and were not review articles. For 
articles meeting these criteria with full text available, the following further selection criteria had to be fulfilled: 
presence of PCa histopathological confirmation (either from biopsy or radical prostatectomy), of information 
about DW-MRI protocol, of a maximum b-value at least equal to 1500 s/mm² (if DKI was performed). Moreover, 
articles were excluded if computed b-values were used, if they concerned only model fitting quality or differ-
entiation between PCa and benign lesions, not evaluating NT. The above-mentioned selection procedure was 
employed to perform a systematic review, providing a qualitative synthesis of currently used Non-Gaussian DWI 
models in PCa diagnosis.

In order to perform a meta-analysis, a further exclusion procedure was performed: studies were removed if 
they focused only on correlation of parameters with GS, and not on their ability to differentiate low-GS from 
high-GS tumors; if number of analyzed region of interest (ROI) was not mentioned; if data were reported in the 
form of mean and Inter Quartile Range (IQR), median and IQR, or median and 95% Confidence Interval (CI); if 
mean and standard deviation of parameters were not reported (or could not be calculated); if b = 0 mm2/s was not 
included in the DWI protocol. Moreover, if there was a high heterogeneity in fitting functions/procedures used 
for biexponential models, statistical analyses had not been conducted.

planning of the study. The articles were classified according to the Non-Gaussian models examined and the 
diagnostic purpose they had, as reported in Table 1.

Consequently, our work was organized in accordance with Fig. 2: for each Non-Gaussian model, a qualitative 
analysis followed by a meta-analysis (when a sufficient number of articles was available after the application of 
selection criteria) was performed both to assess the difference of the mean value of IVIM, BE, DKI and SE param-
eters between NT and PCa (PCa detection) and to assess the parameters mean differences between low GS and 
intermediate/high GS PCa (characterization of PCa aggressiveness).

Meta-analyses methods. Meta-analyses were conducted in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) statement25 (See Supplementary Materials-S3-for PRISMA 
Checklist).

Although there were not enough data for performing an assessment of diagnostic accuracy, the quality of 
studies included in meta-analysis was evaluated, using the QUADAS-226 tool included in RevMan (version 5.3, 

Classification based on Non-Gaussianmodels Classification based on PCa diagnosis

Intravoxel Incoherent Motion Model (IVIM) PCa detection

Biexponential Model (BE) Characterization of PCa aggressiveness

Stretched Exponential Model (SE)

Diffusion Kurtosis Imaging (DKI)

Table 1. Article classifications according to the Non-Gaussian model examined and the diagnostic purpose of 
the study. Abbreviations: PCa, prostate cancer.

https://doi.org/10.1038/s41598-019-53350-8


4Scientific RepoRtS |         (2019) 9:16837  | https://doi.org/10.1038/s41598-019-53350-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

The Cochrane Collaboration). The quality of each study was evaluated by two reviewers independently and any 
disagreement was resolved by consensus. If meta-analysis included a number of studies superior to 1027,28, publi-
cation bias was assessed by visually inspecting a funnel plot.

Mean and Standard Deviation (SD) of diffusion model parameters were extracted from each selected article. 
To analyze the differences between groups, Weighted Mean Differences (WMD) and 95% CI were calculated. The 
overall result was considered statistically significant if the test for overall effect returns a probability value lower 
than 0.05.

Heterogeneity among included studies was assessed using the Q statistic of the chi-square value test and the 
inconsistency index of Higgings29 I2, with values of 25%, 50%, and 75% considered as low, moderate, and high, 
respectively. If the P-value of heterogeneity test was less than 0.1 or the I2-value was greater than 50%, the sum-
mary estimate was analyzed by a random-effects model30. Otherwise, a fixed-effects model was applied.

All statistical computations were performed using RevMan (version 5.3, The Cochrane Collaboration).

Results
The PRISMA flow diagram of included studies according to the inclusion and exclusion criteria is reported in 
Fig. 3.

Results of qualitative analysis. 29 studies fulfill all the inclusion criteria and were involved in the qualita-
tive analysis: their characteristics are summarized in Tables 2 and 3.

In all selected studies, ADC value proved to be a useful tool for discriminating both NT from PCa and low- 
from high-GS tumors, with lower values in tumors than in NT and in high-GS tumors than in low-GS tumors. On 
the other hand, findings on Non-Gaussian model features are not always equally consistent.

Figure 2. Scheme reporting planning of the study. Abbreviations: DWI, Diffusion Weighted Imaging; IVIM, 
Intravoxel Incoherent Motion model; BE, Biexponential model; SE, Stretched Exponential model; DKI, 
Diffusion Kurtosis Imaging.
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Studies on iViM. 14 studies included IVIM comparison with ADC: 6 on detection31–36, 4on characteriza-
tion37–40, and 4 on both41–44. Most studies on detection found that D was significantly smaller in PCa when com-
pared to NTs31–36,41–44, but Mazzoni et al.34 revealed a dependence on b-value range, showing statistical significance 
only using a maximum b value of 800 s/mm2. Results on f, when significant, revealed a lower value in PCa than in 
NT31–34,36,43, with the exception of study by Ueda et al.35 who, conversely, found f significantly higher in peripheral 
zone (PZ) cancer than in normal PZ tissue, although they found no significance when performing the same anal-
ysis in transitional zone (TZ). Results on D* were found to be not significant in many studies33–36. Pesapane et al.43 
found that D* was significantly higher in tumor tissue when compared to NT, in accordance with Kuru et al.41  
and Valerio et al.42. While Linear Discriminant Analysis performed by Pesapane et al.43 and Valerio et al.42  
showed that the additional use of IVIM increased performances of conventional T2/DWI for PCa detection, 
ROC analysis performed by Kuru et al. proved that none of IVIM parameters yielded a clear added value, such 
as in Feng et al.36. Whereas, Martin et al.32 found D and f to be statistically significant, obtaining also a slightly 
higher AUC for these two parameters than for ADC. In PCa aggressiveness characterization, D seems to be the 
most performing IVIM parameter37–42, resulting lower in high- than in low-GS tumors in accordance with ROC 
analysis performed by Yang et al.38. About D*, only Valerio et al.42 found its value to be significantly higher in 
high- than in low-GS PCa, while f was considered unable to discriminate between GS grade in all selected studies. 
Pesapane et al.43 identified all three IVIM parameters as not useful for characterization on PCa aggressiveness. In 
addition, some studies carried out a correlation analysis between the IVIM parameters and the GS: they revealed 

Figure 3. PRISMA flow diagram of the study selection procedure. Abbreviations: DWI, Diffusion Weighted 
Imaging; IVIM, Intravoxel Incoherent Motion model; BE, Biexponential model; SE, Stretched Exponential 
model; DKI, Diffusion Kurtosis Imaging; BPH, benign prostatic hypertropia; SD, standard deviation; GS, 
Gleason Score; ROI, region of interest.
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a significative negative correlation between D and GS38–40, while no correlation was found for f and D*. Merisaari 
et al.44 used machine learning techniques in order to evaluate if GS prediction could be improved using ADC in 
combination with IVIM, but they concluded that ADC continued to be the best-performing parameter for this 
scope.

Author Year

Non-
Gaussian 
Models

Purpose 
(D/C) Sd

No. of 
PCa 
patients

No. of 
PCa 
regions

No. 
of NT 
regions

No. of 
Low GS 
regions 
(<=6)

No. of 
High GS 
regions 
(>6)

Included
in MA

Reasons for exclusion 
from MA

Shinmoto et al.31 2012 IVIM D R 26 N/E N/E — — No Study on IVIM model

Liu et al.45 2013 BE D P 23 N/E N/E — — No Study on BE model

Kuru et al.41 2014 IVIM D, C R 27 N/E N/E N/E N/E No Study on IVIM model

Zhang et al.37 2015 IVIM C R 48 — — N/E N/E No Study on IVIM model

Martin et al.32 2014 IVIM D R 36 N/E N/E — — No Study on IVIM model

Valerio et al.42 2016 IVIM D, C P 53 N/E N/E N/E N/E No Study on IVIM model

Yang et al.38 2016 IVIM C R 41 — — N/E N/E No Study on IVIM model

Barbieri et al.39 2017 IVIM C P 84 — — N/E N/E No
Only analysis of 
correlation with GS 
reported

Bao et al.40 2017 IVIM C P 30 — — N/E N/E No
Only analysis of 
correlation with GS 
reported

Pesapane et al.43 2017 IVIM D, C P 31 N/E N/E N/E N/E No Study on IVIM model

Liu et al.49 2015 SE D P 27 31 62 — — Yes

Liu et al.50 2018 SE C R 75 — — N/E N/E Yes

Rosenkrantz et al.54 2012 DKI D, C R 47 121 47 51 70 Yes

Tamura et al.51 2014 DKI D R 20 24 20 — — Yes

Suo et al.55 2014 DKI D, C R 19 19 19 9 10 Yes

Roethke et al.56 2015 DKI D, C R 55 55 55 12 43 Yes

Wang et al.52 2015 DKI C R 110 — — 49 77 Yes

Tamada et al.57 2017 DKI D, C R 285 285 285 73 311 Yes

Wang et al.53 2018 DKI C R 67 — — N/E N/E No b = 0 not included in 
DWI protocol

Quentin et al.33 2012 IVIM D P 8 N/E N/E — — No Study on IVIM model

Mazzoni et al.34 2014 IVIM, 
DKI D R 57 73 45 — — Yes Exclusion of IVIM model

Ueda et al.35 2016 IVIM D R 63 64 64 — — No Study on IVIM model

Jambor et al.46 2015 BE, DKI, 
SE D P 16 N/E N/E — — No Mean - SD values not 

reported

Toivonen et al.48 2015 BE, DKI, 
SE D, C P 50 N/E N/E N/E N/E No Mean - SD values 

notreported

Feng et al.36 2017 IVIM, 
DKI, SE D P 56 138 198 — — Yes Exclusion of IVIM model

Barrett et al.58 2017 DKI D, C P 30 N/E N/E N/E N/E No Mean - SD values 
notreported

Merisaari et al.44 2017 IVIM, SE D, C P 81 N/E N/E N/E N/E No Mean - SD values not 
reported

Mazaheri et al.47 2018 BE, DKI, 
SE D R 55 55 55 — — Yes Exclusion of BE model

Langkilde et al.15 2018 BE, DKI, 
SE D, C R 40 40 111 N/A N/A Yes Exclusion of BE model

Table 2. Selected studies for qualitative and quantitative analysis. Abbreviations: IVIM, Intravoxel Incoherent 
Motion Model; BE, Biexponential Model; DKI, Diffusion Kurtosis Imaging; SE, Stretched Exponential Model; 
D, detection; C, characterization; Sd, study design; P, prospective; R, retrospective; PCa, prostate cancer; NT, 
normal tissue; GS, Gleason Score; MA, meta-analysis; SD, standard deviation; N/E, not extracted because not 
necessary for quantitative analysis; —, non-existent. Notes: the number of PCa regions, Low GS regions and 
High GS regions were reported as sum of all PCa, Low GS or High GS regions respectively, regardless of the 
affected prostate zone (peripheral zone, transition zone, central gland); the number of NT regions were reported 
as sum of all NT regions, regardless of the affected prostate zone and the patient on which the ROI was placed 
(e.g. healthy volunteer, PCa patient). The column “Reason for exclusion from MA” reported the reason why the 
study under investigation, or which analyzed model, was excluded from the meta-analysis. As regards IVIM and 
BE models, they were excluded from meta-analysis due to heterogeneity in fitting functions/procedures among 
selected studies and this was indicated by the sentences “Study on IVIM model” or “Study on BE model”, if the 
study included only these models, “Exclusion of IVIM model” or “Exclusion of BE model”, if the study reported 
other Non-Gaussian DWI models that were, instead, retained into meta-analysis.
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Studies on Be. 5 studies included BE comparison with ADC:4 on detection15,45–47 and 1 on both detection 
and characterization48. Liu et al.45 found all three BE parameters significantly lower in PCa than in NT, in accord-
ance with Mazaheri et al. and Langkilde et al.15,47, who found similar results for Dslow and ffast, but any significance 
for Dfast. In contrast, Jambor et al.46 although identified in BE the best performance for normal and PCa data fit-
ting, found median values of its three parameters not reaching statistical significance for PCa detection. Toivonen 
et al.48 evaluated BE model in terms of both detection and characterization, performing two ROC analysis and a 
correlation analysis with GS. Their results did not demonstrate improvements in PCa detection and character-
ization compared with mono-exponential model and only f showed a significant negative correlation with GS.

Studies on Se. 8 studies included SE comparison with ADC:5 on detection15,36,46,47,49, 2 on characteriza-
tion44,50, and 1 on both48. According to Mazaheri et al.47 and Liu et al.49, DDC and αin PCa were significantly 
lower than in NT, showing that SE model parameters could provide additional information to ME model. These 
results are consistent with those of Feng et al.36 who, however, also performed a ROC analysis showing good 
performances for both parameters, but no significant performances improvement with respect to ADC. Jambor 
et al.46 found similar results for DDC, but not for α. Even ROC analysis performed by Toivonen et al.48 reveals 
significance for DDC, both in PCa detection and characterization, showing also a negative correlation between 
DDC and GS, even if performances are not such to substitute the ME model. In the study by Liu et al.50 DDC was 
found to be the only SE parameter able to differentiate low- from high-grade tumors, showing a significant nega-
tive correlation with GS. Merisaari et al.44 found a statistically significant correlation for both DDC and αwith GS 
(negative and positive respectively), a high AUC for low- versus high-GS classification and an AUC improvement 
combining DDC and α by means of machine learning. Nevertheless, none of these parameters or their combina-
tion considerably outperformed ADC parameter of ME model.

Studies on DKi. 15 studies included DKI comparison with ADC. Of these, 6 were on detection34,36,46,47,51, 2 
on characterization52,53, and 7 dealt with both together15,48,54–58.

All the studies revealed a significantly higher K value in tumor tissue than in NT, with increasing trend in 
high GS lesions, but there were different opinions regarding the added value offered by the use of DKI for PCa 
diagnosis. Preliminary findings by Rosenkrantz et al.54 indicated higher capability of DKI model for both distin-
guishing benign from malignant PCa lesions and low- from high-grade PCa lesions when compared to ADC, by 
means of ROC analyses. They found K significantly higher and DK significantly lower in PCa than in NT, and the 
same behavior was observed when low- and high- GS lesions were compared. The findings on PCa detection were 
successively confirmed by Tamura et al.51, Jambor et al.46, Suo et al.55, Mazaheri et al.47, and Mazzoni et al.34 who 
found that K was the best-performing parameter. Feng et al.36, Roethke et al.56, and Langkilde et al.15, although 
their statistical significance test results were in accordance with the above-mentioned studies, revealed not suffi-
ciently higher performance of DK or K compared to ADC at ROC analysis, in accordance with Toivonen et al.48. A 
similar conclusion was made my Tamada et al.57, who studied only K parameter. In the last 4 papers the authors, 
together with Wang et al.53, found similar results also in PCa characterization. Suo et al.55 found significant differ-
ences among low- and high-grade lesions for K value, but not for DK value. Conversely, results by Barrett et al.58  
were not significant, showing poor capability for both DK and K at separating low- and high-grade lesions. 
Correlation analysis for the DKI parameters, evaluating their relationship with GS, revealed a significatively positive 
correlation between K and GS48,52,53,55, and a significantly negative correlation between DK and GS48,52. Suo et al.55,  
however, found no significant correlation between DK value and GS.

Results of meta-analyses. In order to perform the meta-analyses indicated in Fig. 2, 17 studies were fully 
excluded from previous selection. Data from the same study were considered multiple times in the following 
cases: different b-value ranges were used to perform acquisition/processing of DW-MRI images; PCa tissue was 
compared with different zones of NT (e.g. PCa vs normal TZ and PCa vs normal PZ); NT was compared with dif-
ferent PCa zones (e.g. NT vs PCa in TZ and NT vs PCa in PZ); NT was compared with PCa with different GS (e.g. 
NT vs PCa with GS = 6 and NT vs PCa with GS ≥ 7); low grade PCa was compared to more than one PCa with 
higher GS. Data from the study of Langkilde et al.15 were extracted only for the analyses including b = 0 s/mm2.

Finally, as for PCa detection, studies concerning DKI and SE were respectively 32, and 10. For the SE, 1770 
regions (694 positive) were analyzed; for the DKI, 5167 regions (2136 positive) were analyzed for K and 3331 
(1439 positive) for DK.

As for characterization, the meta-analysis was performed only for DKI model, because there were no sufficient 
SE data available. DKI was addressed by 9 studies, with 897 lesions (300 low-grade) included for K and 440 (154 
low-grade) for DK.

The overall quality of included studies in meta-analyses, for both PCa detection and characterization, was 
considered good for our purposes (See Supplementary Materials –S4-).

Concerning IVIM and BE models, the high heterogeneity in applied fitting functions and procedures (see 
Table 2) led us to decide not to perform any quantitative analysis on these models.

performance of models in pca detection. The random-effect analysis was used for all SE and DKI 
parameters. The heterogeneity was high (I2 > 50% and P < 0.0001). DK was significantly higher in NT, while K 
was significantly higher in PCa tissue. These results are highlighted by the forest plot in Figs 4 and 5.

performance of models in pca characterization. DK was found to be significantly higher in PCa lesions 
with low GS, while K was significantly higher in those with high GS. These results are highlighted by the forest 
plot in Fig. 6.
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Author
FS 
[T]

TR/TE
[ms/ms] Seq. b-values [s/mm2]

Non-Gaussian fitting 
function(s)

Non-
Gaussian 
Parameters

Fitting 
procedure Initialization values

Methods 
to prevent 
finding local 
minima

Shinmoto et 
al.31 3.0 5132/40 NR

0, 10, 20, 30, 50, 
80, 100, 200, 400, 
1000

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙(D* + D)) D, D*, f NR NR NR

Liu et al.45 3.0 4000/71.9 SS-EPI

For ADC: 0, 
1000;
For BE: 0, 300, 
600, 900, 1200, 
1500, 1800, 2100, 
2400, 2700, 3000

S(b)/S0 = fslow∙exp(−
b∙Dslow) + ffast∙exp(−b∙Dfast)

Dslow, Dfast, f NR NR NR

Kuru et al.41 3.0 3100/52 SS-EPI 0, 50, 100, 150, 
200, 250, 800

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙(D* + D))

M1: D, D*, f
M2: D, f

M1: SLF for D 
and f, NLRF 
for D*;
M2: BeF using 
LMa with D* 
fixed to 20 µm2/
ms

NR NR

Zhang et al.37 3.0 6000/72 SS-EPI 0, 50, 150, 300, 
600, 900

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f BeF using LMa NR NR

Martin et al.32 3.0 5000/54 SS-EPI
0, 20, 40, 100, 
300, 500, 1000, 
2000

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙(D* + D)) D, f NR NR NR

Valerio et al.42 3.0 3100/102 NR

For ADC: 0, 500, 
1000, 3000;
For IVIM: 0, 10, 
20, 30, 40, 50, 80, 
100, 200, 400, 800

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f NR

D: [0–10]∙10−3 mm2/s
D*: [10–150]∙10−3 mm2/s
f: [0–1]

NR

Yang et al.38 3.0 5000/90 SS-EPI 0, 10, 20, 50, 100, 
200, 500, 800

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f BeF using LMa NR NR

Barbieri et al.39 3.0 2600/58 SS-EPI 0, 10, 20, 50, 130, 
270, 500, 900

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f Bpb NR NR

Bao et al.40 3.0 6800/98 SS-EPI 0, 50, 100, 150, 
200, 500, 1000

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f NR NR NR

Pesapane et 
al.43 1.5 7000/10 SS-EPI

For ADC: 0, 
1000, 2000;
For IVIM: 0, 10, 
20, 30, 50, 80, 
100, 200, 400, 800

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙(D* + D)) D, D*, f NR NR NR

Liu et al.49 3.0 4000/71.9 SS-EPI 0, 500, 1000, 2000 S(b)/S0 = exp[−(b∙DDC)α] DDC, α NR — NR

Liu et al.50 3.0 4000/71.9 SS-EPI 0, 500, 1000, 2000 S(b)/S0 = exp[−(b∙DDC)α] DDC, α NR — NR

Rosenkrantz 
et al.54 3.0 3500/81 SS-EPI 0, 500, 1000, 

1500, 2000
S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K NR — NR

Tamura et al.51 3.0 5000/49 SS-EPI
0, 10, 20, 30, 50, 
80, 100, 200, 400, 
1000, 1500

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K NR — NR

Suo et al.55 3.0 3940/106 SS-EPI 0, 500, 800, 1200, 
1500, 2000

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K NLLS — NR

Roethke et al.56 3.0
For ADC: 
3100/52
For DKI: 
2700/70

SS-EPI

For ADC: 0, 800
For DKI: 0, 50, 
250, 500, 750, 
1000, 1250, 1500, 
2000

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K LMa — NR

Wang et al.52 3.0 6800/98 SS-EPI 0, 700, 1400, 2100 S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K NR — NR

Tamada et al.57 3.0 3500/81 SS-EPI
For ADC: 0, 1000
For DKI: 0, 500, 
1000, 1500, 2000”

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) K NR — NR

Wang et al.53 3.0 4500/95 SS-EPI 200, 500, 1000, 
1500, 2000

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) K NR — NR

Quentin et al.33 3.0 2600/89 SS-EPI
0, 50, 100, 150, 
200, 300, 400, 
500, 600, 700, 800

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙(D* + D)) D, D*, f NR NR NR

Mazzoni et 
al.34 3.0 2100/69 SS-EPI

0, 50, 100, 150, 
200, 250, 400, 
650, 800, 1000, 
1400, 1800, 2300
Different ranges 
used:
0–2300 (group 
A); 0–1800 
(group B); 0–800 
(group C)

IVIM: S(b)/
S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*)
DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)

D, D*, f, 
DK, K NR NR NR

Continued
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Author
FS 
[T]

TR/TE
[ms/ms] Seq. b-values [s/mm2]

Non-Gaussian fitting 
function(s)

Non-
Gaussian 
Parameters

Fitting 
procedure Initialization values

Methods 
to prevent 
finding local 
minima

Ueda et al.35 3.0 4000/65 SS-EPI
0, 50, 100, 200, 
500, 1000, 2000, 
3000

S(b)/S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*) D, D*, f SLF for D NR NR

Jambor et al.46 3.0 3141/51 SS-EPI

For HV: 0, 50, 
100, 200, 350, 
500, 650, 800, 
950, 1100, 1250, 
1400, 1550, 1700, 
1850, 2000
For PCa patients: 
0, 100, 300, 500, 
700, 900, 1100, 
1300, 1500, 1700, 
1900, 2000

BE: S(b)/S0 = fslow∙exp(−
b∙Dslow) + ffast∙exp(−b∙Dfast)
DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)

Dslow, Dfast, 
ffast, DK, K, 
DDC, α

NR

For PCa:
Dfast:1.0–9.0 (ss 0.2) µm2/ms
Dslow:0.0–4.0 (ss 0.02) 
µm2/ms
f:0.2–1.0 (ss 0.1)
For HV:
Dfast:1.0–7.0 (ss 0.1) µm2/ms
Dslow:0.0–2.0 (ss 0.01) 
µm2/ms
f:0.2–1.0 (ss 0.1)

Multiple 
initialization 
values

Toivonen et 
al.48 3.0 3141/51 SS-EPI

0, 100, 300, 500, 
700, 900, 1100, 
1300, 1500, 1700, 
1900, 2000

BE: S(b)/S0 = fslow∙exp(−
b∙Dslow) + ffast∙exp(−b∙Dfast)
DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)

Dslow, Dfast, 
ffast, DK, K, 
DDC, α

BeF using LMa
Dfast:1.0–9.0 (ss 0.2) µm2/ms
Dslow:0.0–4.0 (ss 0.02) 
µm2/ms
f:0.2–1.0 (ss 0.1)

Multiple 
initialization 
values

Feng et al.36 3.0 2500/84.1 SS-EPI

0, 20, 50, 80, 100, 
150, 200, 400, 
600, 800, 1000, 
1200, 1500, 1800, 
2000, 2400, 2800, 
3200, 3600, 4000, 
4500
Different ranges 
used:
0–1000; 0–2000; 
0–3200; 0–4500

DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)
SE: S(b)/S0 = exp[−
(b∙DDC)α]

D, D*, f, DK, 
K, DDC, α BeF using LMa NR NR

Barrett et al.58 3.0
For DWI: 
4000/70–75
For DKI: 
6000/94

SS-EPI

For ADC: 0, 150, 
1000, 1400;
For DKI: 0, 150, 
450, 800, 1150, 
1500

S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6) DK, K NR — NR

Merisaari et 
al.44 3.0 1394/44 SS-EPI

0, 2, 4, 6, 9, 12, 
14, 18, 23, 28, 50, 
100, 300, 500

IVIM: S(b)/
S0 = (1-f)∙exp(−
b∙D) + f∙exp(−b∙D*)
SE: S(b)/S0 = exp[−
(b∙DDC)α]

D, D*, f, 
DDC, α

For IVIM: 
NLLS, SM, 
OSM, NNLS, 
delta.
For DKI and 
SE: LMa

NLLS:
D:0.01–3.5 (ss 0.1) µm2/ms
D*:0.1–28.0 (ss 1.0) µm2/
ms
f:0.001–0.25 (ss 0.01)
SM, OSM:
D:0.01–3.5 (ss 0.1) µm2/ms
D*:0.1–25.0 (ss 1.0) µm2/
ms
f:0.001–0.25 (ss 0.01)
NNLS:
D:0.01–4.0 (ss 0.02) µm2/
ms
D*:1–9.0 (ss 0.2) µm2/ms
f:0.0–1.0
delta:
D:0.01–2.0 (ss 0.02) µm2/
ms
f:0.001–0.1

Multiple 
initialization 
values

Mazaheri et 
al.47 3.0

3000–
4000/78.2–
80.4

SS-EPI
0, 600, 800, 1000, 
1200, 1400, 1800, 
2000

BE: S(b)/S0 = fslow∙exp(−
b∙Dslow) + ffast∙exp(−b∙Dfast)
DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)
SE: S(b)/S0 = exp[−
(b∙DDC)α]

Dslow, Dfast, 
ffast, DK, K, 
DDC, α

BeF using LMa NR

Langkilde et 
al.15 3.0 4000/~100 NR

0, 250, 500, 750, 
1000, 1250, 1500, 
1750, 2000, 2250, 
2500, 2750, 3000, 
3250, 3500

BE: S(b)/S0 = fslow∙exp(−
b∙Dslow) + ffast∙exp(−b∙Dfast)
DKI: S(b)/S0 = exp(−
b∙DK + b2∙DK

2∙K/6)
SE: S(b)/S0 = exp[−
(b∙DDC)α]

Dslow, Dfast, 
ffast, DK, K, 
DDC, α

BeF using LMa NR

Table 3. Imaging characteristics. Abbreviations: IVIM, Intravoxel Incoherent Motion Model; BE, Biexponential 
Model; DKI, Diffusion Kurtosis Imaging; SE, Stretched Exponential Model D, molecular diffusion coefficient; 
D*, pseudo-diffusion coefficient; f, perfusion fraction; Dslow, slow diffusion coefficient; Dfast, fast diffusion 
coefficient; fslow, amplitude of slow diffusion coefficient; ffast, amplitude of fast diffusion coefficient; DK, diffusion 
coefficient corrected for kurtosis; K, kurtosis coefficient; DDC, distributed diffusion coefficient; α, heterogeneity 
index; ADC, apparent diffusion coefficient; FS, field strength; T, Tesla; TR, Repetition Time; TE, Echo Time; ms, 
milliseconds; Seq., diffusion sequence; HV, healthy volunteers; SS-EPI, Single-Shot Echo-Planar Imaging;BeF, 
Biexponential Fit; SLF, Simplified Linear Fit; NLRF, Non-Linear Regression Fit; LMa, Levemberg-Marquardt 
algorithm; Bpb, Bayesian probability-based approach; NNLS, Non Negative Least Square; SM, Segmented 
Method; OSM, Oversegmented Method; ss, step size; NR, not reported. Diffusion times column was not added 
because only 4 studies provided this acquisition parameter (see Supplementary Material –S6- for more details).
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Publication bias. Since the number of included studies was superior to 10 only in meta-analyses based on 
detection and involving DKI parameters (DK and K), publication bias was evaluated plotting funnel plots only in 
these cases. As shown in Supplementary Materials –S5-, all plots suggested a low risk of publication bias.

Discussions
In this study we investigated the potential value of the most commonly used Non-Gaussian DWI models for detec-
tion and characterization of prostate cancer. ME DWI has been shown to be a useful tool for PCa diagnosis, not 
only for detection of prostatic lesions, but also for characterization of disease aggressiveness8,9,16,17. However, in the 
last years, due to the limited assumption at the basis of this approach, many Non-Gaussian diffusion models have 
been proposed to better depict diffusion signal19,20,23,24 and more and more studies investigated their diagnostic role 
and clinical value on PCa13,15,31,33–50,52–61. Due to the large amount of studies and data contained therein, and the not 
always clear results regarding the benefits of using Non-Gaussian DWI for PCa diagnosis, we performed a systematic 
review followed by a meta-analysis, reviewing their parameters and trying to understand if they could provide addi-
tional information. We initially examined all found studies concerning both Non-Gaussian and Gaussian models for 
detection and characterization of prostate cancer from 2012 onwards. This qualitative analysis involved 29 studies: 
results and conclusions of selected studies varied from each other, often showing inconsistence and not a clear idea 
about the actual usefulness and the added value that Non-Gaussian model parameters may led to standard DWI.

In particular, among IVIM parameters, D seemed to be the most useful for PCa diagnosis, while there was no 
clarity on the effective significance and usefulness of the parameters related to perfusion, D* and f. DKI parame-
ters, K and DK, according to a large number of examined studies were considered to be useful for PCa detection, 
but a clear evidence about DKI better performance had not still be reached.

Compared to those on IVIM and DKI, a smaller quantity of studies on BE and SE was present in literature, so 
it was even more complicated to assess the ability of these models to help in PCa detection and characterization. 
Among SE parameters, only DDC seemed to show significance, while conflicting views were expressed on α. 
About BE, there were conflicting or not significant results for Dslow, Dfast, ffast, and also a not clear interpretation of 
their physiological basis45.

In this scenario, it would be desirable to reach a common view on the use of Non-Gaussian DWI models in 
addiction or in substitution of the standard DWI protocol for PCa diagnosis. With our systematic review, we 
summarized the available data reported in previously selected studies, and, if possible, for each Non-Gaussian 
model, we quantitatively evaluated the capability to differentiate between NT and PCa and between low- and 
intermediate/high-GS lesions. The high heterogeneity in applied functions and fitting procedures due to a not 
yet existing consensus on the best processing approach to fit biexponential models62 led us to not perform any 
statistical analysis on IVIM and BE models. Moreover, the small quantity of studies on SE models did not allow us 
to conduct statistical analysis on the power of α and DDC to classify lesions on the basis of GS.

Figure 4. Forest plot showing results on Stretched Exponential Model (SE) parameters for PCa detection: (a) 
results on distributed diffusion coefficient (DDC) in normal tissue (NT) PCa [mean DDC ± standard deviation 
(SD) × 10−3 mm2/s]; (b) results on heterogeneity index (α) in NT and PCa [mean α ± SD]. Studies included in 
the meta-analysis are listed in the column “Study or Subgroup” and, in case of studies considered multiple times, 
the different b-value ranges and/or outcome measurements are reported in parenthesis. Abbreviations: nPZ, 
normal peripheral zone; tPZ, tumoral peripheral zone; nTZ, normal transitional zone; tTZ, tumoral transitional 
zone; nCG, normal central gland.

https://doi.org/10.1038/s41598-019-53350-8


1 1Scientific RepoRtS |         (2019) 9:16837  | https://doi.org/10.1038/s41598-019-53350-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Our results showed that, concerning PCa detection, K, DK, DDC and α showed statistical significance, allowing to 
distinguish prostate cancer from NT. Lower values of DK and DDC found in PCa could be linked to the destruction 
of the prostatic structure-like acini together with a higher cellular and stroma density typical of PCa tissues49,55. The 
significantly higher value of K in PCa could be associated with the increased microstructural complexity of prostate 
cancer54,55. On the contrary, α was found to be significantly lower in PCa and this is in accordance to its associa-
tion with histological heterogeneity, clearly present in prostate cancer tissue49. It should be considered that studies 
involving SE were fewer than those selected for DKI and so, although the results on DDC and α showed statistical 

Figure 5. Forest plot showing results on Diffusion Kurtosis Imaging (DKI) model parameters for prostate 
cancer (PCa) detection: (a) results on kurtosis coefficient (K) in normal tissue (NT) and PCa [mean ± standard 
deviation (SD) × 10−3 mm2/s]; results on diffusion coefficient corrected for kurtosis (DK) in NT and PCa 
[mean ± SD × 10−3 mm2/s]. Studies included in the meta-analysis are listed in the column “Study or Subgroup” 
and, in case of studies considered multiple times, the different b-value ranges and/or outcome measurements 
are reported in parenthesis. Abbreviations: nPZ, normal peripheral zone; tPZ, tumoral peripheral zone; nTZ, 
normal transitional zone; tTZ, tumoral transitional zone; PCa_all, all PCa lesions; PCa_GS, PCa lesions with 
Gleason Score equal to a certain value; PCa_GS+, PCa lesions with Gleason Score greater to a certain value; 
PCa_GS+ = , PCa lesions with Gleason Score greater or equal to a certain value; ROI, region of interest (ROI)-
based fitting approach; PIX, voxel-by-voxel fitting approach; NC, ROI-based fitting approach without noise 
correction.
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significance, more studies would be required to validate this result. Given the high number of included studies, and 
the significative performance of both its parameters, DKI model claimed to be helpful for the detection of PCa.

Among outcomes regarding characterization of PCa aggressiveness, only K and DK, showed statistical signif-
icance, differentiating lesions according to GS. The significantly greater value of DK in intermediate/high-lesions 
highlighted reduced diffusion of water in these PCa than in those characterized by a GS equal or lower than 6, and 
it could be linked to the progressive increased cellularity of malignant lesions54. The significantly greater value of 
Kurtosis (K) in intermediate/high-lesions highlight reduced diffusion of water in these lesions, and it could be 
linked to the progressive increased microstructural complexity of malignant lesions52–55. The computed heteroge-
neities were lower than the ones found in the analyses on PCa detection, but it is not so reliable due to the lower 
number of studies involved63.

The obtained high heterogeneities, both in PCa detection and characterization, may be caused by several fac-
tors that match to the limitations of the study, which are highlighted in the following subparagraph.

Limitations of the study. This meta-review suffers from several limitations which deserve to be discussed.
As concern patient characteristics, we did not consider patient age and did not draw distinction between dif-

ferent kind of NT ROIs (e.g. placed on prostate of healthy volunteers or on healthy prostate zones of PCa patients) 
or between the different examined anatomic zone (TZ, PZ, CG). Also, we have not considered the different patho-
logic reference standard used across studies, be it biopsy or radical prostatectomy specimens, which may lead to 
assign different Gleason scores for the same prostatic lesion64,65.

As to characteristics of DWI protocol, because of the lack of a standard b-value range for PCa, b-values used 
to acquire DWI signal differed across selected studies, probably contributing to increase heterogeneity due to the 
supposed dependence of the computed parameters on the adopted b-values34,36. Specifically for IVIM parameters, 
the high variability found across studies can also be explained by the effect of a non-constant Echo Time (TE)66,67 
and of a variable number of selected b-values68.

Moreover, the different applied diffusion time, which was found to be related to ADC and fractional anisot-
ropy (FA) by Bourne et al.69 could have influenced results, but only four of selected studies reported information 
on diffusion time parameters15,35,44,47 (see Supplementary Material –S6- for more details). Further studies aimed 
at finding a standard DW-MRI protocol for PCa are required.

It could be also interesting to explore the huge sources of heterogeneity and their effects on parameters per-
formances in PCa diagnosis using a meta-regression and subgroup analyses, in order to perform a diagnos-
tic test accuracy (DTA) meta-analysis and obtain quantitative comparison of each Non-Gaussian models with 
mono-exponential model, as done, for example, by Si et al.70 for DKI. However, selected studies, especially those 
covering PCa characterization and BE or SE, did not reported sufficient data to build contingency tables, calculate 
quantitative measures and construct summary ROC curves. Moreover, too few studies on PCa characterization 
provided correlation coefficient values between parameters and GS to perform a correlation meta-analysis.

With respect to data analysis characteristics, we have not made any differences between 2D and 3D ROIs. In 
addition, we included studies that used both ROI-based parameters extraction approach (i.e., fitting procedure 
over the mean signal intensity values in previously traced ROIs) and voxel-based approach (i.e., voxel-by-voxel 

Figure 6. Forest plot showing results on DKI model parameters for prostate cancer (PCa) characterization: 
(a) results on diffusion kurtosis (K) in low and high Gleason Score (GS) PCa [mean ± standard deviation 
(SD) × 10−3 mm2/s]; (b) results on diffusion coefficient corrected for kurtosis (DK) in low and high GS PCa 
[mean ± SD × 10−3 mm2/s]. Abbreviations: GS, PCa lesions with Gleason Score equal to a certain value; 
PCa_GS+, PCa lesions with Gleason Score greater to a certain value; ROI, region of interest (ROI)-based fitting 
approach; PIX, voxel-by-voxel fitting approach; NC, ROI-based fitting approach without noise correction.
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fitting procedure and subsequent ROI measurement on the resulting parametric map59). Further, there was nei-
ther an established fitting procedure to obtain parameters belonging to the same Non-Gaussian model and this 
made it impossible to perform any statistical analysis on certain models such as IVIM and BE. Larger studies are 
required to find a standard fitting function/procedure.

Moreover, it is not to be neglected the lack of access to data in the selected studies, which prevents the external 
validation of obtained results by independent researchers71. Only Feng et al.36 took a step toward data sharing, 
providing, in the Supporting Material of their work, a full table including the estimated DWI parameters for each 
patient included in the study.

Data availability issue is gaining an increasing importance in research and in particular in MR community72. 
Some goals of data sharing should be the creation of reference findings/algorithms/implementations that can be 
used for comparison when publishing new methods or the possibility to compare individual results, for example 
in terms of consistency, computation time and hardware/programming language requirements. To our knowl-
edge, among research teams dealing with prostate cancer diagnosis, only the groups of Chaddad et al.73 and 
Jambor et al.74 make their data fully available. With respect to our meta-analysis, the access to external data would 
have allowed not only to go beyond the traditional meta-analysis of intervention venturing into more complex 
meta-analytic approaches75, but it would have also helped to shed light in the issue of standardization of DWI 
protocols and fitting functions/procedures for Non-Gaussian DWI parameters. The absence of standardization 
directly affects repeatability and reproducibility for DWI parameters that are fundamental to allow a fair and 
robust comparison among studies, leading to a more powerful meta-analysis71. In addition, repeatability and 
reproducibility are also essential in clinical practice for a correct treatment planning, response monitoring and 
to use DWI as clinical biomarker for cancer diagnosis76–82. To our knowledge, there are only few studies on 
Non-Gaussian DWI models for PCa diagnosis approaching these issues. Merisaari et al.44 evaluated five different 
IVIM fitting methods using a population of 81 patients who underwent DWI examination twice, revealing poor 
reproducibility of IVIM parameters. Jambor et al.46 addressed for repeatability of ADC, SE, DKI and BE param-
eters involving a smaller patient population of 24 patients who underwent four DWI examinations, showing 
low repeatability for BE fitted parameters and a higher and similar repeatability among ADC, SE and DKI fitted 
parameters. To our knowledge, current literature lacks of studies concerning reproducibility of Non-Gaussian 
DWI parameters for PCa diagnosis across different centers, scanners, and readers. This is a direct consequence of 
the above-mentioned lack of standardization in DWI protocol, fitting functions/procedures, and also automatic 
tools for ROI placement44.

Nevertheless, the strength of this work was that we assessed not only tumor detection, as in other reviews70, but 
also PCa characterization in terms of aggressiveness. In addition, multiple Non-Gaussian models were considered.

conclusions
The role of Non-Gaussian diffusion models in the detection and characterization of PCa aggressiveness and, 
consequently, in making clinical decisions, remains questionable. In this context, this article, highlighting the 
challenges that have emerged when comparing studies between each other, may serve as a starting point for future 
studies evaluating Non-Gaussian DWI performances to give a more precise biophysical interpretation of their 
parameters with the objective of identifying a standardized DW-MRI protocol in PCa diagnosis.
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