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Abstract
Rictor upregulation and mTORC complex 2 (mTORC2) over-activation participate in glioma

cell progression, yet the underling mechanisms are not known. We here identified micro-

RNA-153 (miR-153) as a potential anti-Rictor miRNA, which was downregulated in multiple

human glioma tissues and glioma cell lines (U87MG, T98G, U373MG and U251MG). miR-

153 downregulation was correlated with Rictor (mRNA and protein) upregulation and p-Akt

Ser473 (the mTORC2 indicator) over-activation in the glioma tissues and cells. Our in vitro
evidences suggested that Rictor could be one primary target of miR-153 in glioma cells.

Exogenous overexpression of miR-153 downregulated Rictor (mRNA and protein) and

decreased p-Akt Ser473 in U87MG cells, leading to significant growth inhibition and apopto-

sis activation. Notably, U87MG cells with Rictor shRNA knockdown showed similar pheno-

types of cells with miR-153 overexpression. More importantly, in Rictor-silenced U87MG

cells, miR-153 expression failed to further affect cell growth nor apoptosis. In vivo, we
showed that miR-153 overexpression dramatically inhibited U87MG tumor growth in nude

mice. Together, these results suggest that miR-153 downregulation could be one important

reason of Rictor upregulation and mTORC2 over-activation in glioma cells. Further, miR-

153-induced anti-glioma cell activity is possibly via downregulating Rictor.

1. Introduction
Glioma causes large mortality around the world each year [1,2,3]. The prognosis for high-
grade glioma (grade III-IV) has been poor [1,2,3]. In the past decades, postoperative radiation
and temozolomide (TMZ) chemotherapy have become the standard treatment for glioma
[4,5,6]. Yet, the overall survival has not been significantly improved for the affected patients
[4,5,6]. One key hurdle is the molecular heterogeneity of glioma [1].

Mammalian target of rapamycin (mTOR) signaling is often dysregulated and hyper-acti-
vated in glioma, which mediates tumorigenesis, progression and chemoresistance [7,8,9].
mTOR lies in two distinct multi-protein mTOR complexes, including the traditional mTOR
complex 1 (mTORC1) and later-discovered rapamycin-insensitive mTOR complex 2
(mTORC2) [10,11]. mTORC2 is composed of mTOR, Rictor (rapamycin-insensitive compan-
ion of mTOR), mSIN1 (mammalian stress-activated protein kinase-interacting protein 1),
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mLST8 and other components [7,8,9]. Rictor is a key component of mTORC2 and is required
for mTORC2 activation [12,13]. It directly associates with two other mTORC2 components,
mSIN1 and Protor1, to form the mTORC2 complex [12,13]. Rictor depletion would block
mTORC2 activation [12,13]. Existing evidences have demonstrated that Rictor overexpression
and mTORC2 over-activation promote glioma cell migration and proliferation [14,15]. The
underlying mechanism of Rictor overexpression has not been studied. In the current study, we
focused on the role on microRNA (miRNA) in the process.

miRNAs are capable of regulating gene expression at both translational and post-transcrip-
tional levels [16,17]. These 19–24 nucleotide single-stranded noncoding RNAs silence targeted
mRNAs through partial complementarity in their 30 untranslated regions (UTRs) [16,17].
Studies have demonstrated that miRNAs are dysregulated in gliomas, which positively regulate
a number of cancerous behaviors [18]. In the current study, we identified a potential anti-Ric-
tor miRNA: microRNA-153 (miR-153). Our results suggest that miR-153 downregulation
could be the reason of Rictor upregulation and mTORC2 over-activation in human glioma
cells. Overexpression of miR-153-induced anti-glioma cell activity is possibly via downregulat-
ing Rictor.

2. Material and Methods

2.1. Reagents and antibodies
Rictor (sc-271081) and (β-) tubulin (sc-55529) antibodies were purchased from Santa Cruz
(Santa Cruz, CA). p-Akt Ser473 (#9271) and Akt1 (#2967) antibodies were obtained from Cell
Signaling Tech (Danvers, MA). Puromycin was purchased from Sigma (Shanghai, China). All
the cell culture reagents were obtained from Gibco (Shanghai, China).

2.2. Culture of glioma cell lines
Established human glioma cells (U87MG, T98G, U373MG and U251MG lines) were main-
tained in DMEM/RPMI medium, supplemented with 10% fetal bovine serum (FBS) and antibi-
otics, and in the CO2 incubator at 37°C.

2.3. Culture of human primary astrocytes
Human primary astrocyte cultures were purchased from the iBS cell bank of Fudan University
(Shanghai, China). The astrocytes were derived from the cerebral cortices of a single trauma
patient. Ninety eight percent or more of the astrocytes were positive of glial fibrillary acidic
protein (GFAP). Primary human astrocytes were maintained in astrocyte media (Science Cell,
Carlsbad, CA) containing 10% FBS, 1% astrocyte growth supplement and 1% Penicillin/Strep-
tomycin. All investigations involving clinical samples were conducted according to the princi-
ples expressed in the Declaration of Helsinki and national regulations. The Scientific Ethical
Committee of Central South University approved the use of human tissues for primary cell cul-
ture or gene detection (ID: 2014-03-112). Written informed consent was obtained from each
participant.

2.4. Human glioma tissues
Fresh human glioma tissue specimens were obtained from nine informed-consent glioma
patients at the time of surgery. The patients’ basic parameters were: Male: 6/Female: 3; 42–59
years old; Grade II: 5/Grade III: 4. Fresh tumor specimens were minced, homogenized and dis-
solved via the tissue lysis buffer (Biyuntian, Wuxi, China). Samples were then subjected to real-
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time PCR assay or Western blotting assay. All investigations involving clinical samples were
conducted with the guidance described above.

2.5. MTT assay of cell growth
Glioma cells (3 × 103 per well) were seeded onto 96-well plates for 48 hours. After treatment of
cells, MTT tetrazolium salt (0.5 mg/ml, Sigma) was added for 3 hours. Thereafter, 150 μl of
DMSO per well was added to dissolve formazan crystals. The absorbance was tested by a plate
reader at a test wavelength of 490 nm.

2.6. Clonogenicity assay of cell growth
Glioma cells (0.5 × 105 per dish) were suspended in complete medium with 0.1% agar (Sigma),
which was then added on the top of a pre-solidified 100 mm culture dish. The cell culture
medium was renewed every two days for a total of ten days. Afterwards, the number of visible
colonies was manually counted.

2.7. Histone-DNA Enzyme-linked immunosorbent assay (ELISA) assay
Glioma cell apoptosis was examined by Histone-DNA ELISA PLUS kit (Roche Applied Sci-
ence, Shanghai, China) according to the manufacturer’s protocol [19].

2.8. Western blotting
Cells or fresh tissues were lysed with the lysis buffer as described [19]. Cell extracts were clari-
fied by centrifugation at 10,000 g for 15 min. Twenty-five μg proteins per sample were analyzed
on a 10% SDS-page gel [19]. Afterwards, samples were transferred onto polyvinylidene fluoride
(PVDF) membranes (Millipore, Shanghai, China), which were then blocked with blocking
solution [19], followed by incubation with the primary antibody and corresponding second
antibody. The detection was performed by Super-signal West Pico Enhanced Chemilumines-
cent (ECL) Substrate. The intensity of each band was quantified via ImageJ software, and the
value was normalized to corresponding equal loading [20].

2.9. RNA extraction and real-time PCR
RNA was extracted with TRIZOL reagents according to standard procedures, and was reverse-
transcribed. The PCR reaction mixture contained 1× SYBRMaster Mix (Applied Biosystem,
Foster City, CA), 1 μg RNA and 200 nM primers. An ABI Prism 7300 Fast Real-Time PCR sys-
tem (Foster City, CA) was applied for PCR reactions. mRNA expression was quantified using
the ΔΔCt method. GAPDH served as the internal control. The GAPDH primers were described
in Chen’s study [21]. The Rictor primers were also described previously [22]. For miRNA anal-
ysis, real-time PCR was performed using PrimeScript miRNA RT-PCR Kit (Takara) according
to the manufacturer’s instructions. The miR-153 primers were described early [23]. All the
primers and sequences were synthesized by OriGene (Beijing, China).

2.10. miR-153 overexpression
Pre-miR-153 (see sequence in [23]) was sub-cloned into pSuper-puromycin vector (a gift from
Dr. Tian [24]) to generate miR-153 expression construct. For transfection, glioma cells were
seeded onto 6-well plates at 50–60% confluence, which were then transfected with miR-153
construct (0.25 μg/ml) via Lipofectamine 2000 reagents (Invitrogen, Shanghai, China). After 36
hours of incubation, cells were cultured in puromycin-containing complete medium for a total
of 8 days. miR-153 expression in the stable cells was tested by real-time PCR assay. Control
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cells were transfected with non-sense microRNA-control (“miR-C”) (a gift from Dr. Tian
[24]).

2.11. Rictor shRNA knockdown and stable cell selection
The Rictor shRNA lentiviral particles were purchased from Santa Cruz Biotech (sc-61478-V,
Santa Cruz, CA). The lentiviral shRNA (10 μl/ml medium) was added to the cultured U87MG
cells. After 36 hours, cell cultured medium was replaced by the puromycin-containing com-
plete medium. The medium was renewed every 2–3 days until single resistant colony was
formed (3–4 weeks). Rictor expression in the stable colony was detected by Western blotting.
Control cells were infected with same concentration of lentiviral scramble control shRNA (sc-
108080, Santa Cruz), and were also subjected to same puromycin selection.

2.12. Xenograft assay
Stable U87MG cells bearing miR-153 or miR-C were subcutaneously (s.c.) injected into the
right flanks of 4-week-old female nude mice (each mouse: 2 × 106 cells in 200 µl of Matrigel).
We initiated the recording when the tumor volume reached around 100 mm3. The tumor vol-
umes and mice body weights were recorded weekly. Volumes were calculated via the formula:
π/6×width 2× length. Estimated average daily tumor growth was also calculated. Mice survival
was recorded at week-7. The animal protocol was approved by the Central South University’s
Institutional Animal Care and Use Committee (IACUC, ID: 2014-03-25) and Ethics commit-
tee. Animals were observed on daily bases. Humane endpoints were defined as a loss of more
that 15% of body mass, a tumor greater than 1.5 cm, or inability to ambulate or rise for food
and water. If animals reached these endpoints they were euthanized by exsanguination. Animal
surgery and euthanasia using decapitation were performed under Hypnorm/Midazolam anes-
thesia, and all efforts were made to minimize suffering.

2.13. Statistical analysis
The data presented in this study were means ± standard deviation (SD). Statistical differences
were analyzed by one-way ANOVA followed by multiple comparisons performed with post
hoc Bonferroni test (SPSS). Values of p< 0.05 were considered statistically significant.

3. Results

3.1. miR-153 downregulation correlates with Rictor upregulation in
multiple human glioma tissues and cell lines
First, we show that microRNA-153 (miR-153) selectively targets the 3’ untranslated regions
(UTRs) of Rictor mRNA (Fig 1A). Next, its expression in human glioma tissues was examined.
A total of nine pairs of fresh human glioma tissues and their surrounding normal tissues were
collected. Real-time PCR results demonstrated that miR-153 level was dramatically downregu-
lated in glioma tissues (“Glioma”), as compared to its level in the surrounding normal brain tis-
sues (“Normal”) (Fig 1B). On the other hand, Rictor mRNA level was increased in the human
glioma tissues (Fig 1C). Correspondingly, Rictor protein expression and mTORC2 activity
(indicated by p-Akt Ser473) were upregulated (Fig 1D).

Next, we tested miR-153 and Rictor expressions in human glioma cells. A total of four estab-
lished human glioma cell lines were included: U87MG, T98G, U373MG and U251MG. As com-
pared to the primary human astrocytes (“Astrocytes”), miR-153 level was significantly reduced in
all four lines of glioma cells (Fig 1E), but the Rictor mRNA level was increased (Fig 1F). Rictor
protein expression was also higher in these glioma cell lines, along with p-Akt Ser473 (Fig 1G).
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Fig 1. miR-153 downregulation correlates with Rictor upregulation in multiple human glioma tissues
and cell lines.miR-153 (-3p) and its putative binding sequence in the 3’-UTR of Rictor mRNA (A).
Expressions of miR-153 (B), Rictor mRNA (C) as well as Rictor protein (D, vs. Tubulin) and p-Akt (D, vs. Akt1)
in human glioma tissues (“Glioma”) and their surrounding normal brain tissues (“Normal”) were shown.
Expressions of miR-153 (E), Rictor mRNA (F) as well as Rictor protein (G) and p-Akt (G) in primary human
astrocytes (“Astrocytes”) and established glioma cell lines (T98G,U373MG, U251MG and U87MG) were
shown. Rictor protein expression (vs. Tubulin) and p-Akt Ser473 (vs. Akt1) were quantified (D and G).
Experiments in this figure were repeated three times, with similar results obtained. Bars stand for mean ± SD.
* p < 0.05 vs. “Normal” group (B-D, n = 9). * p < 0.05 vs. “Astrocytes” group (E-F, n = 3).

doi:10.1371/journal.pone.0156915.g001
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Note that miR-153 downregulation and Rictor upregulation were most dramatic in U87MG cells
and U373MG cells (Fig 1E–1G), these two cell lines were chosen for further studies.

3.2. Rictor is a target of miR-153 in glioma cells
We next wanted to know if miR-153 downregulation was the reason of Rictor upregulation in
glioma cells. pre-miR-153 construct was introduced into U87MG cells to establish miR-
153-expressing cell line (See Methods). Real-time PCR results in Fig 2A confirmed miR-153
overexpression in the stable U87MG cells. miR-153 expression clearly downregulated Rictor
mRNA in U87MG cells (Fig 2B). As a result, Rictor protein expression and p-Akt Ser473 level
were also decreased (Fig 2C). Expectably, microRNA-control (“miR-C”) showed no effect on
Rictor nor p-Akt Ser473 in U87MG cells (Fig 2A–2C). Similar results were also observed in
U373MG cells (Data not shown). These results indicated that miR-153 downregulation could
be the reason of Rictor upregulation and mTORC2 over-activation in glioma cells.

3.3. miR-153 overexpression inhibits glioma cell growth, and activates
cell apoptosis
The results above suggest that Rictor is a target gene of miR-153, and overexpression of miR-
153 will lead to Rictor downregulation and p-Akt Ser473 inhibition in glioma cells. Since Rictor
upregulation and mTORC2 over-activation are important for glioma cell growth and apopto-
sis-resistance [15], we then tested the potential role of miR-153 on glioma cell functions. First,
MTT results in Fig 3A and 3B showed that miR-153 overexpression significantly inhibited
growth of U87MG and U373MG cells. Meanwhile, the number of U87MG/U373MG colonies
was decreased sharply after forced miR-153 expression (Fig 3C and 3D). When analyzing cell
apoptosis, we detected a clear apoptosis activation in miR-153-expressing U87MG cells (Fig
3E) and U373MG cells (Fig 3F). These results indicated that miR-153 overexpression exerted
anti-growth and pro-apoptosis activity against glioma cells.

3.4. miR-153-induced anti-glioma cell activity is mediated via
downregulating Rictor
Thus far, we have shown that miR-153 downregulated Rictor and inhibited glioma cell growth
in vitro. Next, we analyzed the link between the two. First, the shRNA strategy was applied to

Fig 2. Rictor is a target of miR-153 in glioma cells. Stable U87MG cells expressing miR-153, microRNA-control (“miR-C”) or empty vector
(“pSuper-puro”) were subjected to real-time PCR assay of miR-153 (A) and Rictor mRNA (B). Expressions of listed proteins in these cells were
also tested (C). Rictor protein expression (vs. Tubulin) and p-Akt Ser473 (vs. Akt1) were quantified (C). Bars stand for mean ± SD. * p < 0.05 vs.
“Vector” group (A and B, n = 5).

doi:10.1371/journal.pone.0156915.g002
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knockdown Rictor in U87MG cells, and the stable cell line was established by puromycin selec-
tion (See Methods). Real-time PCR assay confirmed Rictor mRNA depletion by the targeted
shRNA (Fig 4A). Consequently, Rictor protein expression and p-Akt Ser473 were largely
decreased in stable U87MG cells (Fig 4B). The level of miR-153 was obviously not affected by
Rictor shRNA (Fig 4C). Note that the MTT OD (Fig 4D) and the number of viable colonies
(Fig 4E) were both decreased in Rictor shRNA-expressing U87MG cells, indicating cell growth
inhibition. Further, Rictor shRNA induced apoptosis activation in U87MG cells, which was
detected by the Histone DNA ELISA assay (Fig 4F). These results showed that cells with Rictor
shRNA showed similar phenotypes (growth inhibition and apoptosis activation) as cells with
miR-153 overexpression. If Rictor is the main target of miR-153 in glioma cells, miR-153’s
activity against glioma cells should be diminished in Rictor-silenced cells. To test this hypothe-
sis, we again overexpressed miR-153 in Rictor-silenced U87MG cells (Fig 4G). Indeed, forced
expression of miR-153 failed to further affect U87MG cell growth (Fig 4G) or apoptosis (Fig
4I) in these cells. These results indicate that miR-153 over-expression-mediated anti-glioma
cell activity is likely mediated via downregulating Rictor.

Fig 3. miR-153 overexpression inhibits glioma cell growth, and activates cell apoptosis. Exact same number of stable glioma cells (U87MG
or U373MG lines) expressing miR-153, microRNA-control (“miR-C”) or empty vector (“pSuper-puro”) were subjected to MTT assay (A and B) or
clonogenicity assay (C and D) to analyze of cell growth; Apoptosis level in these cells was also tested by Histone DNA ELISA assay (E and F). Bars
stand for mean ± SD. * p < 0.05 vs. “miR-C” group (n = 6).

doi:10.1371/journal.pone.0156915.g003
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3.5. The anti-glioma activity by miR-153 in vivo
Finally, we tested miR-153’s activity on glioma cell growth in vivo. Stable U87MG cells (2 × 106

cells per mouse) expressing miR-153 or miR-C were s.c. injected into the nude mice, and xeno-
grafted tumors were established. Fig 5A showed that the average volume of miR-153-express-
ing U87MG tumors was much smaller than that of the miR-C-expressing U87MG tumors.
Average daily tumor growth results further confirmed the anti-glioma activity by miR-153 in
vivo (Fig 5B). At week-7, the mice bearing miR-153 U87MG tumors were all alive, but the
majority of mice with miR-C tumors were already dead (Fig 5C). Notably, the average mice
body weight was not significantly different between the two groups (Fig 5D). We also analyzed

Fig 4. miR-153-induced anti-glioma cell activity is mediated via downregulating Rictor. Relative Rictor
mRNA (A) and miRNA-153 (C) expression in stable U87MG cells with scramble control shRNA (“shRNA-C”) or
Rictor shRNA (“shRNA-Rictor”) was tested by Real-time PCR assay. Expressions of listed proteins in these
cells were also shown (B). Same number of U87MG cells with “shRNA-C” or “shRNA-Rictor” were subjected to
MTT assay (D) and clonogenicity assay (E) to test cell growth; Cell apoptosis was also tested (Histone DNA
ELISA assay, F). Rictor shRNA-expressing stable U87MG cells were transfected with miR-153 or microRNA-
control (“miR-C”), miR-153 expression (G, Real-time PCR assay), cell growth (E, MTT assay) and apoptosis (F,
Histone DNA ELISA assay) in these cells were tested. Rictor expression (vs. Tubulin) and p-Akt Ser473 (vs.
Akt1) were quantified (B). Bars stand for mean ± SD. * p < 0.05 vs. “shRNA-C” group (A, C, D-F, n = 5). *
p < 0.05 vs. “miR-C” group (G, n = 5).

doi:10.1371/journal.pone.0156915.g004
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expression of miR-153 and Rictor in the U87MG tumors. Real-time PCR results confirmed
miR-153 upregulation (Fig 5E) and Rictor mRNA depletion (Fig 5F) in miR-153-expressing
tumors (at Week-5, n = 3 for each). Together, these results demonstrated that miR-153 over-
expression inhibited U87MG tumor growth in vivo.

4. Discussions
The high-grade glioma is among the most aggressive malignancy with an average survival of
less than 12–14 months [2,3,25]. The rapamycin-insensitive mTORC2 is composed of mTOR,
mLST8, mSin1, and Rictor, which has shown functions in cell survival, proliferation and actin
cytoskeleton [26,27,28,29]. mTORC2 servers as the upstream kinase for Akt at Ser473, and is
required for Akt fully activation [26,27,28,29]. It has been shown that a large proportion of
human gliomas have Rictor upregulation, mTORC2 hyperactivity, and high level of p-Akt
[14,15]. In line with these findings, we showed that Rictor expression (mRNA and protein) and
p-Akt Ser473 were both upregulated in the tested human glioma tissues and cell lines. Signifi-
cantly, shRNA-mediated knockdown of Rictor potently decreased p-Akt Ser473 and inhibited
glioma cell growth. These results indicated that Rictor could be an important oncogene for
glioma.

Fig 5. The anti-glioma activity by miR-153 in vivo.miR-153-expressing U87MG cells (“miR-153”) or miR-C-expressing U87MG cells (“miR-C”) were
inoculated into the nude mice (13 mice per group), tumor volumes (A) and mice body weights (D) were recorded weekly; Estimated daily tumor growth was
calculated (B); Mice survival at week-7 was also presented (C, summarizing of three-set repeats). At week-5, three xenografted U87MG tumors per group
were isolated, miR-153 (E) and Rictor mRNA (F) expressions in the fresh tissues were tested by real-time PCR assay; Bars stand for mean ± SD. *
p < 0.05 vs. “miR-C” tumor group (A-F).

doi:10.1371/journal.pone.0156915.g005
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miR-153 was first discovered as one of the several brain-specific miRNAs, based on analysis
of expression profile of over one hundred miRNAs in adult organs [30]. Recent evidences have
indicated that miR-153 was dramatically downregulated in several cancer cells [31,32]. Further,
in grade IV (GBMmultiforme) human gliomas, miR-153 expression appeared to be depleted
[31,32]. These results [31,32] have implied that miR-153 could be a tumor suppressor.

One key finding of this study is that Rictor might be a key target gene of miR-153 in glioma
cells. In human glioma tissues and cells, miR-153 downregulation was negatively correlated
with Rictor upregulation and mTORC2 (p-Akt Ser473) over-activation. Importantly, exoge-
nous overexpression of miR-153 downregulated Rictor and decreased p-Akt Ser473 in glioma
cells. Meanwhile, significant growth inhibition and apoptosis activation were observed in the
miR-153-expressing glioma cells. Importantly, our in vivo studies showed that miR-153 down-
regulated Rictor/p-Akt Ser473, and potently inhibited U87MG tumor growth in nude mice.
Intriguingly, in Rictor-silenced glioma cells, miR-153 expression failed to further decrease cell
growth or increase cell apoptosis. Therefore, Rictor should be the primary target of miR-153 in
mediating its anti-glioma cell activity.

5. Conclusions
Together, we showed that miR-153 downregulation could be the reason of Rictor upregulation
and mTORC2 over-activation in glioma cells. Further, miR-153-induced anti-glioma cell activ-
ity is possibly through downregulating Rictor.
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