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Alterations of interaction (connectivity) of the EEG reflect pathological processes in

patients with neurologic disorders. Nevertheless, it is questionable whether these

patterns are reliable over time in different measures of interaction and whether this

reliability of the measures is the same across different patient populations. In order

to address this topic we examined 22 patients with mild cognitive impairment, five

patients with subjective cognitive complaints, six patients with right-lateralized temporal

lobe epilepsy, seven patients with left lateralized temporal lobe epilepsy, and 20 healthy

controls. We calculated 14 measures of interaction from two EEG-recordings separated

by 2 weeks. In order to characterize test-retest reliability, we correlated these measures

for each group and compared the correlations between measures and between groups.

We found that both measures of interaction as well as groups differed from each other

in terms of reliability. The strongest correlation coefficients were found for spectrum,

coherence, and full frequency directed transfer function (average rho > 0.9). In the delta

(2–4 Hz) range, reliability was lower for mild cognitive impairment compared to healthy

controls and left lateralized temporal lobe epilepsy. In the beta (13–30 Hz), gamma (31–

80 Hz), and high gamma (81–125 Hz) frequency ranges we found decreased reliability in

subjective cognitive complaints compared to mild cognitive impairment. In the gamma

and high gamma range we found increased reliability in left lateralized temporal lobe

epilepsy patients compared to healthy controls. Our results emphasize the importance of

documenting reliability of measures of interaction, which may vary considerably between

measures, but also between patient populations. We suggest that studies claiming

clinical usefulness of measures of interaction should provide information on the reliability

of the results. In addition, differences between patient groups in reliability of interactions
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in the EEG indicate the potential of reliability to serve as a new biomarker for pathological

memory decline as well as for epilepsy. While the brain concert of information flow is

generally variable, high reliability, and thus, low variability may reflect abnormal firing

patterns.

Keywords: reliability, EEG connectivity, mild cognitive impairment, subjective cognitive complaints, temporal lobe

epilepsy

1. INTRODUCTION

Interactions between neural signals are at the forefront of
current neuroscientific research, which is also emphasized by
the most recent name for this phenomenon: connectomics
(Behrens and Sporns, 2012; Van Essen et al., 2012; Emmons, 2015;
Sporns, 2015). The assessment of the connectome has attracted
particularly great interest with regard to brain disorders (Fornito
et al., 2015).

In mild cognitive impairment (MCI), interaction between
EEG-signals (today most often known as connectivity Aertsen
and Preissl, 1991) was found to be a reliable marker for cerebral
reserve capacity (Teipel et al., 2016), response to interventions
(Klados et al., 2016), and to monitor and predict disease
progression fromMCI to Alzheimer’s disease (Rossini et al., 2006;
Giannakopoulos et al., 2009; Drago et al., 2011; Dai and He, 2014;
Hsiao et al., 2014; Wurtman, 2015; Babiloni et al., 2016; Vecchio
et al., 2016).

Regarding epilepsy in particular, scientific interest
in connectomics in general (Engel et al., 2013) and in
neurophysiological interactions (Lehnertz et al., 2009) is
clearly evidenced by the large number of studies conducted; a
pubmed search for connectivity epilepsy EEG, yields 437 articles,
whereas connectivity mild cognitive impairment EEG yields 92
(search performed on March 13th, 2017). The first measure of
interaction, coherence (Walter, 1968), has been used to locate
the epileptic focus as early as 1970 by Gersch and Goddard
(1970). Newer approaches are centered on directed measures of
interaction, which can be seen in the larger concept of Granger
causality (Granger, 1969). Directed interaction is a statistical
characterization of potential causality or information flow. As
such, information sources and sinks can be identified, where
sources are electrodes or other units of measurement which
influence activity of other units, while sinks are units which are
mainly influenced by other sources. These connectivity measures
are still in use and have undergone further development
(Korzeniewska et al., 2003), such as in a combination with
wavelets (Li et al., 2007).

Today, in epilepsy research, directed measures are favored
over undirected measures, because they can be used to model
the spreading activation of ictal and interictal epileptic activity
(Schevon et al., 2007; Lemieux et al., 2011; vanMierlo et al., 2011;
Dai et al., 2012; Stefan and Lopes da Silva, 2013; Pittau et al., 2014;
van Mierlo et al., 2014; Varotto et al., 2015).

Research tends to underestimate the fact that statistical
measures for interactions in general cannot replace the
assessment of structural connections (Horwitz, 2003; Rockland,
2015). Indeed, only a few studies have tried to link measures

of interaction from the EEG to structural connectivity assessed
by diffusion tensor imaging in MCI (Teipel et al., 2009;
Garces et al., 2014; Vecchio et al., 2015). Additionally, volume
conduction jeopardizes interpretability (Christodoulakis et al.,
2015). Volume conduction and activity at the reference can
lead to artificial high coherence values. Therefore, imaginary
coherency (Nolte et al., 2004) and partial coherence (Gersch
and Goddard, 1970) have been suggested. The subsequent
development of directional measures, namely directed coherence
(Saito and Harashima, 1981) and directed transfer function
(Kaminskí and Blinowska, 1991) were combinedwith the concept
of partial statistics in order to obtain partial directed coherence
(Baccalá and Sameshima, 2001) and direct directed transfer
function (Korzeniewska et al., 2003). Several variants of these
measures have been developed, i.e., the full frequency directed
transfer function (Korzeniewska et al., 2003) and the generalized
partial directed coherence (Baccalá et al., 2007) which deal
additionally with spectral and scaling characteristics of the
signals. Another promising development is the combination of
directed coupling with information theoretic approaches (Li and
Ouyang, 2010; Liang et al., 2015).

A major problem with brain-network metrics is
reproducibility (Welton et al., 2015). Despite the existence of
statistical frameworks which have been validated as quantifying
the stability of resting-state networks in magnetic resonance
imaging (Bellec et al., 2010), such methods are not implemented
as a standard procedure when studying interactions. Graph
metrics from non-directed functional networks derived
from magnetoencephalography yielded an average intraclass-
correlation coefficient of 0.60–0.65 (Deuker et al., 2009; Jin et al.,
2011). These are not convincingly high values; we therefore
suggest that the assessment of reliability, in the sense of stability
over time, is crucial for research on brain-networks.

Several factors affect reliability. First, in general, reliability
is higher in lower frequency networks compared to beta- and
gamma frequency ranges (Deuker et al., 2009; Jin et al., 2011;
Kramer et al., 2011; Andellini et al., 2015; Miskovic and Keil,
2015). Second, reliability of networks are affected by the length
of the time-series and the number of trials (Andellini et al.,
2015; Miskovic and Keil, 2015). Third, signal-to-noise ratio
plays an important role in reliability (Miskovic and Keil, 2015).
Fourth, type of measure and the type of network characteristics
exhibit varying reliability, since different measures might not
necessarily respond in the same way to changes of brain state
(Liang et al., 2016). Phase-dependent measures show lower
reliability than absolute power and classical coherence over 30
days (Cannon et al., 2012). Long term follow-ups of up to 2
years revealed intra-class correlation coefficients of 0.68–0.80
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for global interaction and of 0.12–0.73 for graph measures
(Hardmeier et al., 2014). Fifth, most interestingly, disease-specific
processes may affect stability of measured networks. Microstates
of interaction patterns exhibit disease-specific alterations in
patients with Alzheimer’s disease (Hatz et al., 2015) and seizure-
specific spatiotemporal features are stable for ictal functional
networks (Martz et al., 2013), suggesting that the behavior of the
networks over time contains significant clinical information.

However, it is often claimed that measures of interaction
in terms of functional connectivity may aid surgical planning
(e.g., Englot et al., 2015), and that they correlate with cognitive
processes like memory (e.g., Watrous et al., 2013) despite there
being no characterization of the reliability of the measured
networks. When assessing interaction patterns as an indicator for
the seizure onset zone, reliability is of high importance in order
to provide reliable information for epilepsy surgery. Moreover,
differences between patient groups may be inconsistent across
studies due to poor reliability of measures of interactions. There
is a need to quantify this inherent problem before transferring
measures of interaction into clinical practice.

So far, reliability of non-directed or directed interactions
and network characteristics was either assessed in healthy
participants, or in patients, but the patterns of reliability were
never compared across groups and measures. For the manyfold
research approaches that compare interactions between patient
populations, it is crucial that the reliability of the assessed
measures is the same across groups. In contrast, we believe that
such an assumption is highly likely to be violated.We hypothesize
that there could be pathology-specific patterns of reliability of
interaction.

In the present study, we compared the test-retest reliability of
a set of interaction measures over two EEG recordings between
patient populations. The chosen datasets were resting-EEG
recordings in patients with MCI, subjective cognitive complaints
(SCC), temporal lobe epilepsy (TLE), and healthy controls (HC).

2. MATERIALS AND METHODS

2.1. Ethics
This study was carried out in accordance with the
recommendations of Good Clinical Practice, with written
informed consent obtained from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Ethics Commission
Salzburg (Ethikkommission Land Salzburg; approval number
415-E/1429).

2.2. Subjects
We recruited a total sample of 70 participants at the Department
of Neurology, Paracelsus Medical University Salzburg, Austria,
fromMay 2012 to December 2015. After exclusion of participants
who did not undergo both EEG-examinations (two TLEr, one
TLEl, three HC) and whose EEG was of poor quality (one SCC,
one TLEl, two HC) 60 participants remained for this analysis.
Poor quality of the EEG was defined as less than 8 segments
remaining after excluding segments according to the automatic
data inspection (see Section 2.5). Table 1 gives an overview

TABLE 1 | Sample overview.

Sample N Median age Age range N women N right-handed

MCI 22 68.5 48–76 11 21

SCC 5 57 52–74 2 5

TLEr 6 33.5 21–51 3 5

TLEl 7 55.0 36–66 6 7

HC 20 61.5 23–74 14 18

N, number; MCI, mild cognitive impairment.

SCC, subjective cognitive complaints.

TLEr, right lateralized temporal lobe epilepsy.

TLEl, left lateralized temporal lobe epilepsy.

HC, healthy controls.

of the demographic characteristics of patients included in the
subgroups. More detailed information can be retrieved from
Table S1.

Structural MRI was obtained from all participants at the day
of the second EEG recording. Clinical evaluation, specifically of
the hippocampi, was performed by a board certified neurologist
(co-author Giorgi Kuchukhidze). The esults of this evaluation are
given in Table S1.

Patients with amnestic MCI or SCC were recruited in the
memory outpatient clinic of the Department of Neurology,
Paracelsus Medical University Salzburg, Austria. We defined
patients with amnestic MCI according to level three and patients
with SCC according to level two of the global deterioration
scale for aging and dementia described by Reisberg et al. (1982)
and Gauthier et al. (2006). Diagnosis was based on multimodal
neurological assessment, including imaging (high resolution 3T
magnetic resonance tomography, and single photon emission
computed tomography with Hexamethylpropylenaminooxim),
and neuropsychological testing. Neuropsychological testing of
these groups included the MMSE score (MCI median = 28.5,
range 25–30; SCC median = 28.5, range 27–30). We excluded
patients when inflammatory, vascular, metabolic, traumatic, or
major depression, psychosis or any pharmacological therapy
could better explain the memory impairment or the memory
complaints.

Patients with refractory unilateral TLE were recruited in
the epilepsy outpatient clinic of the Department of Neurology,
Paracelsus Medical University Salzburg, Austria. Diagnosis
was based on multimodal neurological assessment, including
imaging (high resolution 3T magnetic resonance tomography,
and single photon emission computed tomography with
Hexamethylpropylenaminooxim), neuropsychological testing,
and video-EEG examination for up to 5 days. We excluded
patients with progressive lesions or immunological causes of
epilepsy.

Table S2 provides patient characterization data for patients
with TLE, including information about whether seizures
occurred within 24 h before or after the EEG-recording took
place (column “seizure”).

The sample of healthy participants was recruited among the
students of the Paris Lodron University of Salzburg, Austria, as
well as among senior citizens associations, in order to achieve
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a close resemblance to the age and sex of the patient groups.
Healthy participants were free of a history of neurological or
psychiatric diseases and were not receiving any psychoactive
medication.

2.3. Pathological Aspects
Table S3 lists self-reported medication of all participants in this
study, Table S4 lists the results of the assessment of pathological
findings and signs of sleepiness in the EEG by board certified
neurophysiologists (column “findings”).

2.4. Data Registration
EEG was recorded in a quiet room. Participants were instructed
to stay awake with eyes closed. Recordings lasted for 2–3 min.
We used a BrainCap with a 10–20 system and a BrainAmp (Brain
Products GmbH, Germany) 16-bit ADC amplifier. The sampling
rate was 500 Hz. Of the 32 recorded channels, one was used to
monitor the lower vertical electrooculogram and one was used
to measure electrocardiographic activity. Two were positioned at
the earlobes for re-referencing purposes to remove the bias of the
original reference, which was placed at FCz. Data analysis was
conducted for data collected from the remaining 27 electrodes
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz,
Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, and TP10.
Impedances were kept below 10 k�.

The two EEG sessions were arranged to take place at the
same time of day. For most participants, EEG was performed
within the same time-range around noon (1 p.m.). For most
patients, we were able to arrange the recordings such that the
time difference between the two recordings was less than 3 h. For
three participants (HC, SCC, TLEl) the time difference was∼4 h,
for two patients (MCI, TLEr) the time difference was 6 h, and for
one HC the time difference was 11 h.

2.5. Data Preparation
Data was pre-processed with Brain Vision Analyzer (Version
1.05.0005, Brain Products GmbH). In order to re-reference all
channels, a new reference was built by averaging the signal of
earlobe electrodes. Butterworth Zero Phase Filters were used for
a high-pass filter from 1 Hz (time constant 0.1592 s, 48 dB/oct)
and an additional notch filter (50 Hz) was applied.

An automatic artifact detection was carried out. Maximal
allowed voltage step per sampling point was 50µV (values which
exceeded this threshold were excluded within a range of ±100
ms); maximal allowed absolute difference on an interval of 200
ms was 200 µV and lowest allowed absolute difference during
an interval of 100 ms was 0.5 µV (values which exceeded this
were marked with a surrounding of ±500 ms). The result of this
artifact detection was reviewed visually. If data quality was poor
due to noise on the reference electrodes, the dataset was excluded.

No artifact correction such as independent component
analysis (ICA) was performed, since these methods of artifact
removal can be problematic when assessing measures of
interaction. The removal procedure is not unlikely to introduce
artificial similarity between the signals. This is of course not
recommendable for the present work, because it also increases
the reliability, i.e., when a participant tends to havemany artifacts

FIGURE 1 | Boxplots for segment numbers. Segment (trial) numbers for the

first and second EEG recording. One segment equals half a second. MCI, mild

cognitive impairment; SCC, subjective cognitive complaints; TLEr, right

lateralized temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy;

HC, healthy controls.

because of an increased frequency of eye blinks or frequent
movements, he will yield higher interaction between signals and
a high reliability of measures of interaction if we correct the
artifacts.

The preprocessed data was exported into a generic data format
and imported to Matlab R© (release R2010b, The Mathworks,
Massachusetts, USA).

The data was then segmented into 500 ms segments (i.e., 250
sampling points) for each participant. If the segment overlapped
with a marked artifact, it was excluded from further analysis for
all channels. The purpose of this segmentation was to exclude
the artifacts in a segment-wise manner, which allows a regular
exclusion of data; i.e., when segments containing artifacts were
excluded, they were always a multiple of 500 ms. Calculation of
the measures of interaction was done on the continuous signal of
the remaining concatenated segments.

Figure 1 shows the number of segments. One segment equals
half a second. That is, for most participants we had at least 2min
of EEG for the analysis.

In order to estimate whether the reliability of the measures
of interaction depends on the trial numbers that could be used
for the calculation of the measures, we provide scatter plots
in Figures S1–S14. The scatter plots show the relation between
number of segments and test-retest reliability.

2.6. Feature Extraction
We estimated a set of measures of interaction between all of
the 27 selected electrodes (i.e., channels). The estimation was
performed for each of the participants. The measures were
calculated with the functions mvfreqz.m and mvar.m from the
BioSig toolbox (Schlögl and Brunner, 2008) with model order
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250 (i.e., equaling the length of the segmented data and enabling
us to model at least one oscillation for each of the examined
frequencies). To estimate the multivariate autoregressive model
we used partial correlation estimation with unbiased covariance
estimates (Marple, 1987), which was found to be the most
accurate estimation method according to Schlögl (2006). The
model is then transformed from the time-domain into the z-
domain and the f -domain, which yields accordingly two transfer
functions. The multivariate parameters in the frequency domain
that can be derived from these transfer functions were computed
for 1 Hz frequency steps between 2 and 125 Hz.

• Spectrum: This contains the auto- and the cross-spectrum,
which is the Fourier transform of the cross-covariance
function (Murthy, 1963).

• Direct causality: Direct causality was developed by Kaminski
et al. (2001) to overcome the problem that the directed transfer
function does not distinguish between direct and indirect
information flows. Direct causality is the only measure that is
not computed for each frequency.

• Transfer function: This transfer function is related to the
non-normalized directed transfer function (Eichler, 2006).

• Transfer function polynomial: This is the frequency
transform of a polynomial describing the transfer function.
The absolute of the squared transfer function polynomial
is the non-normalized partial directed coherence (Eichler,
2006).

• Real valued coherence: By considering the real part of the
complex-valued coherence (Nolte et al., 2004), the result is an
ordinary coherence (Schlögl and Brunner, 2008). We will refer
to it as coherence.

• Complex coherence: By considering the imaginary part of the
complex-valued coherence (Nolte et al., 2004), we get complex
coherence.

• Partial coherence: This is the partial coherence, calculated
with an alternative method as provided in the biosig-toolbox.
Partial coherence, also known as Gersch causality, was first
designed to identify epileptic foci by Gersch and Goddard
(1970). The authors proposed that one channel is said to drive
the other channels if the first channel explains or accounts for
the linear relation between the other two. The real part of the
partial coherence was used.

• Partial directed coherence: Partial directed coherence as an
extended concept of partialized coherence, is a measure of
the relative strength of the direct interaction between pairs of
regions (Baccalá and Sameshima, 2001).

• Partial directed coherence factor: The partial directed
coherence factor (Baccalá and Sameshima, 2001) is an
intermediate step between partial coherence and partial
directed coherence. It adds directionality to partial coherence,
but includes instantaneous causality, which is undesirable
when examining processes that evolve over time, such as an
epileptic seizure (Schuster and Kalliauer, 2009).

• Generalized partial directed coherence: Themajor advantage
of generalized partial directed coherence (Baccalá et al., 2007)
over partial directed coherence is its robustness against scaling
differences between the signals (Taxidis et al., 2010).

• Directed transfer function: Like directed coherence, the
directed transfer function represents information that flows
from one region to another over many possible alternative
pathways (Kaminskí and Blinowska, 1991).

• Direct directed transfer function:The direct directed transfer
function extends the concept of the directed transfer function
by distinguishing between direct and indirect causal relations
of signals (Korzeniewska et al., 2003). As such, the concepts
of partial coherence and the directed transfer function are
combined.

• full frequency directed transfer function: The difference
between the directed transfer function and the full frequency
directed transfer function (Korzeniewska et al., 2003) is that
the directed transfer function is normalized by the total
frequency content of the considered frequency band, while
the full frequency directed transfer function is normalized
with respect to all the frequencies in the predefined frequency
interval. As such, the full frequency directed transfer function
prioritizes those frequencies which contribute the most to the
power of the signal (van Mierlo et al., 2011).

• Geweke’s Granger Causality: This is a modified version of
Geweke’s Granger Causality (Geweke, 1982), concretely the
bivariate version as in Bressler et al. (2007).

Before statistically determining and evaluating the reliability
of the measures of interaction, we averaged them in classical
frequency ranges delta (2–4Hz), theta (5–7Hz), alpha (8–13Hz),
beta (14–30Hz), gamma (31–80Hz), and high gamma (81–
125Hz).

2.7. Statistical Analysis
2.7.1. Measuring Test-Retest Reliability
We decided not to use the parametric intra-class-correlation
to measure the test-retest reliability, but to perform a non-
parametric Spearman correlation (like in Fein et al., 1983;
Gasser et al., 1985; Salinsky et al., 1991) because we did not
want to impose a model assuming a linear relation between
measurements. For the intra-class correlation coefficient,
negative correlation coefficients are often set to zero because
a negative correlation would indicate no accordance between
the two recordings, just like zero correlation. However, with
the Spearman correlation the indices were rather very close
to zero or positive, so that setting negative coefficients to zero
had no effect on the results. Therefore, we did not change the
coefficients.

We measured reliability by Spearman rank correlation
between the two times of registration for each measure of
interaction and for each of the 60 participants, across the
Cartesian product of all frequency × electrode × electrode
combinations (or electrode × electrode combinations for direct
causality). This Cartesian product is thus a concatenation of all
values obtained when calculating measures of interaction, i.e.,
each electrode-electrode combination, and each frequency in one
long vector. The correlation is thus done for two such vectors,
one representing the network characteristics obtained during the
first EEG recording, and the second one representing the network
characteristic obtained during the second EEG recording.
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2.7.2. Reliability Comparisons
We assessed the reliability between features with boxplots. For all
subsequent analysis steps, we selected the set of features with the
highest correlation coefficients from this step.

In order to compare reliability of the most reliable features
between groups of participants (MCI, SCC, TLEr, TLEl, and
HC), we used a non-parametric multivariate analysis of variance
(package npmv for R version 3.0.2, The R Foundation for
Statistical Computing, Vienna, Austria; underlying mathematics
for the package described in Bathke et al., 2008, package
implemented by Burchett and Ellis, 2013). The diagnoses (MCI,
SCC, TLEr, TLEl, and HC) were the factor group and the 14
features were the repeated measures. A p-value of < 0.05 was
considered to be significant.

2.7.3. Analysis of Regional Group Differences
We performed Spearman’s rank correlation of the two time
points across group members for each frequency × electrode
× electrode combination, separately for each group, based on
the single-patient estimations for the measures of interaction
that yielded high reliability across all groups and that showed
significant group differences. Thus, instead of concatenating all
region combinations and frequencies such as in Section 2.7.1 in
which we calculated reliability for each subject, we now looked
at the single region combinations and features, and concatenated
the values of the subjects. This resulted in correlation coefficients
for each group and each frequency × electrode × electrode (and
× frequency) combination.

We transformed the correlation coefficients into z-scores
using Fisher’s r-to-z transformation in order to compare these
correlation coefficients between groups. Then, these z-scores
were compared using formula 2.8.5 from Cohen and Cohen
(1983), taking into account the number of participants in each
group. Finally, we merged all p-values of all group comparisons
and performed the Bonferroni-Holm correction. The critical
p-value for statistical significance was 0.000001.

3. RESULTS

3.1. Reliability Comparisons between
Measures of Interaction
Each measure’s distribution of correlation coefficients across all
participants is given in Figure 2. Each box is based on the
distribution of the correlation coefficients rho (y-axis) of all
participants, i.e., we have one rho for each participant.

Figure 2 suggests that the highest correlation coefficients
were found for spectrum, real valued coherence, and full
frequency directed transfer function. In that sense, these
were the features with the highest reliability. Choosing these
three features for further analysis allowed the consideration
of one directional measure (full frequency directed transfer
function), one non-directional measure without autocorrelation
(real valued coherence), and one non-directional measure with
autocorrelation (spectrum).

The scatterplots for trial numbers vs. test-retest reliability
(Figures S1–S14) do not suggest a strong relation between trial
numbers and reliability for these three measures. However, for

other measures like partial coherence there is a trend toward
lower reliability with lower trial numbers. For spectrum and real
valued coherence the relationship is almost non-existent, while
for full frequency directed transfer function a trend could be
observed.

3.2. Reliability Comparison between
Groups
The non-parametric multivariate ANOVA revealed a significant
effect [F(5.795, 54.066) = 2.519; p = 0.033]. The closed multiple
testing procedure showed that the equality hypothesis for all
possible quartetts of groups, and the direct comparison of the
triplets (MCI, TLEl, TLEr), (MCI, SCC, TLEr), (MCI, SCC,
TLEl), (HC, TLEl, TLEr), (HC, SCC, TLEr), (HC, MCI, SCC) and
the pairwise comparison of MCI and SCC could be rejected.

The relative effects are shown in Figure 3. The relative effects
indicate the probability that a randomly chosen participant from
one group exhibits a larger reliability of a specific measure
of interaction than a randomly chosen participant from all
subgroups. First of all, the relative effects vary considerably across
measures of interactions for all groups, but not so much for MCI
patients and HC. Patients with SCC seem to have the lowest
probability of showing higher reliability of all groups. Patients
with TLEr show lower probabilities than healthy controls, while
there is not such a clear trend for TLEl and MCI.

3.3. Analysis of Regional Group Differences
Figures 4–6 show the heatmaps of the reliability of all electrode
× electrode interactions for spectrum, real valued coherence, and
full frequency directed transfer function, respectively, arranged
for frequencies and groups in rows and columns. A heatmap is
a colorful representation of the network matrix. Each measure
of interaction yields a matrix where each electrode represents
one row and one column. The reliability of interaction is
indicated as a colored dot for each electrode × electrode
combination. Green and blue colors indicate low reliability, red
colors indicate high reliability. Way easier to understand but less
compact are topoplots, which can be found in the Supplementary
section. Topoplots for spectrum, real valued coherence, and
full frequency directed transfer function, and all frequencies are
shown in Figures S15–S32.

The heatmaps for spectrum (Figure 4) suggest that the
reliability is lowest for patients with SCC in the upper frequency
ranges, and in the delta and gamma ranges, patients with MCI
also show low reliability. For spectrum, the reliability in general
is highest for HC, whereas regional variability is lowest for
HC. A similar trend of high reliability in the HC group can
also be observed for real valued coherence (Figure 5) in the
alpha and beta range. Again, patients with SCC show lower
reliability in general, represented by more blue dots. This trend
is also visible in the heatmaps for full frequency directed transfer
function (Figure 6). Here, the most impressive difference is the
low reliability for patients with SCC in the high gamma range
and also some regional very low reliability in this patient group in
other frequencies. In addition, one can notice very high reliability
for patients with TLEl in the gamma and high gamma range.
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FIGURE 2 | Boxplots for all measures of interaction. Boxplots show the distribution of Spearman’s rho in the whole sample, individually for each measure. S,

spectrum; DC, direct causality; h, transfer function; Af, transfer function polynomial; COH, real valued coherence; iCOH, complex coherence; pCOH, partial

coherence; PDC, partial directed coherence; PDCF, partial directed coherence factor; GPDC, generalized partial directed coherence; DTF, directed transfer function;

dDTF, direct directed transfer function; ffDTF, full frequency directed transfer function; GGC, Geweke’s Granger causality.

FIGURE 3 | Relative effects for all measures of interaction sorted by groups.

Relative effects are given for spectrum (blue), coherence (green), and full

frequency directed transfer function (yellow). MCI, mild cognitive impairment;

SCC, subjective cognitive complaints; TLEr, right lateralized temporal lobe

epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls. The

relative effects indicate the probability that a randomly chosen participant from

one group exhibits a larger reliability of a specific measure of interaction than a

randomly chosen participant from all subgroups.

Heatmaps for statistically significant differences of
group comparisons according to the r-to-z transform
are shown in Figures 7–9 for spectrum, real valued
coherence, and full frequency directed transfer function,
respectively.

An notable difference is the significantly lower reliability of
spectrum in all frequencies but alpha, for patients with MCI
compared to SCC and TLEl. Figure S15 reveals that reduced
reliability in the MCI group is widespread and that reliability is
consistently high over almost all regions in HC. In contrast, TLEl
patients show reduced delta reliability for interactions between
other regions and the left temporal lobe. Another difference that
is quite prominent is a higher reliability for patients with SCC
compared to TLEr, TLEI, and HC groups in all frequency ranges

but not in the alpha range, with regionally focused patterns.
Topoplots in Figures S17–S19 suggest that, while patients with
MCI exhibit reliability that is comparable to HC, patients with
SCC show globally and focally reduced reliability. Figure S19
suggests that this reduced reliability can be focally attributed to
left-parietal regions. Also of note are regionally confined spots of
increased reliability in TLEl compared to HC.

For real valued coherence we find a similar pattern, however,
this difference is regionally more restricted than in spectrum.

In the full frequency directed transfer function we found
increased reliability in the gamma range and high-gamma range
for patients with TLEl compared to other groups. Again, we find
increased reliability in delta, theta, alpha, and low gamma range
for SCC patients compared to other groups, with a small regional
exception where reliability is lower. Figures S31, S32 immediately
show the globally increased reliability in patients with TLEl in
these frequency ranges and that patients with SCC show global
and focal lower reliability than MCI patients.

4. DISCUSSION

We found significantly different reliability between measures
of interaction and—most importantly—between groups of
participants. Our results emphasize that a pathology-specific
pattern of network reliability should be taken into account in
clinical studies involving measures of interaction.

4.1. Reliability of Measures of Interaction
Among 14 measures of interaction, reliability was higher for
spectrum, real valued coherence and full frequency directed
transfer function, where the latter was the most reliable measure
that also showed only a few differences between patient groups.
However, among these three measures, full frequency directed
transfer function showed the strongest relation between trial
numbers and test-retest reliability.
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FIGURE 4 | Heatmaps of the reliability of all electrode × electrode interactions for spectrum, sorted by frequency in rows and groups in columns. Colors indicate

values from −1 (dark blue) to +1 (bright yellow). Electrodes start from top left following the order: F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz,

FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, and TP10. MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr, right lateralized temporal

lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls.

There are only a few publications considering the issue of
reliability, at least as a by-product when studying measures
of interaction. In recent studies (e.g., Schevon et al., 2007;
Douw et al., 2010; Elisevich et al., 2011), it was shown that
consistency was acceptable for a number of biomarkers in
the EEG. The earliest measure of interaction that considered
more than two channels was partial coherence, which was
used for statistical partialization of correlations between
triplets of electrodes by Gersch and Goddard (1970). The
reliability of coherence has been examined in order to
ascertain stability of findings. Elisevich et al. (2011) examined
coherence of magnetoencephalographic signals in TLE patients
in order to determine lateralization. Magnetoencephalographic

coherence-based localization was evaluated against the standard
single equivalent dipole model and postoperative outcome. In
the work of Elisevich et al. (2011), reliability between runs
was established by calculating the correlation between three
consecutive epochs of 10 min each. The coherence analysis
was not only more sensitive than the classical equivalent dipole
model, but was also stable from run to run. However, the results
obtained from magnetoencephalography may not be applicable
to EEG. Specifically, coherences which are averaged over large
frequency ranges (3–50 Hz) and several signals that form a
collective source might be less variable than single-electrode
coherences, so that the reliability of the averaged coherence is
generally higher. In addition, the reliability of correlation values
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FIGURE 5 | Heatmaps of the reliability of all electrode × electrode interactions for real valued coherence, sorted by frequency in rows and groups in columns. Colors

indicate values from −1 (dark blue) to +1 (bright yellow). Electrodes start from top left following the order: F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz,

Cz, Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, and TP10. MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr, right lateralized

temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls.

between consecutive recordings may be higher than in the case of
recordings with more time in between them, e.g., 2 weeks, as in
our study.

We would like to point out that coherence and newer
measures of similarity between signals, e.g., the phase lag
index and the frequency-entropy similarity measure by Gazit
et al. (2011), are not able to disentangle the direction of
information flow and could be hampered by volume conduction.
It could be argued that there is lower variability for imaginary
coherence because other methods are more sensitive to

spurious connectivity due to volume conduction. Since volume
conduction effects are not expected to change significantly
between the two sessions, there will be less variability for the
methods that are not robust against volume conduction effects,
while imaginary coherence might mainly measure variability due
to the physiological connectivity. If this argument were true,
the reliability of physiological connectivity would be very low.
However, our study compared directional and non-directional,
direct and indirect measures of interaction. The superiority of
the directed measures suggests that this characteristic may be
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FIGURE 6 | Heatmaps of the reliability of all electrode × electrode interactions for full frequency directed transfer function, sorted by frequency in rows and groups in

columns. Colors indicate values from −1 (dark blue) to +1 (bright yellow). Electrodes start from top left following the order F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7,

T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, and TP10. MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr, right

lateralized temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls.

of importance. This could also be explained by the fact that
these measures can deal with the problem of volume conduction
to some extent. However, we would like to note that none of
the measures currently available can fully disentangle volume
conduction from signal transmissions in the brain (Lehnertz,
2011). Directed measures are theorized to indicate Granger
causality, which has gained popularity in neurosciences (Zhang
et al., 2010). In particular in patients with epilepsy, directed
measures have been shown to be useful in documenting the
propagation of spikes (Lin et al., 2009) and to model evolving

epileptic networks (Lehnertz et al., 2014). Accordingly, seizures
were preceded by activities which were detectable intracranially
by Granger causality in the high-frequency range (Adhikari et al.,
2013). This is possible with a time and frequency domainGranger
causality, realized by applying a sliding window (Lin et al., 2009;
Adhikari et al., 2013), which is a common technique in event-
related EEG. As a representative example, vanMierlo et al. (2011)
used an adapted variant of the directed transfer function to
document seizure onset and the ictal propagation pattern across
several seizures.
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FIGURE 7 | Heatmaps of group differences of the reliability for spectrum. Heatmaps show the reliability of all electrode × electrode interactions for measure of

interaction spectrum, sorted by group comparisons in rows and frequency in columns. Each of the small boxes is drawn as the network matrix with one point

corresponding to a specific electrode × electrode combination. Colors indicate values from −37.45 (dark blue) to +32.85 (bright yellow). Not-significant differences

were set to 0 and appear in green. Electrodes start from top left following the order of the list as given in Section 2.4. MCI, mild cognitive impairment; SCC, subjective

cognitive complaints; TLEr, right lateralized temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls.

However, the difference in reliability between the various

measures of directed and non-directed interactions is

considerable; we therefore suggest an amendment of checking
for reliability whenever measures of interaction are subject to

investigation.

4.2. Reliability Differences between Patient
Groups
We found a significant difference in reliability between patients
with MCI, SCC, TLEr, TLEl, and HC. For the three selected
measures of interaction, we found the highest reliability across
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FIGURE 8 | Heatmaps of the group differences in reliability for real valued coherence. Heatmaps show the reliability of all electrode × electrode interactions for

measure of interaction real valued coherence, sorted by group comparisons in rows and frequency in columns. Each of the small boxes is drawn as the network

matrix with one point corresponding to a specific electrode × electrode combination. Colors indicate values from −37.45 (dark blue) to +32.85 (bright yellow).

Not-significant differences were set to 0 and appear in green. Electrodes start from top left following the order of the list as given in Section 2.4. MCI, mild cognitive

impairment; SCC, subjective cognitive complaints; TLEr, right lateralized temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC, healthy controls.

all regions and frequencies for healthy controls. With respect
to patients, there are focally and frequency-restricted alterations
of reliability, which also depend on the measure of interaction.
In the literature, reliability is higher in lower frequency
networks compared to beta- and gamma frequency ranges

(Deuker et al., 2009; Jin et al., 2011; Kramer et al., 2011;
Andellini et al., 2015; Miskovic and Keil, 2015). However,
this pattern seems to be specific for pathology. Thus, we
need to direct our attention to frequency characteristics
of reliability. Considering frequency and topography, we
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FIGURE 9 | Heatmaps of the group differences in reliability for full frequency directed transfer function. Heatmaps show the reliability of all electrode × electrode

interactions for measure of interaction full frequency directed transfer function, sorted by group comparisons in rows and frequency in columns. Each of the small

boxes is drawn as the network matrix with one point corresponding to a specific electrode × electrode combination. Colors indicate values from −37.45 (dark blue) to

+32.85 (bright yellow). Not-significant differences were set to 0 and appear in green. Electrodes start from top left following the order of the list as given in Section 2.4.

MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr, right lateralized temporal lobe epilepsy; TLEl, left lateralized temporal lobe epilepsy; HC,

healthy controls.

discuss here three very interesting patterns in the group
comparisons:

First, our results on pathology-specific patterns of reliability
oppose the typical findings for interactions. Previous research

suggests increased interaction in lower frequencies and decreased
interaction in higher frequencies as being associated with
pathology in MCI and Alzheimer’s dementia (Babiloni et al.,
2016; Teipel et al., 2016). According to our results the interaction
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in lower frequencies was less reliable in patients with MCI,
at least when comparing this group with patients with SCC.
Interestingly, we found reduced delta reliability in patients with
TLEl over the left side, while from literature we know that there
might be focal hypersynchrony in TLE (Schevon et al., 2007).
These results suggest that reliability and interaction values may
exhibit opposite effects.

The second interesting finding was a variation of reliability in
the gamma frequency ranges of SCC andMCI.While biomarkers
from the EEG beta range are known to differentiate patients
with stable from progressive MCI (Poil et al., 2013), the gamma
range is not a typical frequency range of interest in dementia
research. Instead, high frequency oscillations are both a potential
marker for the delineation of the epileptogenic area in presurgical
epilepsy patients (Worrell and Gotman, 2011; Jacobs et al., 2012;
Staba et al., 2014; Höller et al., 2015) as well as a correlate of
memory consolidation in the hippocampus (Axmacher et al.,
2008; Buzsáki and Lopes da Silva, 2012; Mari et al., 2012);
therefore there is a co-existence of pathological and physiological
high frequency oscillations in patients with epilepsy. It would be
natural to assume that disrupted memory occurs with reduced
rates of high frequency oscillations in the temporal region.
The present results suggest that the reliability in the frequency
range where high frequency oscillations occur is decreased in
SCC compared to MCI. However, these speculations need to
be investigated with a different methodology. Studies on high
frequency oscillations assess a distinct morphological pattern that
can be identified either visually or automatically but that is so
rare that it is not easily recognizable in the power spectrum.
Moreover, reliability of interactions does not necessarily behave
similarly to the strength of interaction. That is, the strength of
interaction may be low, but this low interaction highly reliable
over time; or a interaction may be high at instances of time, but is
moderated by many factors so that it changes rapidly over time.
Nevertheless, our results suggest that the examination of the high
gamma range could be of interest in patients with SCC and MCI.
Further research could examine the prognostic value of reliability
of interactions for memory decline in these patient populations.

Third, reliability in the gamma and high-gamma range was
increased for patients with TLEl compared to other groups. As
described above, gamma and high-gamma activity is currently
being discussed as a potential marker of epileptogenicity. Our
results suggest that, in addition to the occurrence of high
frequency oscillations, it could be worthwhile examining the
reliability of the occurrence of these phenomena and the
reliability of activity in the higher frequency range, in general.
In support of this view, increased interactions were documented
for the focal regions in patients with epilepsy. Schevon and her
team Schevon et al. (2007) examined synchrony in the interictal
intracranial EEG by calculating mean phase coherence. The focal
hyperconnectivity was of a persistent spatiotemporal pattern,
which was unique in each patient. Measures of interaction can
also be a marker for epilepsy in brain tumor patients. Douw et al.
(2009) found stable patterns of network topology over 6 months.
Increased signal similarities according to phase lag index in the
theta band were related to a higher number of epileptic seizures.
With respect to our results, it is important to underline that the

pathological alteration in Schevons and Douws data was reliable.
The authors found consistent patterns both in three consecutive
recordings of 5 min each as well as in five recordings, each
separated by 1 day. Our findings suggest that reliability itself can
provide important information.

However, it is not clear why this pattern could be found for
the contrast between TLEl and HC but not for TLEr and HC.
Speech dominancemay explain this finding, but the present study
does not include information on this for every patient. Another
possible confounder could be the overrepresentation of women
in the group of patients with TLEl. The menstrual cycle is known
to affect the frequency of seizures (Herzog et al., 2015) and
the EEG in general (Broetzner et al., 2014). It is possible that
there is an effect of the menstrual cycle in women because of
the study design, which has 2 weeks in between the two EEG
recordings. However, we do not know how the menstrual cycle
affects the reliability of measures of interactions. In addition, we
would expect that fluctuations along the menstrual cycle would
reduce reliability, whereas the group with an overrepresentation
of women showed high reliability. The effect of the menstrual
cycle on measures of interaction and their reliability needs to be
considered carefully in future studies.

Finally, it is possible that the reasons for the varying reliability
can be attributed straightforwardly to what can be extracted
from the clinical EEG evaluation. The populations from which
the study participants were drawn had nonspecific abnormalities
(see Table S4) that could have affected results. It is not unlikely
that the pathological patterns the clinicians evaluate qualitatively
may explain the reduced reliability. However, any study
performing an analysis of connectivity has to consider this aspect
thoroughly, since sporadic pathologic patterns may affect the
result.

4.3. Limitations
We would like to emphasize again that a higher reliability
does not allow inferences to be made regarding a high or low
interaction. Other publications reported a pathological or focal
hyperconnectivity, as reviewed recently Panzica et al. (2013).
Our results indicate that the pattern of interaction differs in
reliability between patients with different pathologies and healthy
participants.

We argue that this difference might provide a pathological
explanation, since the scientific audience of this article could
doubt that the reliability of interactions over recordings obtained
at an interval of 2 weeks truly arises from the brain. Instead, it
could be the result of volume conduction or the muscle activity
from the musculus temporales. However, volume conduction
or a muscle artifact would not explain why there would
be differences in localization or between different patient
populations. Therefore, we assume that the identified differences
in reliability are of pathologic nature.

It is important to note that we did not control for menstrual
cycle, sleepiness, alcohol intake the day before, and consumption
of caffeine or tobacco. These aspects may affect the reliability
of interactions in the EEG. Before claiming that measures of
interaction could be useful for clinical examination, the effect of
these factors on reliability has to be characterized.
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Technical aspects should be considered when interpreting
results in the high-gamma range. High frequency oscillations
on scalp EEG are difficult to record (Worrell et al., 2012). The
sensitivity of scalp EEG to power changes in this frequency
range could be doubted, but recent work demonstrates that
activity within this frequency range can be detected on the
scalp (Zelmann et al., 2014). However, our results can only
point toward importance of examination of the higher frequency
ranges with respect to interactions and reliability of interaction. It
is possible that high frequency oscillations yield more interesting
results in terms of reliability, but with the presented results we
can not derive any conclusion about this phenomenon.

We have to emphasize that the segment numbers might not
affect the reliability of spectrum and real valued coherence,
but they seem to affect the reliability of measures such as the
full frequency directed transfer function. When looking at the
scatterplots in the supplementary section, the relevance of data
length becomes evident in a number of directed measures of
interaction. This could of course bias the differences between the
SCC patients and other groups, since SCC showed lower trial
numbers than the other groups. The question as to why some
measures are more sensitive to trial numbers than others has
been addressed recently (Fraschini et al., 2016) and should be
subject to future large studies involving direct comparison of
more measures of interaction, and ideally also of different patient
populations. Indeed, the short time duration (2–3 min) is typical
of some studies, but longer time periods may have resulted in
greater reliability and maybe less differences between groups.
However, increasing the duration of recording resting EEG
with eyes closed increases the probability that participants fall
asleep. Effects of drowsiness might severely affect the reliability
(Horovitz et al., 2008), especially when patients fall asleep at one
session but not at the other session.

Next, the limited number of channels reduces the strength
of the study. Specifically, the analysis was done only at sensor
level and not at source level, also because the low number of
electrodes would be a limitation to performing a proper analysis
at the source level. Source-level connectivity analysis is also
a promising approach (Schoffelen and Gross, 2009; Deligianni
et al., 2014; Papadopoulou et al., 2015; Sockeel et al., 2016)
because it is robust against volume conduction (Haufe et al.,
2010; Drakesmith et al., 2013; Chella et al., 2016), and it yields
clinically valuable information in epilepsy (Coito et al., 2015,
2016a,b; Hassan et al., 2017), MCI (López et al., 2014), and
Alzheimer’s disease (Canuet et al., 2012). Future work should
determine whether interactions are more reliable at the source-
than at the sensor level.

The group of TLE patients was considerably younger than
the other groups, which might cause some bias. This is
an unavoidable characteristic when comparing patients with
prodromal dementia with patients with TLE; dementia occurs
typically at an advanced age, while patients with TLE are typically
younger. However, we did not find such marked ifferences with
respect to reliability when comparing the youngest group (TLEr)
to other groups, while the group of TLEl patients exhibited some
differences. The TLEl group was also a bit younger compared to
the other groups, but the most interesting speciality of this group

was that it consisted mostly of women (6 out of 7 patients). With
respect to a likely effect of menstrual cycle this could explain the
reduced reliability in this patient group.

Finally, the patient numbers were low, especially in the
TLE subgroups and in patients with subjective cognitive
complaints. These groups, in turn, can be very heterogeneous
in terms of medication and aetiology, which is often unknown.
Especially in patients with subjective cognitive complaints
we do not know whether this patient population suffers
from a prodromal stage of dementia or whether they are
just alerted to cognitive problems by the normal process of
aging. It is desirable to merge international databases in order
to assess reliability of measures of interaction on a large
scale.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

Our study suggests that reliability differs between measures of
interaction and between patient populations.

Reliability of results over time is necessary both for
replicability of scientific work, but even more when transferring
knowledge about biomarkers from research into practice,
specifically in pre-surgical evaluation or diagnosis and
prognosis of dementia. The fact that the biomarker does
not vary over time is detrimental for obtaining reliable
information about the epileptogenic area and also for making
therapeutic decisions due to an expected progression to
dementia.
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