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Abstract: Polypharmacy is a common phenomenon among adults using opioids, which may influence
the frequency, severity, and complexity of drug–drug interactions (DDIs) experienced. Clinicians
must be able to easily identify and resolve DDIs since opioid-related DDIs are common and can
be life-threatening. Given that clinicians often rely on technological aids—such as clinical decision
support systems (CDSS) and drug interaction software—to identify and resolve DDIs in patients with
complex drug regimens, this narrative review provides an appraisal of the performance of existing
technologies. Opioid-specific CDSS have several system- and content-related limitations that need
to be overcome. Specifically, we found that these CDSS often analyze DDIs in a pairwise manner,
do not account for relevant pharmacogenomic results, and do not integrate well with electronic health
records. In the context of polypharmacy, existing systems may encourage inadvertent serious alert
dismissal due to the generation of multiple incoherent alerts. Future technological systems should
minimize alert fatigue, limit manual input, allow for simultaneous multidrug interaction assessments,
incorporate pharmacogenomic data, conduct iterative risk simulations, and integrate seamlessly with
normal workflow.

Keywords: clinical decision support system; drug interaction; drug interaction software; opioid;
polypharmacy; pharmacogenomics

1. Introduction

The progressively worsening population health problem of opioid use disorders and the rising
death rates from opioid overdoses have caused policy makers and researchers to work on strategies
for optimizing opioid medication management while concurrently curtailing opioid prescriptions [1].
Clinicians are faced with the challenge of treating pain adequately to improve patients’ quality of life
while trying to avert the potential of overuse, misuse, and abuse among patients who are prescribed
opioids [1]. The challenge is amplified because of the complexity of pain management and the high
prevalence of polypharmacy among opioid users [2–4]. Polypharmacy—frequently defined as the
use of five or more drugs or the use of more drugs than are medically necessary [5,6]—increases the
likelihood that a patient will experience a drug–drug interaction (DDI) and an associated adverse drug
event (ADE) (e.g., overdose) [7,8]. Indeed, DDIs can profoundly influence an individual’s response to
opioids and have been associated with increased healthcare utilization rates and expenditures [9,10].
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Therefore, DDIs could be a silent contributing factor to the opioid overuse, misuse, abuse, morbidity,
and mortality that have been seen in the current opioid epidemic [8].

Clinical decision support systems (CDSS) are a promising solution to help clinicians identify
opioid-related DDIs and avoid negative consequences [11]. Research has demonstrated that, without
software aids, a clinician’s ability to identify well-documented and even clinically significant DDIs is
limited, if not lacking [12–15]. Unfortunately, existing systems are far from fail-safe as an abundance
of evidence indicates that clinicians may still miss clinically important DDIs, particularly in patients
with polypharmacy [12,13,16–19]. In light of such troubling information, this narrative review aims
to explore our current understanding of opioid-related polypharmacy and subsequent DDIs with
an evidence-based appraisal of the performance of CDSS used in practice to resolve opioid-related
DDIs. To conclude, we will synthesize this information into an expert opinion regarding the ideal
technological features that CDSS should offer to help ameliorate opioid-related DDIs.

2. Opioid Users and Polypharmacy: Defining the Scope of the Problem

Polypharmacy is a common phenomenon among adults using opioids. A recent analysis of
Medicare Part D claims reported that opioid users filled an average of 52 prescriptions per year from
around 10 unique drug classes, and over 20% of opioid users took more than 10 concurrent medicines [4].
Multimorbidity and visiting multiple prescribers—which are more common among opioid users
compared to non-users—are the main contributors to opioid-related polypharmacy [4,20]. For instance,
the same Part D analysis found that, compared to non-users, opioid users had, on average, nearly two
more comorbidities. Concomitant diagnoses may often be psychiatric-related, such as major depressive
disorder or bipolar disorder [4]. This can lead to central nervous system (CNS) polypharmacy, which has
been defined as the use of three or more medications with psychoactive properties (e.g., benzodiazepines,
antidepressants, sedative hypnotics) [2,21]. Gerlach et al. found that 75% of older outpatients with
CNS polypharmacy were opioid users [2]. This type of polypharmacy is of particular concern for older
adults, since it has been linked with a higher risk of falls, cognitive impairment, accidental overdose,
and mortality [22–25]. Black-box warnings regarding such co-prescribing have been explicitly issued
by the US Food and Drug Administration [26]. Additionally, several screening tools exist to aid
clinicians in identifying potentially inappropriate medication use, such as the 2019 Beers Criteria by
the American Geriatric Society and the Screening Tool of Older Persons’ potentially inappropriate
Prescriptions/Screening Tool to Alert to Right Treatment (STOPP/START) criteria [21,27]. For example,
the Beers Criteria recommend avoiding the combination of opioids and benzodiazepines due to the
increased risk of overdose [21].

3. Polypharmacy and Drug Interactions: Explaining Their Relationship

Clinicians must expect drug interactions to occur whenever polypharmacy is encountered.
Research has clearly demonstrated that the occurrence of DDIs escalates as the number of drugs taken
by a patient increases [6,7,28]. For instance, in a prospective cohort study of hospitalized older adults
taking five or more drugs, the frequency of potential cytochrome P450 (CYP)-mediated DDIs was 80%.
The probability of at least one significant DDI increased with the number of drugs taken. Specifically,
significant DDI probability was 50% in a patient taking five to nine drugs and increased to 100% when
a patient was taking 20 or more drugs [7].

Therefore, polypharmacy may explain the high prevalence of DDIs seen among opioid users.
Estimates suggest that approximately 30% of opioid users are exposed to clinically significant
interactions [29,30]. Moreover, opioids are among the most frequently prescribed medications involved
in DDIs [31,32]. For example, a recent study found that 25% of all pharmacist-identified pharmacokinetic
drug interactions involved opioid therapy in medically complex older adults with polypharmacy
(around 16 medications per patient) [32].
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4. Opioid-Related DDIs: Mechanisms and Consequences

There is a high prevalence of polypharmacy and DDIs among opioid users, and multiple
mechanisms can simultaneously drive these DDIs [8,33]. In general, there are two broad categories of
opioid-related DDIs: pharmacodynamic (PD) and pharmacokinetic (PK) DDIs.

4.1. Pharmacodynamic

PD DDIs often involve excessive CNS depression when opioids are combined with other
CNS-depressing drugs (e.g., benzodiazepines, antidepressants) [34]. Overall, PD interactions largely
result from CNS polypharmacy and, as previously mentioned, can be directly life-threatening
(e.g., death due to respiratory depression) or life-altering (e.g., injurious falls) and have necessitated
black-box warnings.

As a relevant example, consider the aforementioned interaction between opioids and
benzodiazepines. Opioids are µ-opioid receptor agonists, which provides their analgesic effect.
Benzodiazepines are gamma-aminobutyric acid (GABA) receptor agonists, which provides their
sedative and anxiolytic effects. Since both the µ-opioid and GABA receptors are present on
respiratory neurons, both opioids and benzodiazepines are associated with causing respiratory
depression [35]. Specifically, opioids cause respiratory depression by inhibiting theµ-opioid receptors in
the brainstem, whereas benzodiazepines reduce the lung’s tidal volume. Additionally, both opioids and
benzodiazepines cause obstructive apneas and hypopneas via reduction in upper airway capacity [35].
Interestingly, several reports have indicated that sleep disorders or symptoms, including sleep
apnea and snoring, should be given considerable attention in patients treated with opioids and/or
benzodiazepine, as they may indicate impending upper airway obstruction in a sedated patient [36–38].

PD DDIs can also involve the modulation of neurotransmitter activity in the CNS (e.g., dopamine,
serotonin) [33]. For example, tramadol is aµ-opioid receptor agonist and a serotonin and norepinephrine
reuptake inhibitor. When taken at high doses (e.g., overdose), tramadol can induce serotonin release,
potentially resulting in serotonin syndrome, which may be life-threatening. Additionally, combined
use of tramadol and other serotonergic drugs (e.g., selective serotonin reuptake inhibitors) has been
shown to cause serotonin syndrome resulting from synergistic serotonergic activity [39].

4.2. Pharmacokinetic

PK interactions involving opioids are more complex as several of them involve different isoforms of
the cytochrome P450 system (CYP450). CYP450s, especially CYP2D6- and CYP3As-mediated pathways,
are responsible for either activating opioid prodrugs or eliminating opioid parent drugs [35,40].

4.2.1. CYP2D6

The most commonly prescribed opioids—codeine, tramadol, oxycodone, and hydrocodone [41–43]—
are prodrugs metabolized by the CYP2D6 isoform into active metabolites that are significantly more
potent and have greater affinity for the µ-opioid receptor compared to their parent drugs (morphine,
O-desmethyltramadol, oxymorphone, and hydromorphone, respectively) [44–46]. CYP2D6 activity is
genetically determined, with individuals exhibiting a poor (non-functional), intermediate, normal,
or ultra-rapid metabolizer phenotype [47]. Patients who are CYP2D6 poor metabolizers taking
prodrug opioids have demonstrated reduced pain control and augmented opioid-related adverse
effects [35,44,48–52]. These prodrug opioids are substrates with weak affinity for the CYP2D6 isoform;
hence, they are vulnerable both to competitive inhibition by stronger-affinity CYP2D6 substrates
(e.g., propranolol) and to non-competitive inhibition interactions by CYP2D6 inhibitors (e.g., quinidine,
terbinafine, amiodarone) [53,54].

These DDIs depress CYP2D6 activity by significantly reducing conversion of prodrug opioids into
their more potent active metabolites, effectively mimicking a poor metabolizer phenotype. This process
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is known as phenoconversion [46,51,55,56]. Indeed, lower active metabolite plasma concentrations
and reduced effectiveness have been observed in PK studies and clinical trials [49,51,52,55–57].

Reduced analgesic effectiveness can lead to increased opioid utilization through higher dosages or
increased frequency of administration [8]. Either could result in tolerance, misuse, dependence, abuse,
or overdose-related death [8,58–61]. Alternatively, introducing a new drug into a patient’s opioid
regimen that causes a DDI can lead to a sudden inability to form the active metabolite, which may
even precipitate withdrawal in patients who are opioid dependent [62].

4.2.2. CYP3A4/5

CYP3A4/5 isoforms are also involved in the metabolism of prodrug opioids and non-prodrug
opioids (e.g., fentanyl); yet, studies have not consistently linked altered opioid response with modified
CYP3A4 activity [44,50]. However, CYP3A5 polymorphisms may alter the plasma concentrations
of an opioid’s metabolite [35,63]. For example, patients who express CYP3A5 (i.e., carriers of the
CYP3A5*1 variant) were reported to have higher plasma concentrations of noroxycodone, oxycodone’s
predominant metabolite, compared to non-expressers of CYP3A5 (i.e., carriers of the CYP3A5*3 variant),
resulting in a higher incidence of dose escalation [63]. Additionally, prodrug opioids are substrates
with weak affinity for CYP3As and are vulnerable to non-competitive inhibition interactions by CYP3A
inhibitors (e.g., ketoconazole, voriconazole, clarithromycin) and by CYP3A inducers (e.g., phenytoin,
rifampin), which have been shown to increase opioid-related adverse reactions and decrease opioid
response, respectively [33,64].

5. Current State of CDSS for Opioid DDI Management

The aforementioned DDI consequences are avoidable with proper recognition of interacting
drugs followed by appropriate clinician interventions [11,12]. Advanced technology has led to the
development of CDSS that can aid clinicians with the detection of DDIs and of many other risks
associated with prescription opioid use [1].

Since an abundance of literature indicates that, in general, CDSS can positively influence clinician
performance and patient outcomes [1,65,66], we conducted a literature search to examine how
opioid-specific CDSS address DDIs. Since non-software decision support tools (e.g., predictive
models, bedside scoring algorithms) theoretically could be implemented into technology, we also
included papers describing such tools in our analysis. The initial review of the evidence-based
condition commenced with a thorough personal electronic library search for potentially relevant
articles. This search yielded 285 articles of interest. Next, a MEDLINE search was conducted using
the key search term “opioid” in combination with each of the following search terms: “clinical aid,”
“clinical decision making,” “clinical decision support,” “clinical decision support system,” “clinical
decision support software,” “clinical decision support tool,” “decision making,” “decision support,”
“decision support system,” “decision support software,” “decision support technique,” “decision
support tool,” “drug interaction alert,” “software,” “support system,” “support tool,” “system,”
and “tool.” The literature search was truncated to articles published in English since 2015. In total,
3549 articles were identified via the literature search. The researchers reviewed the titles of all articles
identified and excluded duplicates and articles that did not clearly focus on CDSS for opioid medication
management. Of the possibly relevant articles, the researchers sequentially reviewed article abstracts,
retaining those that were potentially relevant, and then the full text of those remaining. Using this
methodology, 11 relevant articles were identified (Figure 1). The researchers identified two additional
articles for this review by hand-searching references of the retained articles. In total, these 13 references
described 17 CDSS that were included for further analysis.
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Figure 1. Results of search for relevant articles.

While economic evaluations (e.g., return-on-investment, cost-benefit analysis) are vital for
healthcare systems to consider when adopting new technology or CDSS, our primary focus was to
analyze the clinical and system-related content of CDSS. We detail the features of each individual tool
identified from the literature search in Table 1 as well as summarize opioid-specific CDSS features and
shortcomings in Table 2 [1,19,67–85]. Examples of the systems that we encountered are OpioidCalc
NYC, the Safe Opioids application, opioid pain medication documentation, and surveillance system.
We found that opioid-specific CDSS often featured opioid prescription aides, conversion calculators,
drug alerts, prescribing guidelines, and pain assessment tools; however, DDIs were assessed by
embedding general (i.e., non-opioid specific), commercially available drug interaction software
(e.g., First Databank) [19] or focused on very specific interactions (e.g., sedative or benzodiazepine
co-prescribing) [72,80]. In addition, we noticed several shortcomings of these CDSS which can be
categorized as system- or content-related. A common system-related shortcoming of CDSS is requiring
clinicians to manually input patient-specific information (e.g., drug regimen, opioid usage) that could
ideally be obtained automatically from electronic health records (EHRs). A common content-related
shortcoming is failing to include other contextual information that could potentially affect opioid drug
interactions, such as pharmacogenomic (PGx) test results.
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Table 1. Overview of features from clinical decision support systems.

Source Country Setting Sample Size, N Name of CDSS Feature(s) of CDSS

Blum, 2018 [68] Multinational N/A N/A
Genetic

Addiction Risk
Score™ (GARS)

• Risk score based on a panel of
genes and polymorphisms
associated with addiction risk
and associated behaviors

Brenton, 2017
[69] US 24 study sites 908

Proove Opioid
Risk (POR)
algorithm

• Risk score based on
genomic testing

• Genetic markers include 11
single-nucleotide
polymorphisms implicated in
opioid misuse or abuse

• Phenotypic factors include age,
personal history of alcohol or
substance abuse, and a history of
various metal health diagnoses

• Scores ≥24 indicate high risk of
opioid use disorder

CDC [70] US N/A N/A CDC Opioid
Guideline App

• Calculates MME
• Provides brief synopses of

guideline recommendations
• Includes a glossary
• Overview of motivational

interviewing techniques
• Links to full CDC guideline

with references

Christ, 2018
[71] US

University of
Chicago
Medicine

30
(pre-enactment);

32
(post-enactment)

Pain Clinical
Decision

Support Tool
(PCDST)

• Prioritizes patients based on
most recent pain score

• Includes chart of laboratory
values and vital signs (e.g.,
respiratory rate, heart rate)

• Adheres to National
Comprehensive Cancer Network
clinical guideline

Genco, 2016
[19] US ED 4581

Epic electronic
health record

and
computerized
provider order
entry system

(Epic Systems
Corporation,
Verona, WI)

with the First
Databank drug

information
plug-in (First

Databank, Inc.,
San Francisco,

CA)

• Opioid alerts (e.g., drug-drug
interactions) – interruptive alerts
resulting in a pop-up and
requiring clinician response

Malte, 2018 [72] US
Veteran Affairs

healthcare
system

1332 No name
provided

• EHR point-of-prescribing alert
• Triggers when opioids and

benzodiazepines
are co-prescribed

Maurer, 2016
[73] US N/A N/A Safe Opioids

application

• Assessment of pain using the
Opioid Risk Tool with links
to PDMP

• Links to medical guidelines
• Includes list of common

side effects
• Provides guidance on how to

talk to patients about
opioid abuse

• Includes references
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Table 1. Cont.

Source Country Setting Sample Size, N Name of CDSS Feature(s) of CDSS

NYC
Department of

Health and
Mental

Hygiene [74]

US N/A N/A OpioidCalc
NYC

• Calculates MME
• Alerts for high dosages of

opioid(s)
• Includes references

Oliva, 2017 [75] US
Veteran Affairs

healthcare
system

1,135,601

StratificationTool
for Opioid Risk

Mitigation
(STORM)

• Prioritizes patients for review
and intervention according to
their modeled risk for
overdose/suicide-related events

• Displays risk factors and risk
mitigation interventions

• Includes EHR-data extracts

Patel, 2018 [76] US
Veteran Affairs

healthcare
system

7602

Chronic Opioid
Therapy–Clinical

Reminder
(COT-CR)

• Identifies chronic opioid users
by alerting clinicians (i.e.,
clinical reminder)

• Prompts clinicians to document
reason for chronic
opioid therapy

• Guides clinicians through a
3-part pain assessment

Philip Eagan
[77] US N/A N/A

pH-Medical
Opioid

Converter App

• Calculates MME
• Opioid to opioid

conversion calculator
• Links to guidelines

Ponton, 2018
[78] UK

41 general
practitioner

practices
1881 No name

provided

• Electronic spreadsheet tool
• Calculates MME
• Triggers alert for patients taking

≥120 mg of MME
• Relies on manual data entry

Price-Haywood,
2018 [79] US

Primary care
providers,

Ochsner Health
System

2640 Opioid Risk
Tool (ORT)

• Risk factors associated with
substance abuse (e.g., personal
and family history of
substance abuse)

• Risk stratification for
opioid-aberrant behavior

• Annual pain contract
• Functional assessment
• Links to several resources (e.g.,

CDC guideline fact sheet)

Sinha, 2017 [1] US N/A N/A

Substitutable
Medical

Applications
and Reusable
Technologies
(SMART) for

CDSS app
development

• Open source standard
• Third-party capability to

develop an application for
accessible and efficient
implementation into EHR

Soto, 2015 [80] US Inpatient N/A
Michigan

Opioid Safety
Score (MOSS)

• Manual scoring tool that
assesses inpatient risks of
opioid-related ADEs

• Administered prior to further
opioid use

• Scores range from 0 (safe to
proceed with further opioid
dosing) to 4 (decrease opioid
use), with a “Stop” modifier
(based on Pasero
Opioid-Induced Sedation Scale)

• Scores incorporate pertinent
patient risks (e.g., age, body
mass index, type of surgery,
anesthesia time, sedative use
within 2 h) and respiratory rate
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Table 1. Cont.

Source Country Setting Sample Size, N Name of CDSS Feature(s) of CDSS

Trafton, 2010
[81] US

Veteran Affairs
healthcare

system
N/A No name

provided

• Computerized decision support
system that operationalized the
2003 Veterans
Administration/Department of
Defense clinical practice
guidelines for opioid use in
chronic non-cancer pain

• Rules engine/algorithm provides
clinicians with guideline-driven
recommendations (e.g., dosing,
titration,
warnings, contraindications)

Wilsey, 2009
[82] US Veteran Affairs

Pain Clinic 1400

The
Prescription

Opioid
Documentation

and
Surveillance

(PODS) System

• Computer-assisted survey
administration instrument

• Algorithmically assesses
addiction risks and level of
pain control

• Surveys consist of
self-administered medical (e.g.,
depression screenings),
substance abuse (e.g., Screener
and Opioid Assessment for
Patients with Pain (SOAPP®)),
and pain management (e.g., pain
catastrophizing scale)

Abbreviations: ADEs = adverse drug events; CA = California; CDC = Centers for Disease Control and
Prevention; CDSS = clinical decision support system; ED = emergency department; EHR = electronic health
record; MME = morphine milliequivalent; N/A = not applicable; NYC = New York City; PDMP = prescription drug
monitoring program; UK = United Kingdom; US = United States; WI = Wisconsin.

Table 2. Features and shortcomings of most commercial CDSS involving opioid medication
management 1.

Common Features Description

Opioid prescription aides Guiding the practice of prescribing opioids, such as quantity and days’ supply limitations.

Opioid conversion calculators Determining the equianalgesic dose between opioids by calculating the total daily MME,
taking into consideration the specific opioid, strength, and quantity.

Opioid drug alerts

Alerting clinicians to opioid-related factors that may pose a risk to the patient.
• Opioid drug–allergy interaction
• Opioid drug–drug interaction
• Opioid duplicate therapy
• High-dose opioid therapy (e.g., MME/day ≥90)
• UDS results

Opioid prescribing guidelines Referencing clinical practice guidelines to assist clinicians with opioid medication
management.

Pain assessment tools Utilizing applications and/or scoring methods for assessing the patient’s pain.

Common Shortcomings Description

System-related

• Requiring extensive training or being time-consuming to use.
• Lacking clinician involvement in feature development.
• Requiring internet access or separate login, independent of the EHR.
• Requiring the internet to download clinical practice guidelines and other resources

rather than having them embedded in the CDSS.
• Requiring manual input of data and/or patient-specific information or having many

plug-in values that could be automatically taken from the EHR.
• Disrupting or not efficiently integrating with clinician workflow.
• Lacking the ability to mine and utilize free text from the EHR (e.g., treatment

plan notes).
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Table 2. Cont.

Common Shortcomings Description

Content-related

• Lacking information about patient-clinician shared decision-making, particularly
treatment goals and preferences (e.g., palliative care, pain management).

• Under-reporting of drug- or opioid-related adverse events (e.g., falls, overdoses) for
consideration in decision-making.

• Lacking the ability to distinguish true allergies or hypersensitivity reactions from
pseudo-allergies or opioid-related side effects (e.g., itching) and intolerances
(e.g., nausea).

• Lacking actionable mitigation strategies and recommendations (e.g., using alternative
drugs or opioids, tapering opioids, changing times of administration).

• Over alerting clinicians to all information, instead of flagging information of highest
clinical importance.

• Having outdated or no citations for evidence-based assessment or lacking access to
reference literature.

• Failing to integrate PGx data.
• Missing information about other high-risk conditions (e.g., mental health, substance

use disorder) that may compromise optimal opioid medication management.

Abbreviations: CDSS = clinical decision support system; EHR = electronic health record; MME = morphine
milliequivalent; PGx = pharmacogenomics; UDS = urine drug screening. 1 Information compiled from numerous
references [1,19,67–72,76,83–86].

Given that several opioid-specific CDSS do not directly or comprehensively address DDI, clinicians
prescribing opioids must rely on general software for a comprehensive DDI assessment. Therefore,
the shortcomings of these systems must be highlighted. Specifically, studies have consistently shown
that drug interaction software frequently elicits alert fatigue and dismissal, misses clinically important
interactions, and is unable to assess simultaneous multidrug interactions [7,12,40,85–89]. Indeed,
most systems analyze drug interactions in a one-drug-to-one-drug manner and do not consider the
entire drug regimen in their analysis. This is a significant shortcoming as several opioid users present
with polypharmacy. Similar to the opioid-specific CDSS, few systems integrate PGx data; therefore,
the software fails to detect patient-specific drug–gene and drug–drug–gene interactions [40,85,86].
Table 3 summarizes the shortcomings that are common to most commercially available drug interaction
alert software programs and also describes content- and system-related ideal characteristics of both
stand-alone and CDSS-integrated drug interaction alert software [1,11,12,40,72,89,90].

Table 3. Shortcomings and ideal characteristics of drug interaction alert software 1.

Shortcomings of Drug Interaction Alert Software

System-related

• Over alerting of DDIs with potentially low clinical relevance, creating “alert fatigue” and dismissal
of alerts as well as being time-consuming and possibly mentally draining.

• Under-detecting of clinically significant drug interactions.
• Largely accounting for DDIs that have been reported or (more accurately) published while failing to

account for theoretical interactions based on established pharmacological properties.
• Disrupting or inefficient integration within clinicians’ workflow.

Content-related

• Detecting only one-to-one drug interactions, which often generates numerous incoherent results,
especially in patients with polypharmacy.

• Lacking consideration for the pharmacological mechanisms causing or contributing to the
opioid-involved DDI.

• Lacking differentiation between PD and PK interactions.
• Lacking severity ratings for drug interactions, leaving clinicians to discern clinical importance.
• Lacking integration of PGx data and therefore assessment of DGIs and DDGIs involving opioids.
• Missing reference literature or having no citations to substantiate the nature and severity of DDIs.
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Table 3. Cont.

Ideal Characteristics of Drug Interaction Alert Software

System-related

• Interfacing with different healthcare systems and pharmacies to present the most complete and
accurate information about all drugs in a patient’s regimen.

• Interacting with PGx information to assist in identifying DGIs, DDGIs, and phenoconversions.
• Performing a single, simultaneous, multidrug assessment rather than multiple, sequential, two-drug

assessments for patients with polypharmacy.
• Discerning interactions based on active ingredient (for combination products) and route

of administration.
• Undergoing regular (e.g., monthly) updates.
• Identifying all clinically relevant drug interactions (high sensitivity) without mistakenly alerting the

clinician over interactions that are dubious: low risk or low clinical relevance (high specificity).
• Using fast, modern, interactive technology that uses APIs for integrated CDSS development.
• Standardizing terminology and vocabulary (e.g., SNOMED CT allows clinicians to uniformly record

drug interaction findings).
• Using machine learning to make successful predictions about DDIs based on past experiences.

Content-related

• Displaying only pertinent information to prevent overburdening the user with clinically
insignificant alerts.

• Constructing recommendations to mitigate DDIs based on predefined algorithms and rules (e.g.,
auto-generate appropriate alternative drug(s) to mitigate opioid-involved DDI).

• Requiring sound clinical judgment.
• Including information and mechanisms underlying PD, PK, and PGx interactions.
• Quantifying the magnitude of expected changes in plasma drug concentrations.
• Providing context about the severity of the DDI effect.
• Providing rapid access to up-to-date information supporting mechanisms and clinical significance of

identified drug interaction.
• Allowing interactive simulations with other drugs or virtual testing environments to aid clinicians

with decisions about alternative, non-interacting drugs.

Abbreviations: APIs = application programming interface; CDSS = clinical decision support systems;
DDGI = drug–drug–gene interaction; DDI = drug–drug interaction; DGI = drug–gene interaction;
PD = pharmacodynamic; PGx = pharmacogenomics; PK = pharmacokinetic; SNOMED CT = Systematized
Nomenclature of Medicine—Clinical Terms. 1 Information compiled from numerous references [1,11,12,40,72,89,90].

6. Features of an Optimal Opioid CDSS: An Expert Opinion with a Case Discussion

The complexity of opioid-related drug interactions requires a multifaceted technological overhaul
to address the identified content- and system-related shortcomings. In addition to being readily
accessible, user friendly, on-demand/timely, integrated into workflows, interactive with medical and
drug information, patient-specific, up-to-date, and secure, we believe that there are three critical
features that have not been explored as extensively in the literature. We believe that these features can
address many concerns related to opioid-involved DDIs resulting from polypharmacy.

6.1. Content-Related Consideration: Embrace Simultaneous Assessments with a Comprehensive Visualization
of Pertinent DDI Mechanisms

Unfortunately, the overwhelming majority of CDSS analyze DDIs in a one-drug-to-one-drug,
pairwise manner [11,40]. For patients with polypharmacy, pairwise analysis often generates multiple
incoherent results, leaving clinicians uninformed about the most probable and serious consequence(s)
of the interaction(s) and unsure of the precise intervention(s) needed to appropriately mitigate the
interaction(s) [11]. An ideal opioid CDSS should include drug interaction alert software that is capable
of analyzing simultaneous multidrug interactions and comprehensively describing the mechanisms
and severities underlying the interactions. While the Medication Risk Mitigation (MRM) Matrix™
is not an opioid-specific CDSS, it is one example of a general CDSS with features that considers
polypharmacy, alert fatigue, and the multimechanistic nature of opioid-related DDIs [7,28,32,91].

Figure 2 illustrates how the MRM Matrix™ allows users to simultaneously view all profiled
medications and their relevant PK and PD mechanisms without generating any alerts. In the
hypothetical case depicted, it can be seen that this patient taking tramadol is suffering from overall
polypharmacy as well as CNS polypharmacy (clonazepam, tramadol, gabapentin, and fluoxetine).
As such, we see a high CNS sedative burden score (as measured by the Sedative Load Model [92]),
indicating that this individual is at particularly high risk of respiratory depression associated with opioid
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therapy. Additionally, from a PD standpoint, serotonergic toxicity is enhanced due to the presence of
fluoxetine [93] and is denoted by the red circle in the “non-CYP” column. PK interactions compound
these risks and create new problems. Firstly, we see that the individual is likely experiencing higher
than expected blood concentrations of clonazepam [94]—augmenting the overall CNS burden—due
to competitive inhibition with amlodipine showing greater affinity (darker yellow) for CYP3A4 than
clonazepam (pale yellow) [95,96]. Secondly, we see that tramadol, a prodrug opioid, is suffering from
competitive inhibition by fluoxetine. Therefore, tramadol’s active metabolite, O-desmethyltramadol
(M1), is not formed and the patient is likely experiencing inadequate analgesia. This can lead to
escalating tramadol doses [8,97,98]. Moreover, higher concentrations of the parent drug tramadol
can further worsen CNS depression, increase risks for serotonergic toxicity, and reduce the seizure
threshold [39].
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The hypothetical case above illustrates that a coherent assessment of opioid-involved DDIs
is possible through a comprehensive visualization of pertinent pharmacology. Clinicians do not
necessarily need to be “alerted” in a pairwise manner. This can have a profound effect on the medication
safety review process. For example, pharmacists are likely to identify more drug interactions when
using this CDSS as compared with pairwise alert software [7,28,32]. Moreover, studies assessing the
aforementioned CDSS have shown that opioids are among the most common drug classes involved in
identified DDIs among older adults with polypharmacy [32,91].

6.2. Content-Related Consideration: Simulate, Quantify, and Estimate Risk Associated with the Interactions
Present in the Current Regimen

An ideal drug interaction alert software for opioid management should allow clinicians to perform
iterative drug regimen simulations to aid with patient-specific decisions about alternative drugs that
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avert or mitigate interactions with opioids and other drugs. Simulations should attempt to quantify
changes to an individual’s overall risk of ADEs using risk prediction models [99,100].

To illustrate these points, there are several prudent alterations that a clinician could consider in
order to reduce risks associated with the tramadol interactions in the case above. Firstly, the patient
could switch from fluoxetine to venlafaxine. While this will not eliminate serotonergic toxicity concerns,
it will mitigate the severity of the interaction occurring with tramadol at CYP2D6. Theoretically, this will
allow tramadol to work optimally and result in lower or less frequent opioid dosing. In addition,
since venlafaxine may be useful for the treatment of neuropathic pain [101], this antidepressant switch
could provide an opportunity to slowly reduce the dose of gabapentin, with the goal of complete
gabapentin discontinuation. If accomplished, this would help reduce the overall CNS burden. Next,
if benzodiazepine therapy is absolutely needed, the clinician could consider switching from clonazepam
to lorazepam, which is not metabolized by the CYP450 system and will not interact with amlodipine,
thereby reducing the overall CNS burden.

The hypothetical drug regimen profile, with these suggested amendments, is illustrated in Figure 3.
The MedWise Risk Score™ (MRS), which is an ADE risk prediction tool embedded in the MRM Matrix™
CDSS, has decreased by six points. In medically complex older adults, each point increase in the MRS
is associated with nearly a 10% increase in the odds of ADEs and an additional $1000 USD spent on
medical therapy [100]. Therefore, it can be expected that addressing these drug interactions with the
aforementioned interventions can mitigate opioid-related risks, enabling the clinician to feel more
confident making changes.Pharmacy 2020, 7, x FOR PEER REVIEW 13 of 20 
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6.3. System-Related Consideration: EHR Interoperability

While CDSS provide clinicians with useful tools for guiding the decision-making process and
should not replace the need for clinical assessment by clinicians when optimizing the use of opioids,
many clinicians dislike mandated usage of yet another system [1]. Utilizing a standardized data
exchange model is of the utmost importance. When there are no accredited standards, CDSS
applications would need to be developed and rewritten in order to “fit” into each hospital’s EHR
system (e.g., Allscripts, Cerner, and Epic), which poses challenges for developers and is not feasible or
sustainable. Therefore, providing an open access and interoperability technology platform that can
interface with different healthcare system EHRs should be the goal [1,102]. This enables clinicians
to easily and efficiently access a library of CDSS applications to securely access EHR data in order
to improve opioid medication management [1]. These platforms can also be used to give patients
access to their health data as well as input personal data and measures of functional status and
pain control, in order for patients to participate in their pain management and overall healthcare
with clinicians. In the US, there are currently three health information technology standards leading
healthcare interoperability (e.g., Direct, Fast Health Interoperability Resources (FHIR) and cloud
fax) [103]. Such systems have developed the capability to include genomic data standards [1]. As a
result, incorporating PGx information into CDSS unifies PGx data from multiple vendors. Thus, CDSS
applications for opioid medication management that follow a standardized model could seemingly be
used by any healthcare institution or provider equipped with these systems [1].

7. Conclusions

Polypharmacy is common among opioid users. This phenomenon can lead to complex,
multimechanistic drug interactions that can potentially cause a plethora of serious and life-threatening
consequences. While CDSS have the potential to help clinicians better manage drug interactions arising
from polypharmacy, existing evidence suggests that both opioid-specific CDSS and general DDI software
have several system- and content-related limitations that need to be overcome. Future technological
enhancements should attempt to minimize alert fatigue, allow for simultaneous multidrug interaction
assessments, incorporate PGx data, conduct iterative risk simulations, and integrate seamlessly with
clinician workflow. The MRM Matrix™ is a promising CDSS that incorporates these enhancements,
and incorporating a standardized data exchange platform is a promising solution to be used by EHRs
without causing disruption to clinicians’ workflow.
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