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Abstract 

Background:  In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson’s disease 
incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical vari‑
able in Parkinson’s disease as epidemiological and clinical features differ between males and females.

Methods:  To study sex bias in Parkinson’s disease, we conducted a systematic review to select sex-labeled transcrip‑
tomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed 
differential expression analysis on each study chosen. Then we summarized the individual differential expression 
results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-
analysis were functionally characterized using different functional profiling approaches.

Results:  The tissue-specific meta-analyses linked Parkinson’s disease to the enhanced expression of MED31 in the 
female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 
15 genes with sex-differential patterns in Parkinson’s disease, which participate in mitochondrial function, oxidative 
stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein–protein 
interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative 
stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial 
and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All 
results generated during this study are readily available by accessing an open web resource (http://​bioin​fo.​cipf.​es/​
metaf​un-​pd/) for consultation and reuse in further studies.

Conclusions:  Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease 
hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific 
genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as 
biomarkers to diagnosis.
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Background
Parkinson’s disease (PD) is the second most common 
progressive neurodegenerative disease after Alzheimer’s 
disease and the most rapidly expanding related disor-
der in the elderly population, affecting 1% of individuals 
over 65 and 2% of individuals over 85 [1]. Importantly, 
PD also occurs in younger patients, with a prevalence of 
0.004% in individuals between the ages of 40 and 50 [2]. 
PD affects different areas of the brain, with the frontal 
cortex (FC—involved in mental tasks), the striatum tissue 
(ST—coordinates multiple aspects of cognition including 
motor and action planning, decision-making, motivation, 
reinforcement, and reward perception), and the sub-
stantia nigra (SN—controls eye movement, motor plan-
ning, reward-seeking, learning, and addiction) the most 
affected. The selective degeneration of SN dopaminergic 
neurons that innervate the ST (nigrostriatal dopaminer-
gic neurons—NSDA) and the formation of Lewy bodies 
(α-synuclein accumulation in neurons) in several differ-
ent brain regions [3] prompt motor symptoms (e.g., rest-
ing tremor, muscle stiffness, bradykinesia, and postural 
instability) and non-motor symptoms such as cognitive 
and mood impairment. In advanced-stage PD, a third of 
patients develop dementia [4]. Oxidative stress, excito-
toxicity, and neuroinflammation influence neuron death 
in PD [5, 6], while nitric oxide and other reactive nitro-
gen species [7, 8] promote PD progression. Mitochon-
drial dysfunction also plays a significant role in PD, as in 
other neurodegenerative diseases [9]. While the etiology 
of PD remains unclear, studies have provided evidence 
that genetic factors and environmental triggers, including 
genetic variation, sex, age, and exposure to environmen-
tal toxins (e.g., herbicides and pesticides), all play roles in 
pathology development [10].

Importantly, male and female PD patients display spe-
cific sex-based differences [11]. While male PD patients 
suffer from a greater risk of PD [12], female PD patients 
suffer from higher mortality rates and require earlier 

documented placements in nursing care [13]. Other sex-
based differences in PD include nigrostriatal degen-
eration, time of symptom onset, motor and non-motor 
symptoms, REM sleep behavior disorder, treatment 
outcomes, and disease mechanisms [14–18]. Inflamma-
tion and mitochondrial function also display sex-based 
alterations in PD patients [19, 20]. Genetic factors, sex 
chromosome genes, hormones, and neuroactive steroids 
represent the leading causes for these sex-based differ-
ences [15, 18, 21].

While a minority of PD cases benefit from genetic test-
ing, routine clinical methods for PD diagnosis at early 
disease stages do not exist, complicating disease manage-
ment. There exist therapeutic options such as l-DOPA 
(levodopa or l-3,4-dihydroxyphenylalanine) and deep 
brain stimulation, which improve symptoms and patient 
quality-of-life; however, these treatments do not delay 
neurodegeneration. Thus, identifying PD biomarkers 
represents an unmet clinical task that may allow for early 
diagnosis and the creation of improved therapies.

To evaluate sex-based differences in PD, we now pre-
sent a systematic review and 4 transcriptomic meta-anal-
yses on different brain regions followed by a functional 
characterization. These results demonstrate significant 
differences in gene expression and biological functions 
when comparing male and female PD patients and brain 
regions.

Methods
All bioinformatics and statistical analysis were performed 
using R software v.3.6.3 [22]. Additional file  2: Table  S2 
details R packages and versions.

Study search and selection
Available datasets were collected from the Gene Expres-
sion Omnibus (GEO) [23] and ArrayExpress [24] public 
repositories. A systematic search of all published stud-
ies in public repositories (2002–2020) was conducted 
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between June and September of 2020, following the pre-
ferred reporting items for systematic reviews and meta-
analyses (PRISMA) guidelines [25]. Keywords employed 
in the search were "Parkinson”, "Parkinson’s Disease”, and 
"PD”. We applied the following inclusion criteria:

•	 Transcriptomics studies on Homo sapiens.
•	 Control and PD-affected subjects included.
•	 Sex, disease status, and brain region variables regis-

tered.
•	 RNA extracted directly from post-mortem brain tis-

sues (no cell lines or cultures).
•	 Brain tissues from either FC, ST, or SN.
•	 Sample size > 3 for case and control groups in both 

sexes.

Finally, normalized gene expression data of 8 array 
PD datasets (E-MTAB-1194, E-MEXP-1416, GSE28894, 
GSE8397, GSE20295, GSE20159, GSE7621, and 
GSE20146) were retrieved using R packages GEOquery 
[26] and ArrayExpress [27].

Individual transcriptomics analysis
Individual transcriptomics analysis was performed on 
every selected study, which comprised 2 steps: preproc-
essing and differential expression analysis.

Data preprocessing included the standardization of the 
nomenclature for the clinical variables in each study, the 
homogenization of gene annotation, and an exploratory 
data analysis. The normalization methods performed by 
the original authors were assessed for each dataset, and 
data matrices were log2 transformed when necessary. All 
probe sets were annotated to HUGO gene symbols [28] 
using the biomaRt R package [29]. When dealing with 
duplicated probe-to-symbol mappings, the median of 
their expression values was calculated. The exploratory 
analysis included unsupervised clustering and PCA to 
detect expression patterns between samples and genes 
and the presence of batch effects in each study. At this 
point, the GSE20159 study was excluded for presenting 
a strong batch effect with a critical impact on differential 
expression analysis.

Differential expression analyses were performed using 
the limma R package [30] to detect sex-based differen-
tially expressed genes. To achieve this goal, the following 
comparison was applied:

This comparison allows the detection of genes with 
sex-based differential behavior in the development of PD. 
Genes with a Log2 fold change (LFC) greater than 0 show 
either a higher increase or a lesser decrease in expres-
sion in females when comparing the effect of the disease 

(PD.female− Control.female)− (PD.male− Control.male).

between sexes. For simplicity, these genes are referred 
to as increased in females. On the contrary, genes with 
an LFC lower than 0 have a higher increase or a lesser 
decrease in expression in males when comparing the 
effect of the disease between sexes. For simplicity, these 
genes are referred to as increased in males.

This comparison was applied to each brain region sepa-
rately and all 3 regions together. When necessary, the 
batch effect was included as a categorical variable on the 
limma linear model to reduce its impact on data. P-val-
ues were corrected using the Benjamini–Hochberg pro-
cedure [31] and considered significant below a threshold 
of 0.05.

Gene expression meta‑analysis
Differential gene expression results were integrated into 
a single meta-analysis [32] for each brain region (FC, ST, 
and SN) and a fourth meta-analysis for all regions. Meta-
analyses were implemented with the R package metafor 
[33], under the DerSimonian and Laird random-effects 
model [34], considering individual study heterogeneity. 
This model considers the variability of individual studies 
by increasing the weights of studies with less variability 
when computing meta-analysis results. Thus, the most 
robust functions between studies are highlighted.

P-values, corrected p-values, LFC, LFC standard error 
(SE), and LFC 95% confidence intervals (CI) were calcu-
lated for each evaluated gene. Functions and pathways 
with corrected p-values of < 0.05 were considered signifi-
cant, and both funnel and forest plots were computed for 
each. These representations were evaluated to assess for 
possible biased results, where LFC represents the effect 
size of a gene, and the SE of the LFC serves as a study 
precision measure [35]. Sensitivity analysis (leave-one-
out cross-validation) was conducted for each signifi-
cant gene to verify alterations in the results due to the 
inclusion of any study. The Open Targets platform [36] 
(release 21.06) was used to explore the associations of the 
significant genes to PD.

Sex‑based functional signature in the SN
Gene meta-analysis of SN data revealed sets of differ-
entially expressed genes between male and female PD 
patients. Several analyses were carried out to identify the 
functional implications of these differences.

Over-Representation Analysis (ORA) [37] through the 
R package clusterProfiler [38] was first used to determine 
the biological functions and pathways overrepresented 
in the following gene sets: (i) differentially expressed 
"LFC > 0" genes; (ii) differentially expressed "LFC < 0" 
genes, and (iii) all differentially expressed genes. p-val-
ues and corrected p-values were calculated for each GO 
term from the 3 GO ontologies [39] and each KEGG 
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pathway [40]. Every function and pathway with a cor-
rected p-value < 0.05 was labeled as overrepresented in 
each gene set.

Protein–protein interaction (PPI) networks were then 
calculated using the STRING web tool for each subset of 
genes [41]. The total number of edges was examined, and 
PPI enrichment was assessed using the default parame-
ters for each network.

Finally, a VIPER [42] analysis with human regulons 
obtained from the DoRothEA R package [43] was per-
formed to estimate transcription factor activity using the 
consensus LFC of each gene evaluated in meta-analysis 
as gene expression signature. Regulons with a confidence 
level of A, B, C, or D were selected, excluding those with 
less than 25 genes (n = 217). The i-values were corrected 
with the Benjamini and Hochberg method. Normalized 
enrichment scores (NES) were calculated by VIPER as a 
measure of relative transcription factor activity.

Metafun‑PD Web Tool
All data and results generated in the different steps of the 
meta-analysis are available in the Metafun-PD web tool 
[44], which is freely accessible to any user and allows the 
confirmation of the results described in this manuscript 
and the exploration of other results of interest. The front-
end was developed using the Angular Framework, the 
interactive graphics used in this web resource have been 
implemented with plotly [45], and the exploratory analy-
sis cluster plot was generated with the ggplot2 R package 
[46].

This easy-to-use resource is divided into 7 sections: 
(1) summary of analysis results in each phase. Then, for 
each of the studies, the detailed results of the (2) explora-
tory analysis and (3) differential expression. (4) The gene 
meta-analysis results of the four different performed 
meta-analyses. The user can interact with the web tool 
through graphics and tables and search for specific infor-
mation for a gene or function. Finally, Sects.  5–7 pro-
vide the detailed tables and figures corresponding to the 

Fig. 1  Workflow and analysis design. We retrieved relevant studies from GEO-NCBI and ArrayExpress data repositories and performed differential 
expression analysis on each selected study after data exploration and preprocessing. We performed a comparison for each brain region and an 
additional comparison for all samples and performed a gene meta-analysis for each comparison. Finally, we applied several functional profiling 
methodologies to characterize the results of the SN meta-analysis
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Fig. 2  The flow of information through the distinct phases of the systematic review following PRISMA statement guidelines [25]

Table 1  Studies selected after the systematic review

Brain areas: cortex frontal (FC), striatum tissue (ST), and substantia nigra (SN)

Study Platform Brain area Publication

E-MTAB-1194 Affymetrix GeneChip Human Gene 1.1 ST Array FC [47]

E-MEXP-1416 Affymetrix GeneChip Human X3P Array SN [48]

GSE8397 Affymetrix Human Genome U133A Array SN [49, 50]

GSE20295 Affymetrix Human Genome U133A Array FC, SN, ST [51, 52]

GSE7621 Affymetrix Human Genome U133 Plus 2.0 Array SN [53]

GSE20146 Affymetrix Human Genome U133 Plus 2.0 Array ST [52]

GSE28894 Illumina HumanRef-8 v2.0 Expression Beadchip FC, ST –
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results of the 3 functional profiling methods (ORA, PPI, 
and VIPER).

Results
To evaluate sex-based differences in PD, we performed 
a systematic review and 4 meta-analyses of transcrip-
tomic studies that included information on patient sex 

from the GEO [23] and ArrayExpress databases [24]. The 
meta-analyses comprised 1 for each of the primary brain 
regions affected by PD pathogenesis—FC (3 studies), ST 
(3 studies), and SN (f studies)—and a fourth global meta-
analysis for the 3 brain regions combined (7 studies). 
Finally, we explored the biological implications of the SN 
meta-analysis results by applying 3 different functional 

Fig. 3  The number of samples per study, divided by sex, study, and experimental group (PD—Parkinson’s disease)

Table 2  Summary of differential gene expression analysis by brain region using a sex-based comparison

"LFC > 0" columns = differential expressed genes increased in females; "LFC < 0" columns = differential expressed genes increased in males. Dash "-" indicates the 
absence of results due to the lack of associated tissue in the study in question. FC = frontal cortex, ST = striatum tissue, and SN = substantia nigra

Significant genes
FC

Significant genes
ST

Significant genes
SN

Significant genes all tissues

LFC > 0 LFC < 0 Total LFC > 0 LFC < 0 Total LFC > 0 LFC < 0 Total LFC > 0 LFC < 0 Total

E-MTAB-1194 0 0 0 – – – – – – 0 0 0

E-MEXP-1416 – – – – – – 0 0 0 0 0 0

GSE8397 – – – – – – 30 65 95 30 65 95

GSE20295 0 0 0 0 0 0 0 0 0 0 0 0

GSE7621 – – – – – – 0 0 0 0 0 0

GSE20146 – – – 0 0 0 – – – 0 0 0

GSE28894 0 0 0 0 0 0 – – – 2 0 2
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profiling methods: over-representation analysis (ORA), 
the generation of protein–protein interactions (PPI) 
networks, and the transcription factors activity analysis 
(Fig. 1).

Study search and selection
The systematic review identified 83 non-duplicated stud-
ies, of which 39 (47%) included both male and female PD 
patients. We selected 8 comparable studies after applying 
inclusion and exclusion criteria (Methods, Fig.  2); how-
ever, we discarded 1 study after the exploratory analysis. 
Thus, we analyzed 7 studies that included 267 samples 
(132 controls and 135 PD cases) from the FC, ST, and 
SN brain regions (Table 1). Figure 3 describes sex distri-
bution by study and region (overall, 59% males and 41% 
females); the median age was 75. Table  1 and Figure  2 

contain further information regarding the selected stud-
ies and their sample clinicopathological characteristics.

Individual analysis
We carried out exploratory and processing steps on 
the datasets to ensure their comparability in subse-
quent analyses. We applied log2 transformation to stud-
ies GSE28894, GSE20295, GSE7621, and GSE20146 to 
homogenize magnitude order and filtered out samples 
from regions different to FC, SN, and ST from all stud-
ies. Exploratory analysis revealed an anomalous behavior 
(outlier) by the A04022 sample from the E-MTAB-1194 
study, which we excluded from further analysis.

The differential expression results for each study pro-
vided only a small number of significantly affected genes 
in the SN tissues from the GSE8397 study (Table 2).

Gene expression meta‑analysis
We performed a gene expression meta-analysis in the FC, 
ST, and SN analyzing 3 studies for FC, 3 studies for ST, 
and 4 for SN. Finally, we performed a global meta-analy-
sis that integrated all 7 studies from these brain regions. 
In the meta-analysis by regions, we found no significant 
genes in the FC, 1 significant gene (MED31—mediator of 
RNA polymerase II transcription subunit 31) in the ST, 
and 237 significant genes in the SN, reflecting the well-
known impact of PD in this region. Of those, 75 genes 
exhibited increased expression in males (LFC < 0, see 
Methods) and 162 in females (LFC > 0) (Table 3). 16 and 
44 of these genes in male and female PD patients, respec-
tively, had a documented association with PD in the 
OpenTargets [36] database.

The global meta-analysis integrating the 7 studies and 
the 3 primary brain regions affected by PD revealed 15 
differentially expressed genes by sex, 4 significant genes 
increased in females and 11 in males (Table 4). 1 gene of 
each group had already known associations with PD in 
the OpenTargets database.

Regarding those genes increased in males, we highlight 
AC073283.7 (a long non-coding RNA), ATP5J2-PTCD1 
(a locus that represents naturally occurring read-through 
transcription between the genes ATP5J2 [ATP synthase, 

Table 3  Significantly impacted genes detected in the meta-
analysis of expression data from SN studies

Significantly impacted genes grouped by LFC value. Genes with a documented 
association with PD in the OpenTargets database highlighted in bold

Direction of 
increment

Significant genes

LFC < 0 ABCB1, ACADS, ANP32B, ANXA2, APOBEC3C, APOC2, 
APOL1, ARPC1B, ATAD3A, ATP5J2-PTCD1, CA5A, 
CACNA1A, CALHM2, CFB, CLASRP, CLIC1, CSPG4, 
CYBA, DNAJC1, ENG, FAM107A, FBXO16, FKSG49, GPR4, 
GTF2H4, HBD, HLA-E, HSPG2, HYAL2, ID3, IFITM2, 
IFITM3, IGFBP7, INPPL1, ITGA5, KANK2, KCNT1, KCTD12, 
KLK4, LAMA5, LIMS2, LOC100132686, LOC101928717, 
LRRC32, MEGF6, MICALL2, MIR6513, MT1E, MT1M, 
MT2A, NME4, NUPR1, OPLAH, PACSIN3, PDGFRB, PNMT, 
POLR1E, PTGDR2, PTP4A3, PXK, RAB13, RALGDS, RBM38, 
RP4-781L3.1, RPL27A, SH2B2, SPATA2L, STARD3, STOM, 
TARP, TMSB10, TNXA, TRIOBP, ZNF296, ZRSR2

LFC > 0 ACOT7, ACTR10, ACTR3B, ADAM23, AK5, AKAP11, 
ALDH1A1, ALG6, AMPH, APOO, ARF3, ARMCX2, 
ARMCX5, ATP5B, ATP6AP1, ATP6V0D1, ATP6V1B2, 
ATP6V1E1, ATP6V1G2, ATP8A2, ATXN10, B3GALNT1, 
B4GALT6, BEX1, BEX4, BHLHB9, C9orf72, C10orf88, 
C12orf4, CADPS, CCDC113, CERK, CHCHD2, CHGB, 
CLTC, CSTF3, DCLK1, DCTN3, DCTN6, DLAT, DPY19L2P2, 
DYNC1I1, DYNC1LI1, DYNLL1, EEF1E1, ELOVL6, ENPP2, 
ERC2, F8A1, FAM127A, FAM188A, FDX1, FHOD3, 
GABARAPL2, GBP6, GLRB, GOT1, GOT2, GPRASP1, 
GRSF1, HDHD2, HN1, HPRT1, HSPA8, KIF2A, KIFAP3, 
KLHL26, LAPTM4B, LCMT1, LOC101930324, LRPPRC, 
LRRC49, MAN2A2, MAP1LC3B, MAP2K4, MDH1, MEAF6, 
MIA3, MORF4L1, MRPL15, MTMR4, MTX2, MYO5A, NARS2, 
NDFIP1, NDN, NECAP1, NELL2, NGFRAP1, NIPSNAP3B, 
NME1, NSG1, NUP93, OCRL, OGFOD1, OPA1, OPTN, 
OXCT1, PCMT1, PEX11B, PFN2, PGAM1, PI4KA, PPP2CA, 
PPP3CB, PRPS1, PTPN5, PTS, PSMB5, PSMB7, RAD17, 
RAN, RBKS, RCAN2, REEP1, REEP5, RFK, RNFT2, RRAGA, 
SCG2, SCG3, SCG5, SHROOM2, SLC25A14, SLC25A3, 
SLC38A6, SMIM8, SMPX, SNAP91, SNX16, SOD1, 
SPA17, SPINT2, STAT4, TAGLN3, TBC1D30, TERF2IP, 
THAP10, TIMM10B, TIMM8B, TMEM246, TMEM35, TMX2, 
TOMM70A, TSPYL5, TTC1, TUBA1B, TUBA3C, TUBB4B, 
UBB, UBXN8, UCHL1, UQCRFS1, VAV3, VDAC2, VDAC3, 
VPS41, VSNL1, YWHAG, WASF3, ZNF204P, ZNF667

Table 4  Significantly impacted genes detected in the meta-
analysis of expression data for all 7 studies integrated from the 3 
major brain regions

Significantly impacted genes grouped by LFC value. Genes with a documented 
association with PD in the OpenTargets database highlighted in bold

Direction of 
overexpression

Significant genes

LFC < 0 AC073283.7, ATP5J2-PTCD1, GPR4, IL15RA, ITGA5, 
LAMA5, MAP3K6, MEGF6, PNMT, PRDM12, RASIP1

LFC > 0 BZW1, OPTN, TMX2, UBA6
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H + transporting, mitochondrial Fo complex, subunit 
F2] and PTCD1 [pentatricopeptide repeat domain 1]), 
GPR4 (G Protein-Coupled Receptor 4; may mediate cen-
tral respiratory sensitivity to CO2 in the brain), PNMT 
(pentalenolactone synthase; cerebral disease and intel-
lectual disability, hypotonia and mitochondrial disease, 
already linked to PD), PRDM12 (PR domain zinc finger 
protein 12; inflammation or degeneration of the sensory 
nerves), ITGA5 (Integrin Subunit Alpha 5; paraneoplas-
tic neurologic syndrome), MEGF6 (Multiple EGF Like 
Domains 6 intracranial hemorrhage), LAMA5 (Laminin 
Subunit Alpha 5; cerebral diseases of vascular origin with 
epilepsy), MAP3K6 (Mitogen-Activated Protein Kinase 
6, musculoskeletal or connective tissue disease genetic), 
IL15RA (Interleukin 15 Receptor Subunit Alpha; inflam-
matory brain disease), and RASIP1 (Ras Interacting Pro-
tein 1; juvenile primary lateral sclerosis [JPLS], a very 
rare motor neuron disease characterized by progressive 
upper motor neuron dysfunction leading to loss of the 
ability to walk; mitochondrial oxidative phosphorylation 
disorder with no known mechanism).

The significant genes with increased expression in 
females included OPTN (Optineurin; amyotrophic lat-
eral sclerosis [ALS], a degenerative disorder affecting 
upper motor neurons in the brain, already linked to PD), 

UBA6 (Ubiquitin Like Modifier Activating Enzyme 6; 
developmental and epileptic encephalopathy), BZW1 
(Basic Leucine Zipper And W2 Domains 1; Rolandic 
epilepsy—speech dyspraxia; intellectual disability), and 
TMX2 (Thioredoxin Related Transmembrane Protein 2; 
regulates mitochondrial activity; abnormality in the pro-
cess of thought including the ability to process informa-
tion; cognitive abilities or memory anomaly, intellectual 
disability in general).

Additional file  1: Table  S1 details the results for all 
significant genes from all meta-analyses, including the 
adjusted p-value, the LFC and its 95% confidence interval 
(CI), and the standard error (SE) of the LFC.

Over‑represented functions in the SN
ORA by R package clusterProfiler [38] on the SN sig-
nificant genes revealed that enriched biological func-
tions in the genes increased in males related to oxidative 
stress, including detoxification of inorganic compounds 
and stress response to metal ions (Fig.  4). In the genes 
increased in females, ORA overrepresented func-
tions relate to antigen processing and presentation, pH 
regulation, proton transmembrane transport, mito-
chondrial functions, autophagy, cytoskeleton, and 
microtubule transport. These functions may create a 

Fig. 4  Summary dot plot of GO biological process meta-analysis results, showing only those significant functions with the highest differential effect 
(top 16 functions in the "LFC > 0" gene set by adjusted p-value and the 6 significant functions in the "LFC < 0" gene set). Gene ratios calculated from 
the subset of genes analyzed in the ORA by dividing the number of genes involved in each function by the total of genes analyzed
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neurodegenerative microenvironment that results in 
neuronal death. In addition, purine metabolism and 
ribose metabolism also appeared as enriched in this gene 
set.

Protein–protein interaction networks for SN genes
Using the STRING web tool, we created PPI networks for 
significant SN genes with positive and negative LFC [41]. 
We found high connectivity in the PPI network generated 
for the 75 genes with negative LFC (p-value 3.87e−05) 
(Fig. 5a). Within the PPI analysis, we encountered the fol-
lowing protein clusters:

•	 Angiogenesis cluster (in red): HSPG2, CSPG4, 
ITGA5, LAMA5, ENG, PDGFRG, APOC2, APOL1, 
and IGFBP7. A central cluster of proteins participates 
in angiogenic processes.

•	 Metallothioneins cluster (in pearl): MT2A, MT1E, 
and MT1M are linked to the interferon-induced 
transmembrane proteins IFITM2 and IFITM3 
through HLA-E.

•	 STOM, TMBIM1, CYBA cluster (in green). These 
proteins have roles in redox homeostasis, response 
to oxidative stress, inflammation, and blood vessel 
remodeling.

We also encountered 3 independent pairs of interact-
ing proteins: POLR1E-GTF2H4, MICALL2-RAB13, and 
ARPC1B-PDGFRB.

We also encountered a highly connected PPI net-
work generated from the 162 genes with positive LFC 
(p-value < 1.0e−16) (Fig. 5b). Within this PPI network, we 
encountered the following protein clusters:

•	 Microtubule and transport cluster (in green). This 
cluster includes proteins related to microtubule reor-
ganization and transport (tubulins alpha: TUBA1B, 
TUBA3C, and beta TUBB4B, Myosin, and Actin).

•	 V-ATPase and Secretogranin clusters (in blue). 
Formed by V-ATPases subunits involved in neuronal 
diseases and members of the chromogranin/secre-
togranin family of neuroendocrine secretory pro-
teins.

•	 Protein folding, recycling, and degradation (in red). 
Composed by proteasome subunits PSMB5, PSMB7; 
Ubiquitin UBB, Ubiquitin-protein hydrolase pro-
tein UCHL1, Chaperone HSPA8, and clathrin and 
adaptins (E-L system).

•	 Mitochondria function and metabolism cluster (in 
yellow). Proteins such as GOT1 and GOT2 (glutamic 
metabolism) or VDAC2 and VDAC3, which are 
voltage-dependent anion-selective channel proteins 
involved in mitochondrial outer membrane permea-
bilization, negative regulation of intrinsic apoptotic 
signaling pathway, and negative regulation of protein 
polymerization, among other functions.

Fig. 5  PPI networks calculated from significant genes in the SN meta-analysis, showing only network edges with an interaction score greater than 
0.7. A PPI network generated from the "LFC < 0" gene set. B PPI network generated from the "LFC > 0" gene set
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Transcription factor activity in the SN
The TF activity analysis of the significant SN genes per-
formed with Dorothea [43] reported 40 differentially 
activated TFs (adjusted p-value < 0.05), with 29 more 
activated in male PD patients (NES < 0) and 11 more acti-
vated in female PD patients (NES > 0) (Fig.  6 and Addi-
tional file  3: Table  S3). Among the 29 TFs activated in 
male PD patients, ADNP, JUN, MBD3, PRDM14, and 
ESR1 have known associations with neurodegenerative 
disorders such as Alzheimer’s disease, mental retarda-
tion, schizophrenia, and autism. Additionally, a subset 
of specific TFs comprising BATF, CEBPA, ETS1, KLF6, 
LYL1, NFKB1, RELA, SOX13, SP3, SPI1, STAT1, STAT2, 
and STAT3 has documented involvement in immune 
and neuroinflammatory functions (Additional file  3: 
Table S3).

Specific TFs activated with an NES > 0 (female PD 
patients), such as ATF3, BCL6, or PCGF2, have been 
associated with neurodegenerative diseases or cognitive 
disabilities. TFs such as ZBTB7A, ZC3H8, or NME2 may 
be involved in processes related to neuroinflammation. 
These TFs also play additional roles in other processes, 

including immune response, hemopoiesis, and regulating 
the differentiation and activation of T and B lymphocytes 
(Additional file  3: Table  S3). To the best of our knowl-
edge, the remaining significant TFs remain poorly char-
acterized or have not been studied in the context of PD.

Metafun‑PD web tool
The Metafun-PD web tool [44] contains information 
about the 7 studies and 267 samples involved in this 
study. This resource includes statistical indicators of 
each performed analysis for each study, which users can 
explore to identify profiles of interest.

We carried out a total of 4 meta-analyses. For each of 
the significantly altered genes, Metafun-PD depicts the 
global activation level for all studies and each study’s spe-
cific LFC, confidence interval of LFC, and p-value, and 
shows graphical representations by gene as forest and 
funnel plots. This open resource hopes to contribute to 
data sharing between researchers, the elaboration of 
innovative studies, and the discovery of new findings.

Fig. 6  TFs with significantly altered activity (adjusted p-value < 0.05). Green indicates higher TF activity in male compared to female PD patients, 
while brown indicates higher TF activity in females compared to male PD patients. Activation values are measured as normalized enrichment scores 
(NES)
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Discussion
Meta‑analysis of transcriptomic profiles
We carried out 3 gene expression meta-analyses in the 3 
brain regions most affected by PD (FC, ST, and SN) and 
a fourth that integrated studies from all regions to bet-
ter understand sex-based differences in PD. We identified 
the MED31 gene as significantly increased in females in 
the ST, 237 differentially expressed genes in the SN (75 
and 162 significantly increased in males and females, 
respectively), a number that probably reflects the known 
impact of PD on the SN [54], but failed to find differences 
in the FC.

Functions associated with MED31 (mediator of RNA 
polymerase II transcription subunit 31) include the regu-
lation of lipid metabolism by peroxisome proliferator-
activated receptor alpha (PPARα) and gene expression 
[55, 56]. Dysregulated lipid metabolism supports the 
accumulation of α-synuclein and the formation of Lewy 
bodies in the brainstem, limbic system, and cortical areas 
[57]. Long-chain fatty acids, ceramides, and lipopolysac-
charides can also induce cellular stress and inflammatory 
responses in the brain [58]. MED31 has been associ-
ated with neural diseases such as ALS types 3 and 5 [59], 
which affect motor neurons; however, this study repre-
sents the first association of MED31 with PD.

The genes increased in the SN of male PD patients can 
be clustered into several families:

•	 Metallothioneins, including genes such as MT2A, 
MT1E, and MT1M. Metallothioneins are small 
cysteine-rich proteins that play essential roles in 
metal homeostasis and toxicity, DNA damage, and 
oxidative stress. Oxidative stress and inflammation 
(hallmarks of neurodegenerative diseases) influence 
the regulation of metallothionein expression. Metal-
lothioneins have been described as potential mark-
ers of neurologic disease processes and treatment 
response in lysosomal storage disorders [60]. Moreo-
ver, studies have encountered increased metallothio-
nein expression in the SN and FC of PD patients [61].

•	 Apolipoproteins—APOL1 and APOC2. These pro-
teins control the binding of lipids to form lipopro-
teins, whose primary function involves lipid trans-
port. Other lipoproteins, such as ApoE, have been 
related to aging and neurodegenerative diseases [62, 
63], while lipid metabolism has strong links to neu-
rotrophic disorders and correlates with symptoms in 
PD patients [64].

•	 Interferon-induced transmembrane proteins—
IFITM2 and IFITM3. These proteins play roles in 
the modulation of innate immunity and have been 
previously related to neurodegenerative diseases. In 
Alzheimer’s disease, inflammatory cytokines induce 

IFITM3 expression in neurons and astrocytes; 
IFTM3 then binds to γ-secretase to upregulate activ-
ity, increasing the production of amyloid-β (the main 
component of the amyloid plaques found in Alzhei-
mer’s disease patients) [65, 66].

In summary, male PD patients present alterations in 
pathways related to oxidative stress, inflammation, and 
innate immune response, which represent hallmarks of 
neurodegeneration.

Genes with a higher expression in the SN of female PD 
patients can also be clustered into several families:

•	 Secretogranins—SCG2, SCG3, SCG5, and CHGB. 
Members of this family control the delivery of pep-
tides and neurotransmitters. Alterations in the gra-
nin family have been associated with PD [67].

•	 V-ATPase subunits—ATP5B, ATP6AP1, ATP6V0D, 
ATP6V1B2, ATP6V1E1, and ATP6V1G2. Dysfunc-
tion of V-ATPase affects lysosomal acidification, 
which disrupts substrate clearance and leads to many 
disorders, including neurodegenerative diseases [68, 
69].

•	 TIM22 complex subunits—TIMM8B and TIMM10B 
form a complex involved in mitochondrial pro-
tein import. Alterations in TIM complexes such as 
TIM23 have been suggested as relevant mechanisms 
in neurodegenerative diseases [70].

•	 Axonal transport and cytoskeleton stability: 
Dyneins—DYNC1LI1, DYNC1I1, and DYNLL1, 
Dynactin subunits—DCTN3, DCTN6, and ACTR10; 
Actin-related proteins—ACTR3B and ACTR10, 
and Tubulin subunits—TUBA1B, TUBA3C, and 
TUBB4B. Alterations in these complexes disrupt 
axonal transport, prompt the accumulation of mis-
folded proteins and motor neuron diseases, and are 
described in disorders such as ALS and other neuro-
degenerative processes [71–73].

•	 Mitochondrial porins—VDAC2 and VDAC3 are 
responsible for voltage-dependent anion channels 
and mitochondrial dysfunction and contribute to 
neurodegenerative diseases [74].

•	 Glutamic-oxaloacetic transaminase—cytoplasmic 
and mitochondrial forms GOT1 and GOT2. Meta-
bolic processes also contribute to PD progression 
[75] and glutamate metabolism associated with exci-
totoxicity and neuron death [76].

•	 Serine/threonine phosphatase subunits—PPP3CB 
and PPP2CA. PP3CB is a calcium-dependent calm-
odulin-stimulated protein phosphatase that plays 
an essential role in the transduction of intracellular 
Ca2+-mediated signals [59][59]. PP3CB is related to 



Page 12 of 17López‑Cerdán et al. Biology of Sex Differences           (2022) 13:68 

biological processes such as axon extension, learning, 
locomotion, lymphangiogenesis, memory, regula-
tion of synaptic plasticity and synaptic vesicle endo-
cytosis, and cytokine and T cell responses. PPP2CA 
is the major phosphatase for microtubule-associated 
proteins (MAPs), which can affect GABA receptor 
binding, tau protein binding, regulation of apoptotic 
processes, and microtubule-binding as indicated in 
UniProtKB [77].

The features altered in the SN of female PD patients 
highlight the importance of acidification, microtubule 
stability, mitochondrial and lysosomal dysfunction, glu-
tamic metabolism, and neurotoxicity to neurodegenera-
tion and neuronal death in PD. The potential dysfunction 
of mitochondrial and lysosomal activity in PD remains of 
particular interest, with both systems playing a vital role 
in cellular redox homeostasis. Mitochondrial dysfunc-
tion can promote a decline in energy production, the 
increased generation of reactive oxygen species, and the 
induction of stress-induced apoptosis. Meanwhile, lys-
osomes participate in the turnover and degradation of 
organelles and proteins; targets such as the mitochondria 
and alpha-synuclein aggregates, respectively, may have 
relevance to PD [78–80].

Notably, the functional profiles inferred in male and 
female PD patients appear similar (oxidative stress, 
inflammation, and neurodegeneration); however, we 
found differences in the protein clusters defined by differ-
ential gene expression and the underlying mechanisms. 
While male PD patients present an environment related 
to metal homeostasis, lipid metabolism, and immunity, 
the female PD patients’ environment exhibits mito-
chondrial and lysosomal dysfunction and alterations to 
cytoskeletal proteins and glutamic metabolism. Impor-
tantly, these data may help further understand PD devel-
opment and guide personalized, sex-specific therapeutic 
interventions for PD patients.

Finally, we identified 15 differentially expressed 
genes in the global meta-analysis. Eleven of these genes 
appeared significantly increased in male PD patients 
(AC073283.7, ATP5J2-PTCD1, GPR4, IL15RA, ITGA5, 
LAMA5, MAP3K6, MEGF6, PNTM, PRDM12, and 
RASIP1), with the majority associated with oxidative 
stress, inflammation, and cerebral disorders [81]. The 
remaining 4 genes displaying a significant increase in 
female PD patients (OPTN, UBA6, BZW1, and TMX2) 
have been linked to apoptosis, ubiquitination, and mito-
chondrial activity. OPTN interacts with adenovirus 
E3-14.7K protein and mediates apoptosis, inflammation, 
and vasoconstriction through tumor necrosis factor-
alpha or Fas-ligand pathways [82]. Several viruses have 

been related to the etiology of neural diseases, although 
the underlying mechanisms remain incompletely under-
stood [83, 84]. Ubiquitin dysregulation can affect normal 
PINK1 and Parkin function, which govern mitochondrial 
quality control and mitophagy [85]. In female subjects, 
the alteration of these genes results in mitochondrial dys-
function, stress condition, energy depletion, and necrotic 
cell death [86, 87]. Even though the genes involved dif-
fer, we note similar overall results in male and female 
PD patients: the overrepresentation of mitochondrial 
dysfunction, oxidative stress, and inflammation, which 
translates into neuronal death and cognitive/intellectual 
disorders. This study represents the first description of a 
sex-based association of these genes in PD, highlighting 
them as candidates for future studies.

We also note that many genes identified in the SN and 
global/three-region meta-analysis have been linked to 
other neural, intellectual, and cognitive disorders in the 
Open Targets database. In particular, specific genes have 
been linked to PD, which provides confidence to the 
meta-analysis results. Further exploration of these genes 
may open new perspectives for biomarker identification, 
early diagnostics, and therapeutic approaches in PD and 
related disorders.

SN sex‑based functional profiling
Based on the differential gene expression analysis in 
SN, we applied different approaches to analyze the 
functional scenario. ORA demonstrated significantly 
more increased genes in male PD patients associated 
with metal ion detoxification and stress responses to 
several ions. Detailed studies have encountered metal 
ions in protein aggregates in PD brains [88, 89] and 
have demonstrated the contribution of metal ions to 
oxidative stress, toxicity, and degeneration of dopa-
minergic neurons in PD [90]. In correlation with ORA 
results, PPI analyses identified metallothioneins, redox 
homeostasis, oxidative stress, and inflammation as the 
most prominent protein interaction clusters in male 
PD patients and angiogenesis. As interferon-stimu-
lated genes [91, 92], metallothioneins may combine 
with Interferon-gamma to upregulate microglia genes, 
a mechanism observed in multiple system atrophy [93, 
94]. The MICAL-like protein 2 Ras-related protein Rab 
is an effector of small Rab GTPs such as Rab13, which 
modulate alpha-synuclein levels, aggregation, and tox-
icity [95]. The ARPC1B cluster may be involved in the 
cytolytic activity of CD8 cytotoxic T lymphocytes [96], 
which is related to brain inflammation. Several studies 
support the role of STOM/TMBIM1/CYBA proteins in 
redox homeostasis and oxidative stress, inflammation, 
and blood vessel remodeling [77, 97]. Finally, increased 
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angiogenesis has been described in SN post-mortem 
tissues from PD patients [98].

In female PD patients, overrepresented functions cor-
respond to microtubule and cytoskeletal transport, 
mitochondrial transport along the microtubule, macro-
autophagy, and several functions associated with antigen 
processing and presentation. α-Synuclein is a primary 
trigger of the immune response in PD [99] and may acti-
vate both the innate and adaptive immune system since 
the degree of microglial activation directly correlates 
with α-synuclein load in post-mortem brains [99]. Purine 
metabolism is also overrepresented in the "LFC > 0" gene 
set, with levels of urate and other purines known to cor-
relate with PD severity [100]. Regarding purine-ribose 
dysregulation observed in females, a reported link to 
microglial activation (neuroinflammation) and neurode-
generation [9] could inspire the design of specific thera-
peutic strategies in male and female PD patients. As in 
males, PPI analyses in female PD patients identified clus-
ters closely related to the gene families and ORA results. 
These clusters provided evidence for the critical role of 
mitochondria and metabolism in PD, as reported for 
other neurodegenerative diseases [77]. Glutamate metab-
olism is vital for neuronal excitability, playing a critical 
role in memory, synaptic plasticity, and neuronal devel-
opment [101]; however, glutamate overstimulation is 
also implicated in toxicity and neurodegeneration [102]. 
V-ATPase subunits (ATP-dependent proton pumps pre-
sent in both intracellular compartments and the plasma 
membrane) have significant involvement in neurodegen-
erative diseases. Proton pumps contribute to defective 
lysosomal acidification in lysosomal storage disorders 
and common neurodegenerative conditions such as Alz-
heimer’s disease and PD [69]. Supporting our results, 
the dysregulation of secretogranins in PD has also been 
reported [67]. Finally, protein folding, recycling, and deg-
radation could be related to the misfolding and aggrega-
tion of toxic α-synuclein [103, 104].

Overall, the PPI and ORA results correlated well; fur-
thermore, sex-related differences in inflammation, mito-
chondrial dysfunction, and oxidative stress mechanisms 
have been documented in several other studies [14, 18–
20], which provides additional support to our results. 
Importantly, we identify differences in the protein net-
works involved in these mechanisms between male and 
female PD patients, which could be crucial to designing 
personalized therapeutic strategies.

Transcription factors represent critical modulators 
of gene expression and pathways controlling responses 
to stimuli such as oxidative stress, microglial activation, 
chronic inflammation, neurotoxins, and DNA dam-
age [105]. A wide range of transcription factors have 
been linked to PD pathogenesis, and as with other cells, 

the development, maintenance, and survival of neurons 
depend on the precise control of gene expression [106]. 
Activated transcription factors in male PD patients 
included ADNP, JUN, MBD3, PRDM14, and ESR1. In 
the OpenTargets database [36], alterations in ADNP 
have been associated with autism spectrum disorders, 
intellectual disability, dysmorphic features, and hypoto-
nia [107], JUN with Alzheimer’s disease, and PRDM14 
with schizophrenia. Meanwhile, MBD3 is a critical neu-
rodevelopmental transcription factor [108, 109] asso-
ciated with neurogenesis and connectivity [108, 110]. 
Alterations in MBD3 have been related to PD [111] and 
to Neuropathy, Hereditary Sensory, Type Ie in the Gen-
eCards database [59]. Polymorphisms in ESR1 may con-
tribute to increased PD susceptibility [112]. Male PD 
patients also displayed the altered activity of SP1, which 
regulates the expression of LRRK2 [113], a contributing 
factor to PD pathogenesis; furthermore, a study has sug-
gested that SP1 inhibition may provide beneficial effects 
in PD models [114]. SMAD3 also presents higher activ-
ity in male PD patients and plays a vital role in PD, with 
protein deficiency known to reduce neurogenesis sig-
nificantly. SMAD3 dysfunction leads to the formation of 
α-synuclein aggregates and a reduction in the number 
of dopaminergic axons and dendrites [115]. Other tran-
scription factors altered in male PD patients (i.e., BATF, 
CEBPA, ETS1, KLF6, LYL1, NFKB1, RELA, SOX13, SP3, 
SPI1, STAT1, STAT2, and STAT3) may participate in 
neuroinflammatory processes and regulate various func-
tions of the immune response.

Of the transcription factors altered in female PD 
patients, ATF3, BCL6, and PCGF2 have been previously 
associated with neurodegenerative diseases or cognitive 
disabilities. Alterations in ATF3 in response to neurologi-
cal damage and reactive oxygen species production have 
been demonstrated in a PD model [116, 117]. The BCL6 
transcriptional repressor targets the ITM2B gene [118], 
which has important links to neurodegenerative diseases 
such as AD. The ITM2B protein binds amyloid precur-
sor protein and inhibits processing, thereby reducing the 
secretion and accumulation of beta-amyloid peptides. 
PCGF2 is associated with phenotypes such as intellec-
tual disability, global developmental delay, and mental 
retardation in the OpenTargets database [36]. Addition-
ally, the ZBTB7A, ZC3H8, or NME2 transcription factors 
have been linked to neuroinflammation processes. These 
transcription factors play roles in multiple processes, 
including the immune response, modulating hemopoie-
sis, and regulating the differentiation and activation of T 
and B lymphocytes (Additional file 3: Table S3). The tran-
scription factors identified in this study may represent 
biomarkers for the detection of neuron degeneration, 
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although this will require more in-depth validation 
studies.

Strengths and limitations
We performed an in silico approach to study sex-based 
differences in PD. In silico strategies using computa-
tional models represent a powerful tool to evaluate and 
integrate data, and the results obtained possess greater 
consensus and statistical power. In this approach, the 
sample size increases with an augmentation of the num-
ber of studies integrated into the meta-analysis; there-
fore, more subtle effects can be detected. Additionally, we 
based our in silico analysis of PD with a sex perspective 
on FAIR data (Findable, Accessible, Interoperable, Reus-
able) [119], which we believe to be critically important. 
Indeed, we strongly believe that research data should be 
legally sharable and reusable in new research. In silico 
integrative approaches to analyzing sex-based differences 
in PD have been carried out before; for example, Mariani 
et  al. [120] systematically meta-analyzed SN microarray 
data using the Transcriptome Mapper software (TRAM 
version 1.2). Our study also includes 2 other primarily 
affected brain regions (FC and ST) and has been carried 
out using the limma R package for differential expression 
analyses [30] and the metafor R package for gene expres-
sion meta-analysis [33]. This allowed us to analyze data 
following our sex differences comparison, which includes 
4 experimental groups, and identifies sex differences in 
PD, considering the inherent variability among males and 
females in healthy conditions.

Sex-based differences influence progression, symp-
toms, treatment response, and mortality in many dis-
eases, including PD; however, the segregation of data by 
sex does not always occur in research studies, not even 
in those carried out to explore diagnostic or prognostic 
factors. For example, we excluded 44 (53%) studies from 
our systematic review due to the absence of sex informa-
tion. We highlight the need to include sex information 
in research studies and databases, as they are relevant to 
health.

Perspectives and significance
The novel strategy presented in this work and the results 
obtained, help to clarify the molecular mechanisms asso-
ciated with sex differences in PD. The identification of 
consensus expression profiles specific to men and women 
is relevant because it generates useful knowledge for 
diagnosis, prognosis and drug repositioning that take 
sex information into account. Likewise, the identifica-
tion of differential biological processes between men and 
women with PD allows other researchers to compare 
and evaluate their results in order to understand the 

functioning of PD in their own work. This work opens up 
numerous research perspectives that will have an impact 
on improving the treatment of patients with PD.

Conclusions
In conclusion, our in silico approach has highlighted sex-
based differential mechanisms in typical PD hallmarks 
(inflammation, mitochondrial dysfunction, and oxida-
tive stress). Additionally, we have identified specific genes 
and transcription factors for male and female PD patients 
that represent potential candidates as biomarkers to 
diagnosis. Further studies that consider the sex perspec-
tive are urgently required to better understand PD and 
develop tailored interventions that consider the distinct 
requirements of male and female PD patients. Finally, we 
underscore the essential nature of sharing data and using 
open platforms for scientific advancement.
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