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Opioid are the most powerful analgesics ever but their use is still limited by deleterious

side effects such as tolerance, dependence, and respiratory depression that could

eventually lead to a fatal overdose. The opioid crisis, mainly occurring in north America,

stimulates research on finding new opioid ligands with reduced side effects. Among them,

biased ligands are likely themost promising compounds.Wewill review some of the latest

discovered biased opioid ligands and see if they were able to fulfill these expectations.
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INTRODUCTION

Opium consumption and its medicinal application dates back to the Neolithic, Bronze, and Iron
Age. Ancient Egyptian papyrus records reported the use of opium for pain relief, demonstrating
that opioids are used from thousands of years for the treatment of pain. Opium is a substance
extracted from Papaver somniferum, and opium poppies produce alkaloids such as morphine (1).
In 1973, the notion of “morphine receptors” emerged (2), and since that time numerous studies
have been performed on these receptors. In the 1990s, opioid receptors were cloned. They are four
of them, MOR, DOR, KOR, and NOR, and are largely found within the central nervous system as
well as throughout the peripheral tissues. They are naturally stimulated by endogenous peptides
(endorphins, enkephalins, dynorphins, and nociceptin/orphanin FQ). All pharmacological studies
confirmed that opioid system plays a key role in the modulation of pain perception, but is also
involved in many physiological responses, such as respiration, gastrointestinal motility, endocrine,
and immune functions, which may lead in clinical practice to adverse effects when pain must be
managed with opioids.

The study of responses of opioid receptors-deficient mice to opioid agonists clarifies the
biological activity of each receptor. The genetic approach unambiguously demonstrated that MOR
are essential for all the biological activities elicited by morphine, including for instance analgesia,
reward, respiratory depression, constipation, immunosuppression (3). Thus, a challenge over the
past decades has been to try to find MOR opioid ligands able to induce a potent analgesic response,
with fewer adverse effects.

MOR belong to the G protein-coupled receptors (GPCR), and it is now well-established that
once the receptor is activated, several intracellular signaling pathways may be activated. Among
these pathways, the focus has been made on two of them, G protein (and its subsequent effectors
such as adenylate cyclase and ion channels) and beta-arrestin, and it has been suggested that
analgesic effects of MOR ligands are mediated by the downstream G-protein-dependent pathway,
while beta-arrestin-dependent pathway mediates most of the side effects. Thus, it was speculated
that development of biased MOR ligands for G-protein-dependent pathway may have high
analgesic potency, but with fewer undesirable effects. The main goal of this review is to briefly
describe this strategy and to discuss its advantages and limits.
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SIDE EFFECTS OF OPIOIDS AND

INTEREST IN BIASED AGONISM

With great therapeutic potential, usually comes great side effects.
The opiates do not seem to deviate from this rule. Opioid
receptors and especially MOR are highly expressed in the brain
structures involved in control of breathing including the pre-
Bötzinger complex or the Kolliker-Fuse neurons (4). Activation
of MOR in the pre-Bötzinger complex with fentanyl promotes
a respiratory depression (5) and the knockout of MOR in this
complex reduced the effect of morphine on breathing (6). MOR
are also expressed in the enteric nervous system and their
activation will cause reduction of gastrointestinal motility and
thus constipation (7).

Following a protracted exposure, but also after an acute
exposure at high dose, a tolerance to opioid-induced
pharmacological effects appears. It noteworthy that the
level of tolerance depends on the pharmacological effect
studied. For instance, there is evidence to suggest that the
tolerance to respiratory depression is weak as compared to
the antinociceptive tolerance (8) which might explained the
fatal overdose that could occur in opioid users (9). Finally, a
repeated use of opioids, even in the frame of a pain treatment,
could lead to development of addictive behaviors. This is well-
illustrated by the opioid crisis in US where postoperative opioid
prescription is a significant contributor to opioid epidemic, and
more than 350,000 people died from opioid overdose between
1999 and 2016 (https://www.cdc.gov/drugoverdose/epidemic/
index.html). All these side effects are a real impairment in the
opioid use, particularly in chronic pain. Among the different
strategies to find potent analgesics with limited side effects, the
one based on the particular properties of the opioid receptors
and their ligands, the biased signaling, has received great
attention since few years even though the concept (as known
as functional selectivity) is older (10). Indeed, the notion of
functional selectivity was probably first suggested in a review
on serotoninergic receptors where the ability of a single GPCR
to active one or more distinct signaling cascades was described
(11). And the term of biased agonist was first introduced by Jarpe
and co-workers when they observed that a peptide promoted
a biased activity on chemokine receptors (12). For opioid
receptors, the studies of Bohn and co-workers along with this
notion opened the way to find new opioid ligands. As rapidly
mentioned earlier, following ligand binding, MOR activation
could result in the activation of multiple downstream pathways
through either G protein dependent processes (e.g., adenylate
cyclase inhibition or regulation of ion channels) or G protein
independent processes (e.g., beta-arrestin signaling). Beta-
arrestins are proteins, existing in two isoforms (beta-arrestin
1 and 2), that bind the activated and phosphorylated receptor
and are responsible for its desensitization and internalization
(13). In beta-arrestin 2 knockout mice, Bohn and collaborators
found that morphine analgesia was enhanced, with abolition of
antinociceptive tolerance (14, 15) and reduction of respiratory
depression and acute constipation (16). These data suggested
that whereas G protein-dependent pathway mediated analgesia,
beta-arrestin-dependent signaling pathway promoted side
effects. Using different strategies [high-throughput screening,

structure-based virtual screening, or synthesis-driven approach
(17)], new biased MOR ligands were discovered. They are mostly
biased toward G proteins.

BIASED LIGANDS ARE PROMISING

COMPOUNDS

The most notable compound, TRV-130 (Oliceridine) was
discovered after a high-throughput screening by Trevena Inc.
(18). It has a moderate biased toward cAMP pathway (about 3-
fold) and was unable to promote MOR endocytosis according
to its very weak ability to recruit beta-arrestin 2. Preclinical
studies showed that TRV130 had a higher potency than
morphine to induce antinociceptive responses with a reduced
respiratory depression and gastrointestinal effects, suggesting
a better therapeutic index as compared to morphine (19).
Moreover, in the tail immersion test, no tolerance was measured
after a 3 days treatment (20). Clinical studies validated these
results. Indeed, in a phase 2 study comparing TRV130 with
morphine in patients after abdominoplasty, the biased agonist
provided not only a quicker analgesia, but was also associated
with fewer side effects including hypoventilation, nausea, and
vomiting (21). In a phase 3 study, TRV130 was shown to be
efficient in reducing pain intensity in two surgical procedures:
bunionectomy (APOLLO-1 trial) (22) and abdominoplasty
(APOLLO-2 trial) (23). Analysis of side effects in the pooled
cohorts of APOLLO trials showed that whereas TRV130 induced
a dose dependent respiratory depression, this effect is lower than
the one induced by morphine (24), and that TRV130 had a
higher probability of producing analgesia rather than respiratory
depression (25). These analyses also demonstrated a lower risk
of experiencing nausea and vomiting in patients treated with
TRV130 compared tomorphine-treated patients (26). At present,
TRV130 is approved by the Food and Drug Administration
(FDA) since august 2020 to treat moderate to severe acute pain.
Finally, TRV130 turned to be a good analgesic medication but
its advantages, especially regarding side effects, toward classical
opioids such as morphine is still matter of debate.

Thanks to the progress in GPCR crystal structure, Manglik
and co-workers used the MOR crystal structure to virtually dock
millions of compounds and they discovered PZM21 (27). PZM21
was found to be biased toward G protein pathway and active
in both spinal and supra-spinal analgesia in rodents (27, 28).
Interestingly, this compound seemed to induce less respiratory
depression and constipation than morphine (27).

Finally, the latest notable MOR biased compounds are a series
of a piperidine core structure-containing molecules (SR series)
generated from a synthesis–driven approach. Some of these
compounds were found to be biased, at different levels, toward
G protein. They induced analgesia (measured in the hot plate
and tail flick tests), showed minor respiratory depression and are
brain penetrant (29). Interestingly, SR-17018 was demonstrated
to be more potent and efficacious than morphine or oxycodone
in a chemotherapeutic-induced neuropathy pain model and
displayed a weak tolerance after a repeated administration (30).
Finally, when substituted to morphine after a chronic treatment,
it prevents the onset of morphine withdrawal (31).
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BUT THEY REMAIN MOR LIGANDS (WITH

THEIR SIDE EFFECTS)

Because they bind and activate MOR, all these biased
ligands could still promote main effects attributed to MOR
stimulation including reward system activation. Indeed, in rats,
TRV130 displayed same effects as morphine in intracranial
self-stimulation (20). In a drug-discrimination experiment
conducted in rats, two biased ligands TRV130 and SR-14968
generalized to fentanyl (32), suggesting that these ligands
may produce prototypic MOR agonist abuse-related effects.
Using a model closer to the human behavior, intravenous
self-administration procedure in rats, Austin Zamarripa and
colleagues demonstrated that TRV130 was equi-potent to
oxycodone (33). More recently, whereas PZM21 demonstrated
a lack of effect in the conditioned place preference paradigm
in two independent studies in mice (27, 28), reinforcing
effects, here again comparable to those induced by oxycodone,
were demonstrated using a self-administration procedure in
monkeys (34), but not in rats (28). All these data from
animal studies could suggest that the MOR biased compounds
could have reinforcing effects in humans. Indeed, in a clinical
study assessing the analgesic effects of TRV130 in healthy
volunteers, Soergel and collaborators evaluated the abuse-related
subjective effects with a drug effects questionnaire. They found
that the dose of 3mg, equianalgesic to 10mg morphine,
induced the same subjective opioid effects such as “high” or
“liking” (35).

These data highlight the importance of the model at two
level: the species and the experimental model used. Furthermore,
in the same species, the choice of the strain of animals used
can also have a very important impact on the results. Thus,
the first results obtained by Bohn and co-workers on beta-
arrestin 2 knockout animals were obtained on a mixed genetic
background (beta-arrestin 2 knockout 129/SvJ backcrossed with
C57BL6). Previous studies reported that the 129/SvJ mice have
a higher sensitivity to morphine-induced antinociception (36),
did not develop tolerance to morphine-induced analgesia (37)
and were less sensitive to respiratory depression (38). When
reassessing the pharmacological responses induced by opioids
in beta-arrestin 2 knockout using an homogenous C57BL6
background, Koblich and colleagues did not find any difference in
tolerance to analgesic effects of few opioids including morphine
(39). More recently, Kliewer and co-workers reported that the
knockout of beta-arrestin 2 in C57BL6 mice did not alter
the effect of morphine on both respiratory depression and
constipation compared to wild-type animals (40). Taken together,
these data suggested that the use of 129/SvJ strain might
have misled us on the role of beta-arrestin 2 in morphine
effects and as a consequence it questions the G protein biased
agonists as valuable strategy for safer analgesic medication.
More importantly, an increase number of studies challenged
the existence of the biased signaling itself (41). Evaluating the
bias usually consist of measuring the ability of an agonist to
stimulate two signaling pathways. At end, one will compare an
amplified assay of G activation vs. an unamplified assay of beta-
arrestin recruitment. Amplified assay are relatively insensitive

to agonist efficacy differences. Whereas, an agonist with a low
intrinsic efficacy will show a maximal effect in G protein assay,
it will have a lower maximal effect in beta-arrestin assay. Using
newly unamplified probes to measure signaling, several studies
demonstrated that the newly biased ligands are in fact agonists
with a low intrinsic efficacy relative to morphine (42–44). These
recent data show that while biased ligands may have benefits
over unbiased ligands, particularly in terms of the reduction of
side effects, these may not be due to the biased nature of the
compounds (45).

CONCLUDING REMARKS

It took more than 30 years from the first observations of a
biased signaling and the release of Oliceridine, the first biased
opioid receptor compound on the market. In the last few years,
some studies have challenged this concept by suggesting that the
observed bias is rather the expression of the agonist low intrinsic
efficacies (42) or binding kinetics (46). Therefore, the promises of
having opioid ligands with virtually a lack of side effects will still
take time. Rather than a revolution, the biased compounds are a
hopeful evolution in the pharmacological research of analgesics.
The pharmacology of GPCRs is very complex, and the simplistic
view of one receptor, one signaling pathway, one pharmacological
response is a far too simplistic concept, which does not
reflect the complexity of life sciences. So, should we abandon
opiate ligands to treat pain? Certainly not, for now, as they
remain the most effective antinociceptive agents. Nevertheless,
alternative research strategies should be explored further. The
development of non-selective opioid ligands (agonist or mixed
agonist/antagonist) could be an interesting approach. For
instance, cebranopadol, a mixed MOR/DOR/KOR/NOR agonist
was found to be efficient in both acute and chronic pain with
a delayed development of tolerance as compared to morphine
(47). This compound is actually in phase 3 trials. More recently,
Ding and co-workers described the AT-121, a MOR/NOR mixed
agonist with analgesic effects in non-human primates and a
lack of the most frequent opioid-associated side effects such
as physical dependence, abuse potential, respiratory depression,
and opioid-induced hyperalgesia (48). Allosteric ligands at the
MOR could be also interesting as they could be used to
enhance the effects of either the exogenous orthosteric agonists
when administrated together or the endogenous opioid peptides
released in stress or pain condition (49). Another strategy could
be the development of dual-target ligands directed to both
MOR and another receptor, including for instance dopamine
D3 receptor (50). Whether biased ligands, ligands with low
selectivity toward different opioid receptors, or bivalent ligands,
the development of an analgesic compound free of side effects
and with low abuse potential seems to be a way still paved with
some difficulties.
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