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Abstract

Introduction

High Resolution Melting (HRM) following PCR has been used to identify DNA genotypes.

Fluorescent dyes bounded to double strand DNA lose their fluorescence with increasing

temperature, yielding different signatures for different genotypes. Recent software tools

have been made available to aid in the distinction of different genotypes, but they are not

fully automated, used only for research purposes, or require some level of interaction or

confirmation from an analyst.

Materials and Methods

We describe a fully automated machine learning software algorithm that classifies unknown

genotypes. Dynamic melt curves are transformed to multidimensional clusters of points

whereby a training set is used to establish the distribution of genotype clusters. Subse-

quently, probabilistic and statistical methods were used to classify the genotypes of

unknown DNA samples on 4 different assays (40 VKORC1, CYP2C9*2, CYP2C9*3 sam-

ples in triplicate, and 49MTHFR c.665C>T samples in triplicate) run on the Roche LC480.

Melt curves of each of the triplicates were genotyped separately.

Results

Automated genotyping called 100% of VKORC1, CYP2C9*3 and MTHFR c.665C>T sam-

ples correctly. 97.5% of CYP2C9*2melt curves were genotyped correctly with the remain-

ing 2.5% given a no call due to the inability to decipher 3 melt curves in close proximity as

either homozygous mutant or wild-type with greater than 99.5% posterior probability.

Conclusions

We demonstrate the ability to fully automate DNA genotyping from HRM curves systemati-

cally and accurately without requiring any user interpretation or interaction with the data.

Visualization of genotype clusters and quantification of the expected misclassification rate
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is also available to provide feedback to assay scientists and engineers as changes are

made to the assay or instrument.

Introduction
High Resolution Melting (HRM) is used in combination with PCR as a method for differentiat-
ing genotypes based on the disassociation of DNA binding dyes [1]. Without additional inter-
vention or modification of the chemistry, after PCR, the temperature is raised slowly while
fluorescence measurements are made. During this process, double strand DNA separates and
the dye is released, decreasing fluorescence. A plot of relative fluorescence versus temperature
constitutes a melt curve [2–4]. This phenomenon is used to identify of Single Nucleotide Poly-
morphisms (SNPs) whereby melt curves can be distinguished from each other when using
instrumentation capable of high resolution temperature and fluorescence measurement. Melt
curves of different genotypes can be distinguished based on differences in their shapes and/or
relative melting temperature shift due to different bond strengths between different base pairs
between complementary strands and stacking between adjacent bases that are dependent on
salt concentrations [5]. However, melt curves of the same genotype do not overlay perfectly
due to temperature variability from run to run or across a well plate [6–8], slight differences in
instrumentation or chemistry components. As long as the melt curve variability between geno-
types is greater than the variability within genotypes, the classification of different genotypes is
possible. In order to enhance the separation of different melt curves, curves are typically either
subtracted from a positive control to obtain difference plot or various transformations of the
data, such as the negative derivative of fluorescence versus temperature, are computed [3].

Currently, software exists that performs genotyping and clustering, but not without user
interaction [9–11]. This interaction includes instances whereby a user selects different temper-
ature windows before and after the rapid rate of change in fluorescence in order to determine
and remove background fluorescence. Determination of the background signal can vary
depending on the window locations selected by the operator, which may consequently alter the
genotype classification. Systematic and fully automated genotyping analysis software would be
advantageous; particularly under high throughput conditions where analytical results must be
consistent no matter which operator uses the software.

Here we describe an automated method whereby the probability that a DNA sample belongs
to each possible known genotype is computed. Furthermore, if so desired, users can visualize
genotype clusters in two dimensions whereby each melt curve is plotted as a point and the posi-
tioning of each point or sample has a physical meaning. Although a method for determining
the likelihood of each possible genotype derived from cluster plots has been reported [12], the
methods and assumptions made in implementing its approach are different from ours and the
location of each plotted point lacks physical meaning with respect to a fixed coordinate system.

Materials and Methods

Clinical samples and data sets
HRM curves from 4 different assays were analyzed. 3 assays were small amplicon Warfarin
sensitivity assays:

VKORC1 c.1639G>A, CYP2C9�2 c.430C>T, CYP2C9�3 c.1075A>C, and one assay was a
snapback primer coagulation factor assay:MTHFR c.665C>T, associated with thrombophilia.
The Primer sequences, amplicon size, and SNP are listed in Table 1.
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All clinical samples were provided by Associated Regional and University Pathologists
(ARUP) Laboratories and protocols were approved by the University of Utah Institutional
Review Board, IRB #00007740 entitled, “Blood, Urine, Stool, or Saliva Samples for Validation
of Assay Methods Used in Clinical Testing”. The purpose of this IRB is to allow validation of
assays using ARUP samples that have been anonymized and de-identified. ARUP is wholly
owned by the University of Utah. A medical director of ARUP and professor at the University
of Utah arranged for the samples under a grant from Canon to the University of Utah. The IRB
waived the consent requirement because DNA samples were anonymized and de-identified at
ARUP before receipt as a requirement of the IRB. These samples were likely whole genome
amplified at the University of Utah before they were sent to Canon.

Samples were selected to cover all possible genotypes and were not representative of the
allele frequency in the general population. 50 ng of DNA was used for testing which yielded an
enriched concentration of 10ng/μL determined by UV spectrometry (Nanodrop1000). All PCR
and melting assays were conducted using a Roche LightCycler480 in a 96 well plate format.

PCR Protocols
Warfarin assays were amplified in 20 μL reaction volume in Canon buffer (50 mM Tris pH 8.0,
50 mM KCl, 0.01 mM EDTA, 1 M Betaine, 0.04% Tween 20, and 2% DMSO), 2 mMMgCl2,
1U Takara Ex TaqTM DNA Polymerase, Hot-Start Version (TaKaRa Bio USA); 1x LCGreen
Plus (BioFire Diagnostics), 0.5 μM forward and reverse primers, 0.2 mM dNTPs, and 2.5 ng/μL
human genomic DNA The amplification protocol included an initial denaturation at 95°C for
1 min, followed by 40 cycles at 95, 62, and 72°C for 5 s at each step; cooled to 37°C for 10 s,
heated to 95°C for 10 s, prior to running a melt from 55–95°C with 20 data samples acquired
per degree at a ramp rate of 0.03°C/s.

Snapback PCR products were generated for MTHFR c.665C>T. Asymmetric PCR was per-
formed in triplicate with 0.1 μM of the forward primer, 0.5 μM of the Snapback reverse primer,
0.2 mM each dNTP, 1x LC Green Plus, 0.1 U/μL of Takara Ex Taq DNA Polymerase, Hot-Start
Version (TaKaRa Bio USA), and 3 mMMgCl2 in Canon buffer described above in a 10 μL
reaction volume. PCR cycling consisted of an initial denaturation at 95°C for 2 min, followed
by 60 cycles of 95°C for 10 s, 58°C for 10 s, and 76°C for 15 s. To facilitate the snapback mole-
cule formation, PCR products were subsequently denatured by heating to 95°C for 10 s and
cooled to 45°C for 1 s prior to running a melt from 45°C–95°C with 10 data samples acquired
per degree at a ramp rate of 0.06°C/s.

For each assay, a training set of known genotypes was obtained for supervised machine
learning. The training set for each assay consisted of one plate of 32 DNA samples run in tripli-
cate for a total of 96 samples. Then genotype classification of DNA samples from a subsequent
blinded data set (cross-validation) was performed on 40 DNA samples for each of the Warfarin

Table 1. Assay information including Target, amplicon size, and primer sequences.

Target Amplicon Size
(bp)

Forward Primer Sequence (5' to 3') Reverse Primer Sequence (5' to 3')

VKORC1
c.1639G>A

63 CAAGAGAGAGCCTGAAAAACAACCATTG TGCTAGGATTATAGGCGTGAGCC

CYP2C9*2
c.430C>T

123 GAATTTTGGGATGGGGAAGAG TCCAGTAAGGTCAGTGATATGG

CYP2C9*3
c.1075A>C

44 TGGTGCACGAGGTCCAGA GCTGGTGGGGAGAAGGTCA

MTHFR c.665C>T 103 GAGGCTGACCTGAAGCACTTG CAGGGAGCCGATTTCACCTTCACAAAGCGGAAGAATGTGTC

doi:10.1371/journal.pone.0143295.t001
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assays and 49 DNA samples for the MTHFR c.665C>T locus run in triplicate for a total of 120
melt curves and 147 melt curves respectively. The true genotype of each sample was deter-
mined by Sanger sequencing. The accuracy of the cross-validation determines the true unbi-
ased performance of the software in conjunction with the system as a whole.

Automated genotyping procedure
The automated genotyping procedure follows a series of steps as shown in Fig 1. The training
procedure using melt curves of known genotypes is shown in the flowchart of S1 Fig. The geno-
typing procedure of melt curves of unknown genotypes is shown in the flowchart of S2 Fig.
Software was developed in MATLAB 6.1 (The MathWorks Inc., Natick, MA). Once finalized; it
was re-written and compiled in C/C# as a standalone application.

Computation of the derivative of fluorescence
First, raw fluorescence data (Fig 1A) were resampled by interpolation to have fluorescence
readings at equally spaced temperature intervals. A Savitsky-Golay FIR filter [13,14] with fixed
coefficients was subsequently convoluted with the florescence values to obtain the negated
derivative of fluorescence with respect to temperature (Fig 1B). A 1°C window size and second
polynomial order used to generate filter coefficients. Only data within a certain temperature
range is used in subsequent analysis. The range is automatically determined by the software in
order to maximize the separation of different genotype clusters, more specifically to minimize
the misclassification rate, and is described in the S1 Text. The temperature range of the
VKORC1 example shown in Fig 1 is from 75 to 83°C.

Temperature shifting and data normalization
Data was collected from multiple well plates, where each well plate had two or three positive
controls. Positive controls from each well plate were averaged and the average positive control
from the first training set plate was used as reference. Subsequent plates contained the same
positive controls usually in the same wells. The derivative curve of the positive control was

Fig 1. Automated genotyping procedure. A. Fluorescence (F) versus temperature (T). B.–dF/dT versus T. C. Temperature shifted–dF/dT. D. Normalized–
dF/dT curves with training set genotype averages (black lines). E. A 3D point represents each curve correlated against each average curve. F. Points
transformed to spherical coordinates. G. Genotype likelihood table H. 2D projection of correlation parameters for visualization.

doi:10.1371/journal.pone.0143295.g001
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then shifted by various degrees until it correlated maximally with the positive control of the ref-
erence well plate as shown in Fig 2. This was to control for shifts in measured temperature that
may occur between well plate runs. In these experiments, wild-type DNA was used as positive
controls. Once the optimal shift was determined, all melt curves from the same well plate were
shifted by this amount. Afterwards, each melt curve derivative is normalized to have zero mean
and unit standard deviation as shown in Fig 1D. The importance of the use of positive controls
for temperature shifting is shown in Fig 2.

Obtaining Averaged Normalized Curve for each Known Genotype
(Training set only)
A DNA training set was required for each assay where all curves of the same genotype were
averaged to get an Averaged Normalized Curve of Known Genotype (ANCKG) as shown by
the black lines in Fig 1D.

Computation of correlation parameters and spherical coordinates
Each individual melt curve derivative was correlated against each ANCKG. Thus when there
are three possible genotypes, each melt curve is represented by a point in 3D space as shown in

Fig 2. A. Cross validation normalized curves and training set genotype averages (black lines). Without temperature shifting, wild-types are called as
homozygous mutants (red), homozygous mutants and heterozygotes are given “no calls” (gray). B. Corresponding 2D cluster visualization. C. With
temperature shifting, all calls are correct. D. Corresponding cluster plot showing overlap between validation set (points) and training set (ellipses).

doi:10.1371/journal.pone.0143295.g002
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Fig 1E:

Correlation vector : r ¼

r1

r2

..

.

rNc

2
666664

3
777775 ð1Þ

If there are Nc number of known classes or genotypes, the dimensions of the vector r are
Ncx1. For all assays tested here, Nc = 3. Nc can be greater than 3 in multiplex cases where
searching for SNPs in more than one base pair.

For a given genotype, the distribution of correlation coefficients of a set of dynamic curves
with their averaged normalized curve is not normally distributed (see S3 Fig). Probability cal-
culations of parameters that are normally distributed are easily calculated, as equations that
describe their distributions are known. For this reason the correlation vector of parameters for
each dynamic curve was transformed into spherical coordinates consisting of a length parame-
ter, l and (Nc-1) angle parameters as follows:

length : l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNc
i¼1

ðriÞ2
s

ð2Þ

kth angle : ak ¼ tan�1 rkþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNc�1

k¼1

ðrkÞ2
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0
BBBB@

1
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where k goes from 1 to (Nc-1). This yields the transformed vector, v:

v ¼

l

a1

..

.

aNc�1

2
666664

3
777775 ð4Þ

Following this transformation, all the parameters in v become normally distributed.
Computation of mean and covariance matrices for each genotype (Training set only)
Transformed vectors of the same class or genotype from a training set were grouped

together into a parameter matrix:

Vi ¼ ½v1 v2 � � � vNi � ð5Þ

where Ni is the number of melt curves in the training set for the ith class or genotype. Nc param-
eter matrices were be generated from the training set, one for each genotype. Thus the dimen-
sions of each Vi are [Nc x Ni]. (Nc = 3 for all of the assays we tested)

For each class or genotype, the mean of each row of Vi and the covariance matrix of Vi were
calculated to obtain the matrices μi and Ci respectively with dimensions [Nc x 1] and [Nc x Nc]
respectively.
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Genotype Classification for a DNA sample of unknown genotype
Once the mean and covariance matrices were obtained for each known genotype from a train-
ing set, a melt curve obtained from a DNA sample of unknown genotype was classified. As
with the training set melt curve of known genotypes, each melt curve of unknown genotype in
the validation set was transformed to a vector of spherical coordinates, v.

For the unknown DNA sample, the class-conditional density for each possible genotype was
used to calculate the likelihood of v with respect to each possible genotype, gi in Eq 6. The likeli-
hood is a function of v and the mean and covariance matrices obtained from the training set
according to the multivariate Gaussian distribution equation:

pðvjgiÞ ¼ exp � 1

2
� ðv� μiÞT � ðCiÞ�1 � ðv� μiÞ �

d
2
� logð2pÞ � 1

2
� logðjCijÞ

� �
ð6Þ

|Ci| is the determinant of the matrix Ci. d is the number of dimensions which is equal to the
number of classes, Nc, or 3 in our case.

The posterior probabilities (probability that the DNA is each of the possible genotypes)
were calculated using Bayes’ Theorem. The class priors or frequencies of each genotype in the
population in conjunction with the class-conditional densities were used to obtain the posterior
probabilities:

pðgijvÞ ¼
PðgiÞ � pðvjgiÞXNg

i¼1

ðPðgiÞ � pðvjgiÞÞ
ð7Þ

where p(gi | v) is the posterior probability for the i
th genotype. The sum of all posterior proba-

bilities adds up to 1. P(gi) is the class prior or the frequency of the i
th genotype in the popula-

tion. In this work, we assumed the frequency of each genotype in the population to be 1/3 each
since all DNA genotypes were represented and their frequencies were not representative of the
population.

The DNA sample is classified as the genotype with the largest posterior probability. If the
genotype with the largest posterior probability is less than some acceptable threshold (i.e
99.5%) then a no call is given. Furthermore, if the vector v is not in contained within a certain
ellipsoid containing the majority of points (ie. 99.99%) of the genotype with the largest poste-
rior probability, a no call will result. This is calculated using the cumulative distribution of the
multivariate normal distribution using the mean and covariance matrices obtained from the
training set.

Fig 3 demonstrates the optimal temperature range for correlation analysis in the automated
genotyping procedure for the MTHFR c.665C>T assay. In this case the temperature range
from 54 to 87°C was optimal in minimizing the estimated misclassification rate. The visualiza-
tion of melt curves as clusters of 2D points is also described in the Text along with the ellipses
that describe genotype distribution of the training set. A flowchart demonstrating the proce-
dure by which the ellipses are generated from the training set is shown in S4 Fig. The procedure
by which each melt curve is transformed to a 2D point is shown in S5 Fig. Visualizations of
more than 3 genotype clusters is possible, however the user will have to select which 3 ANCKG
genotypes to correlate against that determine the projected tri-axes.

Results
The cross-validation genotype call of the blinded DNA samples yielded the results shown in
Table 2. For the VKORC1 and the CYP2C9�3 assays, all 120 blinded DNAmelt curves were
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genotyped correctly. There is good separation among genotypes in the VKORC1 and CYP2C9�3
assays as shown in Fig 2C & 2D and S6 Fig, respectively.

For the CYP2C9�2 assay, 3 of the 120 DNAmelt curves were given a no-call since their larg-
est posterior probability values did not exceed 99.5%. Two of the three no call genotypes were
actually homozygous mutants (that originated from the same patient sample placed in neigh-
boring wells) and one was actually wild-type. The reason for the no call can be visualized in Fig
4. The identification of heterozygous DNAmelt curves are clearly separate from the other two
genotypes. However, because of some overlap between wild-type and homozygous mutant
genotypes and the large variability of melt curves within each genotype, no calls are made by
the software when melt curves fall between the two.

For theMTHFR c.665C>T locus, all 147 melt curves were genotyped correctly.

Fig 3. Separation ofMTHFRC.665C>T genotypes using data from different temperature ranges. Left: 54 to 87C (probe and amplicon), middle: 54 to
74C (probe only) and right: 74 to 87C (amplicon only). Top: normalized derivative curves, middle: separation of genotype clusters in 2D. Bottom row shows
the expected probability cross table via Monte Carlo simulation of 3D spherical coordinates.

doi:10.1371/journal.pone.0143295.g003

Table 2. Automated genotyping results.

Target Full melt temp. range Classification temp. range Wild-type Heterozygote mutant Homozygote mutant

VKORC1 c.1639G>A 55°C–95°C 75°C–83°C 63/63 51/51 6/6

CYP2C9*2 c.430C>T 55°C–95°C 82°C–86°C 89/90a 18/18 10/12b

CYP2C9*3 c.1075A>C 55°C–95°C 74°C–82°C 87/87 30/30 3/3

MTHFR c.665C>T 45°C–95°C 54°C–87°C 75/75 48/48 24/24

a,b: For the CYP2C9*2 target assay, 1 wild-type sample and 2 homozygote samples were given no-calls due to maximum posterior probability values

being less than 99.5%

doi:10.1371/journal.pone.0143295.t002
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Fig 4. Cross validation set of the DNA samples of theCYP2C9*2 assay. A. Normalized shifted derivative curves. Colors denote the called genotype
(green: wild-type, red: homozygous mutant, blue: heterozygous mutant). Curves colored in gray are given a “no call” B. Corresponding 2D transformation
scatter plot for visualization purposes. The three gray points in the space between the wild-type and homozygous mutant ellipses are the points that
correspond to the “no-call”melt curves.

doi:10.1371/journal.pone.0143295.g004
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Discussion
HRM was introduced in 2003 as a fast and effective way of genotyping [4,15], yet the classifica-
tion of genotypes on currently marketed PCR and HRM instruments still requires a level of
interaction by a trained user. The genotype call may vary depending on certain settings or
parameters chosen by the user. With our software, the genotyping is fully automated, not
requiring any user interaction with the data. In a high throughput lab or a point of care envi-
ronment, user interpretation of melt curves should not be required. In serial PCR and melt
instruments, particularly ones with reflexive testing where the result of one assay dictates the
next assay to run, users need to be kept out of the loop.

Historically, differences in the melting temperature, TM approximated by location of deriva-
tive peaks have been used to separate wild-type and homozygous mutants, and the presence of
a second peak causing a shape change is used to identify heterozygous mutants [4,15]. There is
more to a melt curve signature than a single TM value that may enable us to differentiate homo-
zygotes [2,9]. Melt data can be fit to thermodynamic models through nonlinear least squares
where the sum squared error (SSE) between the model and data is minimized. Here enthalpy,
florescence amplitude, a decay constant and a fluorescence offset in addition to TM are identifi-
able parameters that can fully describe the dynamic region of a melt curve [16,17]. However,
model equations and number of parameters vary depending on the genotype, or number of fea-
tures. Furthermore, resulting fit parameters may not be ones that yield the lowest SSE, and the
process can be slow due to its iterative nature. We made no model assumption in the method
described here.

We decided to use the correlation coefficient of the derivative of a large segment of melt
curve with respect to average melt curves of each possible known genotype as a quantifier. The
software also statistically determines the probability that an unknown DNA sample belongs to
each of the possible known genotypes. In the methods described to calculate posterior proba-
bilities for genotyping or to estimate the misclassification rate by Monte Carlo simulation, the
number of parameters is equal to the number of classes or genotypes which is 3 in the each of
the four assays here. The same computation methods apply in multiplexing cases where the
number of classes of melt curves can exceed 3. HRM curves of all unknown DNA genotypes
are treated the same regardless of shape, number of peaks or features in the derivative of the
melt curve.

As others have done, we have also shown temperature shifting necessary to account and cor-
rect for inter-plate temperature gradients as shown in Fig 2. This form of temperature shifting
preserves the change in melting temperature between different genotypes, but controls for tem-
perature measurement variability from run to run. Lower variance in parameters for samples
within a genotype may be obtained by performing temperature shifts to control for tempera-
ture measurement bias and variability across the well plate (intra-plate). TM bias as a function
of well plate location has been demonstrated in the past as the temperature in all wells are mea-
sured by a single temperature sensor [6,18,19]. A unique temperature shift can be calculated
per DNA sample by populating multiple positive controls around each sample in checkerboard
fashion. Alternatively, internal temperature controls can be used in each assay where compli-
mentary oligonucleotides create an additional peak at a precise known temperature far from
the melt region for each DNA sample [20,21]. In the latter case, the temperature region used
for temperature shifting is different than the melt region used for genotyping.

Vertical normalization helps bring melt curves of the same genotype close together while
separating those from different ones. In the past, normalization techniques were used to
remove the monotonic decaying background fluorescence not associated with the dissociation
of DNA strands from the melt. After this process, fluorescence values start at 100% and end at
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0% and the derivatives of fluorescence start and end at 0 before and after the melt. Although
separating these two components of fluorescence is useful when using simulated mathematical
thermodynamic models to predict experimental ones based on assay design and experimental
conditions [22,23], we found simple scaling (with slope and intercept) to have zero mean and
unit standard deviation within a defined temperature range sufficient for the purpose of auto-
mated genotyping. Training data and validation data (blinded) have to be obtained from the
same type of instrument run under the same conditions. Scaling a signal does not alter its cor-
relation with another signal; however it does ensure that each curve in the training set is
weighed appropriately when calculating the ANCKG curves. To fully automate the genotyping
procedure, rather than have the user select the temperature range for genotyping, we developed
a Monte Carlo simulation procedure to automatically determine the range whereby the esti-
mated misclassification rate is minimized (see S1 Text). This quantifier is also useful in provid-
ing feedback to engineers and scientists developing new instruments and assays for
genotyping. Due to the overlap between CYP2C9�2 wild-type and homozygous mutant geno-
types demonstrated in Fig 4, and the three no-calls in Table 2 the CYP2C9�2 assay formulation
has since been modified to increase the separation of homozygous mutant and wild-type geno-
types through the introduction of unlabeled probes.

Supervised classification of HRM curves have been done before by a few researchers using
some form of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) [12],
or Supervised Vector Machine (SVM) learning [24], however the parameters derived from
melt curves and methods are different from what we describe.

LDA requires the assumption that the distributions of clusters for all genotypes have the
same covariance matrix in determining the posterior probabilities. In our methods, no such
assumption is required as it is not only conceivable, but likely that the covariance matrices of
different genotypes are quite different demonstrated by the different sizes and orientations of
ellipsoids and ellipses. With SVM, the distribution of parameters can be arbitrary (not defined
by an equation), however this makes the computation of likelihoods and probabilities associ-
ated with each genotype call difficult. Also, SVM is only directly applicable for classification
between exactly two genotypes, so multiple paired comparisons are required.

Any automated genotyping procedure requires that each dynamic melt curve be trans-
formed into a vector consisting of a finite number of parameters prior to employing the myriad
of classification techniques. The novelty in our procedure is in how we transform a dynamic
melt curve (fluorescence versus temperature profile) into a limited parameter set whereby each
of the parameters are normally distributed. For each melt curve, correlation values with respect
to each ANCKG are transformed to a spherical parameters, each of which are normally distrib-
uted shown by S1 Fig. This allows us to use the multivariate normal equation to calculate likeli-
hoods and posterior probabilities for each possible genotype.Our method is able to classify any
number of genotypes>1 where the number of parameters used to represent each melt curve
for classification is equal to the number of possible genotypes.

There are certain prerequisites and limitations to our classification procedure. Because we
make no mathematical model assumptions to what form each dynamic melt curve takes, an
ample training set of melt curves of known genotypes is required such that the estimated mean
and covariance matrices for each genotype match that of the general population. For the proce-
dure to work, the reagents and run conditions of the training set have to match those of the
unknown samples. When melt curves between different genotypes are close (they overlap
throughout the entire temperature range) such that the genotype with the largest posterior
probability does not exceed a predefined threshold, the algorithm does not make a call, how-
ever, the algorithm automatically decides on what’s to close to call based on this pre-defined
acceptable threshold. The threshold is predetermined by a clinical expert who weighs the risks
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of a no-call versus an inaccurate result for that particular assay given their frequencies of
occurrence.

Alternative transformation of the original correlation parameters from 3D to 2D provides a
visual cluster representation of melt curves of different genotypes in an intuitive manner. Ellip-
ses are generated from the training set, and each point represents a unique melt curve. The
triaxis define the maximum correlation boundaries between the point and the ANCKG of each
of the three genotypes. Although atypical, genotypes with the highest correlation and highest
posterior probability can differ when a point representing a sample is contained within the
edge of an ellipse that crosses over the one of the three axes. The identification of a melt curve
whose parameterized point representation is far away from training set distributions of known
genotypes represented by their ellipses and ellipsoids may be attributed to a new genetic variant
never seen before.

In conclusion, we have devised a machine learning algorithm to fully automate genotyping
of HRMmelt curves without user interpretation. We also devised a way to visualize genotype
clusters and distributions as 2D points and ellipses relative to an intuitive coordinate system
whose boundaries define regions of maximal correlation. Lastly we devised a Monte Carlo sim-
ulation method that yields an estimate of misclassification rate. This quantifier is important as
it allows the software to automatically determine optimal parameters such as temperature
range in which to perform analysis. It also gives feedback to the assay scientists and engineers
on the expected performance of the system through multiple iterations of development.

Supporting Information
S1 Fig. Flowchart of classification training procedure.
(TIF)

S2 Fig. Flowchart of validation (genotyping) procedure.
(TIF)

S3 Fig. Distribution of correlation coefficients of a group of wild-type normalized shifted
derivative curves against those of the A. average wild type, B. average heterozygous mutant,
and C. average homozygous mutant. The bottom plots show that following a transformation to
spherical coordinates (D, E and F) all parameters are normally distributed. Shapiro-Wilk nor-
mality test p-values are listed.
(TIF)

S4 Fig. Flowchart of visualization of training set as 2D ellipses.
(TIF)

S5 Fig. Visualization of each melt curve as a point in 2D space.
(TIF)

S6 Fig. Separation of CYP2C9�3 genotypes A. Shifted, normalized–dF/dT curves with train-
ing set genotype averages (black lines) B. Corresponding 2D scatter plot.
(TIF)

S1 Table. Posterior probability cross table.
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S1 Text. Optimal temperature range determination and quantification of misclassification
rate.
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Automated Classification and Cluster Visualization of HRMCurves

PLOS ONE | DOI:10.1371/journal.pone.0143295 November 25, 2015 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143295.s008


S2 Text. Visualization of High Resolution Melt curves as 2D clusters.
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