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Population structure can confound the identification of correlations in biological data. Such confounding has been recognized
in multiple biological disciplines, resulting in a disparate collection of proposed solutions. We examine several methods that
correct for confounding on discrete data with hierarchical population structure and identify two distinct confounding
processes, which we call coevolution and conditional influence. We describe these processes in terms of generative models
and show that these generative models can be used to correct for the confounding effects. Finally, we apply the models to
three applications: identification of escape mutations in HIV-1 in response to specific HLA-mediated immune pressure,
prediction of coevolving residues in an HIV-1 peptide, and a search for genotypes that are associated with bacterial resistance
traits in Arabidopsis thaliana. We show that coevolution is a better description of confounding in some applications and
conditional influence is better in others. That is, we show that no single method is best for addressing all forms of
confounding. Analysis tools based on these models are available on the internet as both web based applications and
downloadable source code at http://atom.research.microsoft.com/bio/phylod.aspx.
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INTRODUCTION
There is now clear recognition across several application areas that

population structure can confound the statistical identification of

associations. An area where this problem was recognized early is

the identification of coevolving traits. Felsenstein described the

problem and proposed a solution for quantitative traits [1], while

Ridley [2] and Maddison [3] described early solutions for discrete

traits. A specific application area involving discrete traits is the

identification of coevolving amino acids. Numerous researchers

recognized the problem and proposed solutions [4–11]. Yet

another area of application that recognized the problem is the

identification of Human Leukocyte Antigen (HLA) alleles that

mediate mutation of Human Immunodeficiency Virus type 1

(HIV-1) to escape T-cell epitopes. Recently, Bhattacharya et al.

[12] demonstrated the importance of correcting for population

structure in this domain. In all these application areas, the

population structure arises due to the phylogenetic relationships

among the species or individuals being studied.

Another important application area where population structure

can confound the identification of associations is genome-wide

association (GWA) studies [13,14]. Although a number of

candidate disease genes have been identified in this manner, there

has been a lack of reproducibility due in part to confounding by

common descent [15,16]. In these studies, the organisms studied

typically reproduce sexually, and hence population structure is not

due to phylogenetic relationships. Nonetheless, there is structure

due to non-random mating [17,18], and such structure may be

hierarchical [19–22] especially in self-mating organisms such as

Arabidopsis thaliana [23]. Numerous solutions have been proposed

including genomic control [24,25], structured association [26],

and other methods [27–30]. Several solutions address confounding

due to hierarchical structure [23,31,32].

In this paper, we examine in detail several methods that correct

for confounding on discrete data with hierarchical population

structure. To introduce these methods, let us consider how

confounding may arise when the population structure is due to

phylogenetic relationships. In particular, consider the problem of

identifying HLA-mediated immune pressure on HIV-1 intrahost

adaptation. Moore et al. [33] have suggested that the immune

pressure from the cellular arm of the immune system—in

particular, CD8+ T cells interacting with MHC-I epitopes

presented on the surface of infected cells—can exert substantial

selection pressure on HIV. If a particular HLA allele exerts

pressure on a certain amino acid in the HIV-1 genome, then we

would expect to see a correlation between whether an HIV

sequence has that amino acid and whether the patient infected

with that sequence has the HLA allele. To determine whether

these two variables are associated, we could count the number of

patients with and without the amino acid and with and without the

allele and apply a simple statistical test such as Fisher’s exact test.

This procedure, however, ignores the phylogenetic structure

among the sequences.

Suppose these sequences have the phylogeny shown in

Figure 1a. In essence, there are two clusters of sequences where

sequences within a cluster are similar to each other but quite

different from those in the other cluster. Now suppose we observe

that HLA allele X and amino acid Y are present in two sequences

on the upper cluster and absent in the two sequences on the lower

cluster, as shown in Figure 1a. The observations of the amino acid
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are well explained by the phylogeny alone and should not be

treated as independent observations. Consequently, the applica-

tion of Fisher’s exact test or some other test that ignores the

phylogenetic structure would overcount these observations when

determining the correlation of X and Y. Such overcounting could

produce false positives. In contrast, suppose our findings are as

shown in Figure 1b. Here, observing the presence and absence of

the amino acid in the same branch of the phylogeny is quite

surprising, until the observations of Y are taken into account. In

this case, the application of a simple test would undercount the

observations when determining the correlation of X and Y and

potentially produce false negatives—that is, phylogenetic structure

helps us to leverage the data to determine more associations than

we would have otherwise.

Simple statistical methods such as Fisher’s exact test assume the

data to be infinitely exchangeable or independent and identically

distributed (IID). Although sequence data and other biological

data are IID a priori, they are not IID once we learn their

hierarchical structure. Furthermore, as we have just seen, this

structure can easily confound the statistical search for associations

within such data.

An important point that has not been emphasized in previous

work is that different applications may involve different evolu-

tionary processes leading to different kinds of confounding and

requiring different solutions. For example, in one process, X and Y

coevolve according to the phylogenetic tree—any change in Y

during evolution influences the evolution of X, and vice versa.

Here, the phylogenetic tree serves as a confounder of X and Y in

the traditional sense—the tree is a hidden common cause of both

X and Y, leading to spurious correlations between X and Y when

the tree is ignored. In another process, only Y evolves according to

the tree and the influence of X on Y occurs only at the tips of the

tree. X need not evolve according to the tree or ‘‘follow the tree,’’

but instead can have any distribution, including one in which the

observations of X are IID. We refer to these two processes as

coevolution and conditional influence, respectively.

Both processes lead to confounding, as evidenced by the

example in Figure 1, which is agnostic about whether X follows the

tree. Each process, however, leads to a particular form of

confounding that, as we will show, requires a specific solution.

In this paper, we use a particular statistical model class known as

a generative model both to describe these processes and to address

each form of confounding that they entail. We describe the

undirected joint model of Pollock, Taylor and Goldman [5], which

represents the traditional confounding process where both X and Y

follow the tree, and our own conditional model introduced in

Bhattacharya et al. [12], which represents the confounding process

where only Y follows the tree. We show how these models can be

used to identify correlations among data when either form of

confounding is present. The basic idea behind the approach is to

determine the degree to which a generative model that includes

a correlation between X and Y explains the data better than

a model that uses only the phylogeny to explain the data.

Using synthetic data, we show that the coevolution model better

addresses the confounding of the coevolution process, and the

conditional model better addresses the confounding of the

conditional process. In addition, we apply these two models to

real examples, including the identification of escape mutations in

HIV-1 in response to specific HLA-mediated immune pressure

and the prediction of coevolving residues in an HIV-1 peptide,

and find that no one model is best for all applications.

So far, we have considered only phylogeny as a source of

hierarchical population structure. Nonetheless, we also will explore

the use of these generative models, which incorporate evolutionary

processes, to address hierarchical population structure in its more

general case. In particular, we apply these models to a genomic

search for genotypes that are associated with bacterial resistance

traits in Arabidopsis and show that they are effective.

We have implemented methods for fitting these models in

a package called PhyloD, which is available on the internet as both

a web based application and downloadable source at http://atom.

research.microsoft.com/bio/phylod.aspx.

RESULTS

Overview of models
The models that we describe are generative models, also known as

directed acyclic graphical models [34]. A generative model consists

of (1) a structure, a directed acyclic graph where nodes correspond

to variables and missing arcs specify probabilistic independencies

among the variables, and (2) a set of conditional probability

distributions, one distribution for each node. The probabilistic

independences specified by the structure of the graph allow the

joint distribution of the data to be written as the product over the

nodes of their conditional distributions. Given the structure of

a generative model, we can use observations for some (and not

necessarily all) nodes to infer the distributions (or parameters of the

distributions) of the model [34]. One common criterion for

inference, which we use here, is to identify the distributions that

maximize the likelihood of the data.

To represent the hierarchical population structure, our

generative models use the same machinery as that found in the

maximum-likelihood phylogenetic tree [35]. As we have discussed,

however, such hierarchical structure may not arise due to

phylogenetic relationships. Also, we note that the trees are built

from sequence data alone (see Methods and Discussion).

Single-variable model Before we consider models of

associations between variables, let us consider the situation

where a single variable Y with possible states present (y) and

absent (ȳ) is generated by a given phylogenetic tree. The structure

of the generative model, which is simply the series of branches in

Figure 1. Examples illustrating the (a) overcounting and (b) under-
counting of evidence for an association between X and Y.
doi:10.1371/journal.pone.0000591.g001
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the phylogenetic tree, is shown in Figure 2a. Nodes at the tips of

tree, labeled Y1, … , YN correspond to the observations of Y.

Unlabeled nodes in the interior of the tree correspond to events of

divergence. (Although each Yi and interior node corresponds to

a variable in the ordinary statistical sense, we sometimes refer to

the collection of variables—Y in this case—as a variable. The

proper meaning of the word should be clear from context.) As in

the probabilistic model of Felsenstein [35] for a phylogenetic tree,

we assume that the transition from state i to state j along

a transition with branch length t will occur with probability Pij(t)

that is determined by a continuous time Markov process (CTMP).

In our single binary variable case, the CTMP is parameterized by

a single rate parameter l, and the stationary probability p, the

probability of Y = y reached by the Markov process after an infinite

amount of time. The instantaneous rate of change from ȳ to y is l
p, yielding a transition probability matrix whose values as

a function of time t are given by

Pij(t)~
exp½{lt�zpj

:(1{exp½{lt�) if i~j

pj
:(1{exp½{lt�) if i=j,

�
ð1Þ

Where pj = p when j corresponds to the presence of Y, and

pj = 12p when j corresponds to the absence of Y.

As mentioned, given a set of observations for Y1, … , YN at the

tips of a tree, we choose the parameters p and l to be those that

maximize the likelihood of the data. Given values for these

parameters, the tree structure y (the series of branches and their

lengths), and the observed data DY, the likelihood L(DY|p, l, Y)

can be easily computed [35]. There are a number of methods for

identifying the maximum-likelihood parameters, including gradi-

ent decent and the Expectation-Maximization (EM) algorithm.

For this model and the others that we describe, we use coordinate

descent, iteratively maximizing the likelihood for each parameter

individually using Brent’s method [36].

This generative model is reversible, since piPij(t) = pjPji(t),

allowing us to work with an unrooted (or arbitrarily rooted) tree.

Also, this model includes the situation where the observations of

Y1, … , YN are IID as a special case (i.e., the limit as l tends to

infinity.)

Undirected joint model Now let us consider two binary

variables X and Y that evolve according to a given phylogenetic

tree. Our first association model for X and Y, called the undirected

joint model, assumes that X and Y coevolve according to the tree

such that, throughout the course of evolution, a change in either

variable can influence the evolution of the other. This generative

model can be thought of as a single-variable model for a variable

XY representing the cross product of X and Y with the four states:

xy, xȳ, x̄y, xy. The undirected joint model has five parameters: two

rate parameters lX and lY, and three parameters pxy, pxȳ, px̄y, and

pxy representing the stationary distribution of XY. The

instantaneous rate matrix Q is given by

Qij~

xy

xy

xy

xy

{
P

lY pxy=px lX pxy=py 0

lY pxy=px {S 0 lX pxy=py

lX pxy=py 0 {
P

lY pxy=px

0 lX pxy=py lY pxy=px {
P

0
BBB@

1
CCCA, ð2Þ

where the diagonal entries assure that the rows sum to 0. Given

a particular branch with length t, we can compute the probability

that one instance of XY transitions to another by determining

P = exp[Qt], which can be computed using standard numerical

Eigen-decomposition techniques [36].

This model, first presented by Pollock and colleagues [5], treats

X and Y symmetrically so that the influence of X on Y and Y on X

is ‘‘undirected,’’ hence our name for the model. In Methods, we

describe an alternative model for coevolution in which the

relationship between the two variables is asymmetric or directed.

To determine the significance or strength of the correlation

between X and Y, we determine how much better this model

explains the data than a null model in which each variable

independently follows the single-variable model described in the

previous section. We use both frequentist and Bayesian methods to

determine the degree to which the non-null model better explains

the data. In the frequentist case, we compute a p-value using

Figure 2. Two generative (graphical) models. (a) The single-variable model for Y. (b) The conditional model for Y given X. The variable Zi represents
the variable Yi had there been no influence from Xi. Observed variables are shaded. Conditional probability distributions are not shown.
doi:10.1371/journal.pone.0000591.g002
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a likelihood ratio test, which is justified as the null model is nested

within the non-null model. We control for multiple tests using q-

values, which are estimates of one minus positive predictive value

(see Methods). In the Bayesian case, we use the Bayesian

Information Criterion (BIC) to select the alternative model over

the null (see section on model evaluation and comparison).

Conditional model In some situations, it may be reasonable to

assume that Y follows a tree, but that X does not follow the same tree

(or any tree at all), and that the influence of X on Y occurs only at the

tips of the tree. In this situation, we sometimes refer to Y as the target

variable and X as the predictor variable. This situation may arise if,

for example, Y represents the amino acid at a particular position in

a sequence and X represents an environmental variable that we

suspect may be a source of selective pressure on X, as in the case

where we are looking for HLA alleles that exert pressure on specific

HIV-1 molecules to select for escape mutations. Whereas the amino

acid likely follows the phylogenetic tree of the protein it is in, it is

unreasonable to expect the HLA allele to follow that same tree

(except perhaps at the clade level, where HLA alleles may be

distributed similarly to the clades of the HIV species tree due to

similar geographic constraints). Furthermore, although we expect

that HLA pressure acts continually throughout evolution, this

pressure could be distributed randomly along the evolutionary paths,

and consequently the influence of the known HLA of the patient

would only appear at a tip of the tree.

We present a model that captures this notion in Bhattacharya

et al. [12]. The model is a single-variable model for the target

variable Y, modified to include the influence of X at the tips of the

tree. Consider the single-variable model for Y as shown in

Figure 2a. To construct the conditional model for Y given X,

shown in Figure 2b, we first change each Yi to Zi, which represents

what Yi would have been had there been no influence from Xi. We

then make each Yi a probabilistic function of Xi and Zi, encoding

this function with a probability matrix. There are four possible

single-parameter transition matrices:

Escape X = x increases the probability of yRȳ transi-

tions,

Attraction X = x increases the probability of ȳRy

transitions,

Reversion X = x̄ increases the probability of ȳRy

transitions,

Repulsion X = x̄ increases the probability of yRȳ

transitions.

As in the undirected joint case, we can use both frequentist

(likelihood ratio test) and Bayesian (BIC) methods to determine the

degree to which each of these models better explains the data for Y

than does the single-variable model for Y. Note that we do not

need to consider the explanation of the data for X, as the model is

a conditional one.

Although it is possible that, for example, both escape and

reversion processes are acting at the same time, we have found that

allowing for two or more processes at the same time dramatically

reduces the power of these models. Consequently, in our

experimental evaluations, for any given pair of variables, we

choose one model from the set above that best explains the data

for those variables. We can use both frequentist and Bayesian

methods for making this choice. In the frequentist case, we choose

the model with the lowest q-value. In the Bayesian case, we choose

the model with the largest BIC score.

The conditional model is reversible in the sense that the choice

of root node among non-tip nodes does not affect the likelihood of

the data. We also note that this model is a (discrete) mixed-effects

model, wherein the predictor variables Xi correspond to the fixed

effects and the hidden variables Zi correspond to the random

effects [37].

Model evaluation and comparison
We evaluate and compare our models on both synthetic and real

data sets. On synthetic data, we examine two questions. One, does

taking hierarchical population structure into account improve the

analysis? For example, when we generate data from an undirected

joint or conditional model, do these models perform better than

Fisher’s exact test (FET), which assumes the data to be IID? Two,

when we generate data from an undirected joint model, does that

model better fit the data than the conditional model, and vice-

versa?

We use two criteria to measure the performance of a model.

First, we measure the ability of the model to discriminate true from

false correlations via plots of true positive rate versus one minus

positive predictive value. In particular, we compute a q-value for

every pair X–Y that we test, and deem every test with a q-value less

than some threshold q0 to be a real association. We then use the

known true and false associations in the synthetic data to compute

true positive rate and one minus positive predictive value for that

threshold. Finally, we allow q0 to vary, producing a discrimination

curve. We compute the significance of the difference between two

curves by comparing the difference in the areas under the curves

against a null model estimated by a permutation test (see

Methods). Second, we measure the calibration of the model—that

is, the degree to which the q-value is a good estimate of one minus

the positive predictive value. Note that the discrimination curves

are independent of calibration, as any monotonic transformation

of the threshold used to compute a curve (q-values in our case)

leaves the curve unchanged.

On real data, we examine whether the undirected joint model

or conditional model better represents the data. Because we don’t

know whether a discovered association is real or not, we cannot

use the discrimination curve or calibration criterion to evaluate

performance. Furthermore, because neither model is nested within

the other, we turn to Bayesian methods—in particular, the

Bayesian Information Criterion (BIC)—for comparison. The BIC

score for a model with maximum-likelihood parameters ĥ and

d free parameters is given by log p(datajĥh,model){
d

2
log N. The

BIC is an asymptotic approximation to the marginal log likelihood

of a model, a Bayesian measure of how well the model represents

the data.

To compare the conditional model, a model for Y given X, with

the joint model, a model for X and Y, we compare the sum of the

overall BIC scores for the conditional model and the single-

variable model for X with the overall BIC score for the joint

model. The overall BIC score for the conditional model is the

highest BIC score among the conditional models (escape,

attraction, reversion, and repulsion) and the independence model.

The overall BIC score for the undirected joint model is the higher

of the BIC scores for the undirected joint model and the

independence model. To test whether there is a significant

difference between the overall scores for the conditional and

undirected joint models, we apply a two-sided, paired Wilcoxon

test to these scores across all X–Y pairs in the data.

In our applications, we sometimes find it useful to test whether

a variable Y follows a given tree. To do so, we calculate the difference

in BIC scores for the ordinary single-variable model for Y and

a model that assumes the observations of Y1, … , YN are IID (a

single-variable model for Y with lR‘). We say that Y follows the

tree if the difference in scores is greater than zero.

Hierarchical Structure
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Experiments with synthetic data
We constructed two synthetic data sets, one generated by the

process of conditional influence (i.e., by a conditional model) and

the other generated by coevolution (i.e., the undirected joint

model). The data sets representing conditional influence and

coevolution were patterned after the real data sets of Application 1

(effects of immune pressure on HIV mutation) and Application 2

(pairwise amino-acid correlations), respectively. In particular, the

sample size (N) and number of tests in the data sets were those of

the corresponding applications. In addition, the number of

variable pairs that were and were not correlated was also

patterned after the real data, and the parameters of the generating

model for conditional influence (coevolution) were taken from

those of a conditional (undirected joint) model fit to the real data.

The predictor (HLA) observations for the data set reflecting

conditional influence were generated from an IID model.

As expected, when the data were generated according to the

undirected joint model, the joint model was most discriminating,

followed by the conditional model (p = 0.042) and FET (p,0.0001;

Figure 3). The q-value calibration of the joint model was slightly

better than the conditional model, whereas FET was poorly

calibrated (Figure 4). Conversely, when the data were generated

according to the conditional model, the conditional model was

most discriminating, followed by FET (p = 0.12) and the un-

directed joint model (p = 0.0013; Figure 5). Both the conditional

and joint models were well calibrated, whereas the q-values of FET

tended to overestimate one minus positive predictive value

(Figure 6). Thus, not only did taking hierarchical population

structure into account improve the analysis, but the two models

could distinguish between the processes of coevolution and

conditional influence.

In both examples, the q-values from FET were liberal—that is,

the q-values underestimated the false positives rates. Although we

always expect liberal estimates when the data are generated by

coevolution because the tree is a hidden common cause of X and

Y, when only one variable follows the tree, the variance of FET’s p-

values will increase due to over- and under-counting, leading to an

unpredictable q-value calibration. Indeed, on other data sets, we

have seen FET produce both liberal and conservative estimates of

one minus positive predictive value.

To validate our use of BIC to evaluate model performance on

real data, we compared the BIC scores of the undirected joint and

conditional models on the synthetic data sets representing

conditional influence and coevolution. As expected, we found

that the conditional model had a significantly higher score than

the undirected joint model on the conditional-influence data set

(p = 7.6610253, N = 157317), and the joint model performed

better model on the synthetic coevolution data set (p = 0.06,

N = 10025).

Figure 3. Discrimination curves for synthetic coevolution data. The
data closely resemble pairwise amino-acid association data (Application
2).
doi:10.1371/journal.pone.0000591.g003

Figure 4. Calibration of q-values on synthetic coevolution data.
Computing q-values for Fisher’s exact test using parametric bootstrap
results in poor calibration.
doi:10.1371/journal.pone.0000591.g004

Figure 5. Discrimination curves for synthetic conditional influence
data. The data closely resemble the HLA-amino-acid association data
(Application 1).
doi:10.1371/journal.pone.0000591.g005
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Finally, we note that, over a wide variety of data sets, the

conditional model runs an order of magnitude faster than the

undirected joint model, which requires optimization over a larger

number of parameters and more complex Eigen decompositions.

Sensitivity to tree structure Our approach raises the

question of how sensitive the results are to the structure of the

tree used by the models. To address this question, we ran the

conditional model on the synthetic conditional influence data

using four different trees: the tree used to generate the data (Tgen),

a tree with the same structure as Tgen but with the leaf-to-patient

assignments randomized (Trand), and two trees reconstructed from

the synthetic amino acids using either a generalized maximum

likelihood method (TML, the method we use throughout this work )

or a naı̈ve parsimony method (Tpars).

As expected, the conditional model performed best using Tgen,

though the discrimination curves were not significantly different

from those of TML and Tpars, indicating that the conditional model

is robust to variations of the tree on this data set (Figure 7).

Importantly, although the discrimination curve was significantly

worse using Trand rather than Tgen (p = 0.016), the conditional

model was calibrated on all four trees, indicating that, on this data

set, poor trees resulted in a loss of power but not in an inflation of

false discovery rates (Figure 8). This point is reinforced by the

number of associations identified at q,0.2 for the different

methods: Tgen yielded eighty nine predictions whereas Trand yielded

only sixty five, TML yielded seventy eight, and Tpars yielded eighty

two. The positive predictive value for these predictions ranged

from 0.80 to 0.85.

Although it may seem counter-intuitive that the randomized

tree could find any associations, we note that the problem with the

conditional model using Trand is analogous to that of an IID model.

Namely, whereas an IID model will over or under count

observations by not accounting for hierarchical structure that

exists in the data, a randomized tree will over or under count

observations by assuming false hierarchical structure. In addition,

the conditional model can compensate for a tree that fits the target

data poorly by setting the mutation rate to infinity and thereby

assuming the data to be IID. Indeed, the median l value under

Trand was an order of magnitude higher than that under Tgen.

Application 1: Effect of immune pressure on HIV

evolution
To investigate the effects of immune pressure on HIV evolution,

Moore et al. [33] obtained HIV sequences from 234 individuals

along with the HLA-A and HLA-B alleles of the infected

individuals. Performing several analyses, none of which explicitly

Figure 6. Calibration of q-values on synthetic conditional influence
data.
doi:10.1371/journal.pone.0000591.g006

Figure 7. Discrimination curves for conditional models based on
different trees applied to synthetic conditional influence data.
doi:10.1371/journal.pone.0000591.g007

Figure 8. Calibration of q-values for conditional models based on
different trees applied to synthetic conditional influence data.
doi:10.1371/journal.pone.0000591.g008
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incorporated phylogenetic structure, they found strong correla-

tions between the presence or absence of amino acids at particular

positions and the presence or absence of particular HLA alleles in

the infected patients, presumably reflecting the ‘‘escape’’ of amino

acids under immune pressure. In Bhattacharya et al. [12], we

analyzed a similar data set (N = 96, MHC-I and MHC-II alleles)

and showed that use of the conditional model substantially

improved the accuracy of identification of such amino-acid-HLA

associations. Here, we analyzed a superset (N = 205) of the data

used in [12] (MHC-I alleles only) using both the conditional and

undirected joint model.

First, we constructed a phylogenetic tree from the full set of

sequences (see Methods). We then used the single-variable model

to determine whether any HLA alleles followed the tree. We found

that two pairs of HLA-1 alleles—B*4201, Cw*1701, and A*0207,

B*4601, where each pair is in tight linkage disequilibrium—

followed the tree and thus separated the HLA data into two sets:

(1) ‘‘C1701’’ consisting of these four alleles and (2) ‘‘notC1701’’

consisting of the remaining alleles, and analyzed these two sets

separately.

Our results using BIC show that the conditional model better

explains the notC1701 data, (p = 0.0001, N = 256296 ) whereas the

undirected joint model better explains the C1701 data

(p = 1.9610224, N = 5664). In the case of the C1701 data, it seems

that the phylogenetic tree is more a confounder of the data in the

traditional sense, wherein the tree is associated with both the HLA

data and the sequences and induces false correlations between

HLA allele and sequence.

In this application, we were fortunate that additional in-

formation was available to help confirm the HLA-sequence

associations that we found. In particular, a known epitope in the

vicinity of a found association supports the validity of that

association, as immune pressure is focused on epitopes and the

immediate surrounding regions that participate in the presentation

of the those epitopes on the HLA molecules at the cell surface [38].

Thus, we constructed discrimination curves where an HLA-

sequence association was considered ‘‘true’’ if it is within three

amino acids of a known epitope (as described in the database at

www.hiv.lanl.gov as of July 2006) with the corresponding HLA

allele and ‘‘false’’ otherwise. This ‘‘bronze’’ standard does not take

into account undiscovered epitopes or linkage disequilibrium, but

should nonetheless be unbiased with respect to a comparison of

the alternative methods for identifying associations. The discrim-

ination curve in Figure 9 for the notC1701 data is consistent with

the BIC and synthetic results, indicating that the conditional

model best fits this data. We could not construct a discrimination

curve for the C1701 data, as there are no known A*0207, B*4201,

B*4601, or Cw*1701 epitopes in Gag.

The associations found by the conditional model with q,0.2 on

the real data are shown in Table 1.

Application 2: Pairwise correlations between amino

acids in HIV
Identification of pairwise correlations between amino acids is

important to many areas of biology, as correlations can indicate

structural or functional interaction [11,39]. Many methods,

including the undirected joint model [5], have been developed

to identify correlated residues.

Continuing our focus on HIV, we applied both the undirected

joint and the conditional model to the sequence data from the

Western Australia cohort [33]. We concentrated on the HIV-1 p6

protein, which is cleaved from the Gag55 polyprotein. This fifty

two amino-acid protein was chosen because it is the shortest HIV

protein, making pair-wise amino acid tests feasible for all models.

We fit the conditional model in both directions (making both X

and Y target variables), and selected the best model according to

BIC.

Remarkably, the BIC scores of the conditional model are

significantly higher than those of the joint model (p,102100,

N = 52767). We suspect that the conditional model may be better

because many mutations could be compensating for other

mutations driven by HLA immune pressure. The conditional

model finds that 893 of the 52767 (1.7%) amino acid pairs, and

310 of 1300 (24%) of position pairs, are correlated at q,0.2. This

dense network of interactions is consistent with the idea that many

of the mutations are compensatory in nature. For example, the

conditional model identifies two HLA-mediated escape mutations

in p6 (Table 1). Mutations at these two positions account for forty

two (13.5%) of the position-pair correlations.

We have developed a tool for visualizing the network of

dependencies (Figure 10). The visualization highlights at least one

potentially interesting set of interactions. In particular, R16 is

strongly correlated with residues at positions 21 through 36, many

of which are correlated with each other as well as with residues

Table 1. Predicted HLA-amino acid associations in Gag.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pos HLA p q

242 B*5701 4.3E-08 ,0.03

28 A*0301 1.5E-07 ,0.03

242 B*5801 3.2E-06 0.03

147 C*0602 5.0E-06 0.03

26 C*0303 6.9E-06 0.05

482 B*4001 2.8E-05 0.10

397 A*3101 3.8E-05 0.13

495 B*4701 6.9E-05 0.17

doi:10.1371/journal.pone.0000591.t001..
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Figure 9. Discrimination curves for the real HLA-amino-acid data.
Ground truth was estimated by identifying known epitopes within three
residues of the predicted association.
doi:10.1371/journal.pone.0000591.g009
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throughout the protein. This complex network of interactions

connects the two a-helix domains of p6 [40] and may be of

structural or functional significance.

Application 3: Genomic search for genotype-

phenotype associations in Arabidopsis thaliana
Aranzana et al. recently demonstrated the potential utility of

genome wide association (GWA) studies, as well as the importance

of accounting for hierarchical population structure [23]. In this

study, the authors genotyped 848 loci in ninety six Arabidopsis

thaliana strains and looked for haplotypes that were correlated with

hypersensitive response to P. syringae strains expressing one of three

avirulence (avr) genes (avrRpm1, avrRpt2, or avrPph3). In plants,

each avr bacterial protein is recognized by a corresponding

resistance (R) gene. If both plant and pathogen have active copies

of the respective avr-R genes, a biochemical cascade is triggered at

the point of infection, leading to massive programmed cell death

Figure 10. Correlated amino-acid pairs in HIV-1 p6. The fifty two consensus amino acids of P6 are drawn as a circle, with the N-terminal end shown
at the far right and the protein extending counter-clockwise. Each arc represents an association predicted by the conditional model that is significant
at q,0.2. Arc color reflects the q-value of the association. Dark gray residues denote positions where there were fewer than three sequences with
a non-consensus residue. The associations used to construct the figure are available as Dataset S1. Annotations of individual residues are: P,
phosphorylated residue; Ub, site of ubiquitinization; +/2, charged residue.
doi:10.1371/journal.pone.0000591.g010
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and containment of the infection (for review, see [41]). Using both

an IID-based model and a method that used the hierarchical

population structure that was constructed from the sequenced loci,

the authors showed that loci adjacent to the known R genes are

highly correlated with the corresponding avr phenotypes. Un-

fortunately, the authors noted that their statistics were poorly

calibrated, precluding confident predictions of the other pathogen-

response proteins that are involved in the hypersensitive response

cascade. Here, we apply our well-calibrated methods to the same

data, using a genetic-similarity tree constructed from the sequence

data.

Although Arabidopsis is a sexually reproducing species, it is highly

selfing, meaning that organisms primarily mate with themselves.

As a result, the population structure induced is hierarchical and

bears striking resemblance to a phylogenetic tree. Aranzana et al.

found that a tree built from pairwise similarity matrices on shared

alleles provided a good qualitative description of both the

geographic distribution of the organisms and the distribution of

avr and flowering time alleles [23]. Quantitatively, we found that

sixty one percent of the haplotypes and two of the three

phenotypes followed the ‘‘phylogenetic’’ tree constructed from

the sequence data.

When applying our conditional model to this application, it is

not clear whether the target variables should be haplotypes or

phenotypes. In general, genetic variations directly influence

phenotypes, but phenotypes also indirectly influence haplotypes

through selection pressure. As two thirds of both variables followed

the tree, we ran the conditional model in both directions, once

using the phenotypes as the target and once using them as the

predictor, using BIC to determine which direction was best for any

given haplotype-phenotype pair.

We found that the BIC scores for the conditional and

undirected joint models were not significantly different (p = 0.70,

N = 14043). Consequently, we arbitrarily choose to examine the

results of the conditional model in detail. Figure 11 shows the

genome wide distribution of conditional influence q-values for each

of the three phenotypes. For each phenotype, the most significant

association is a locus near the corresponding R gene. We

constructed this figure to be similar to the one in Aranzana et al.

to facilitate comparison.

Our synthetic tests indicate that the conditional method is well

calibrated, implying that roughly 80% of the associations we find

with a q,0.2 cutoff should be legitimate. To explore this

implication, we took the fifty one genotypic associations (compris-

ing forty unique loci) that correlate with these three hypersensitive

phenotypes at this cutoff, and noted which of the associated loci

were near known or putative bacterial response proteins according

to http://www.arabidopsis.org. Our standard of ‘‘true positive’’

Figure 11. Genomic distribution of genotype-phenotype association scores for Arabidopsis bacterial response. 4681 haplotypes were compared
against each of the three bacterial response phenotypes, Rpm1 (top), Rpt2 (middle) and Pph3 (bottom). For each haplotype, the four conditional
models were run and negative log10 of the most significant q-value is plotted. For each phenotype, the most significant association is a locus within
10 kb of the corresponding R gene (yellow lines). The dotted line shows the q = 0.2 threshold.
doi:10.1371/journal.pone.0000591.g011
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was defined to be proximity to a protein whose description

included the phrase ‘‘disease response’’ (see Methods). We found

that twenty three (45%) of the predictions were within fifty

kilobases (kb) of such proteins. This ‘‘bronze’’ standard un-

doubtedly contains false positives and false negatives, and

therefore cannot be used to confirm that our methods our

calibrated. Nonetheless, we easily can reject the null hypothesis

that these twenty three associations are found near disease-

response proteins by chance (p,0.0001).

Related work
Evolutionary biologists have long been interested in studying

correlated traits in the midst of population structure due to

phylogenetic relationships (for reviews, see [42,43]). For associa-

tion studies on continuous variables, the method of choice has

been to use independent contrasts [1]. In this method, the data are

assumed to be derived from a Brownian motion (or other

Gaussian) model of evolution and the n samples are converted to

n21 differences between adjacent nodes in the tree, with the

variance of the differences computed according to the branch

lengths of the tree. The resulting differences are independent,

allowing for regression tests between two traits. This method is

effective and well used, but is appropriate only for continuous

data. For discrete data, early work focused on reconstructing

ancestral states using parsimony and looking for correlations

between transitions [2,3]. Pagel [4] presented a maximum likeli-

hood approach that averages over all possible configurations of the

internal nodes. Pollock, Taylor and Goldman [5], which we study

here, is a reversible version of Pagel’s method.

Population structure in biological data has also been addressed

in the area of GWA studies. There are rather different approaches

in this community that have been used to compensate for

population structure. A more commonly used approach attempts

to recalibrate standard statistics by normalizing results according

to the distribution of the statistic across the entire genome [24,25].

As we have seen, solutions to calibration are insufficient, as

population structure also affects discriminatory power. Another

approach assumes population structure is flat and can be captured

by a small number of (perhaps overlapping) clusters or continuous

hidden variables [26–30]. Although these methods increase

discriminatory power relative to simple IID models, there is

mounting evidence that population is hierarchically structured.

For example, in addition to high level geographical/social

constraints, structure exists within a number of subpopulations

that have been studied [19–22]. It stands to reason that, if

hierarchical models describe the data better than flat cluster

models, then such models will have higher discriminatory power.

Thus, several authors have suggested that a more accurate

approach would be to model population structure hierarchically

[23,31,32]. Aranzana et al. described one such model in their

Arabidopsis study. As mentioned, however, they found that their

model was not calibrated and their data precluded a discriminatory

power analysis. Yu et al. extended the linear mixed-effects model of

Kennedy et al. [31], in which hierarchical population structure is

modeled with random effects. The approach is well calibrated, but

is typically inappropriate for discrete data.

Similar to what happened in the GWA community, those

studying amino acid coevolution initially ignored the phylogenetic

structure of the protein sequences [44–47], but came to recognize

that phylogeny played a confounding roll [10,48,49]. A number of

methods emerged that attempted to calibrate p-values based on

global or local measures of average similarity [6–9] or flat clusters

based on early bifurcations of the phylogenetic tree [11]. One

approach that explicitly incorporates the phylogeny is the

parametric bootstrap, in which standard IID models are

recalibrated by generating independently evolved amino acids

according to the single variable model [10,11]. On our synthetic

coevolution data, we found this approach to be too severe,

resulting in overly conservative q-value estimates (see Figure 5).

DISCUSSION
We have identified two evolutionary processes that can confound

association analyses and have defined two corresponding gener-

ative models for discrete data that can correct for and even

leverage the existence of these processes. We have found that

explicitly modeling evolutionary processes increases discriminatory

power and results in well-calibrated estimates of one minus

positive predictive value. We have implemented methods for

fitting these models to data and a tool for visualizing the results of

the analysis. These tools are available on the internet.

The undirected joint model assumes that the two variables

coevolve such that a mutation event in either variable can elicit

a corresponding change in the other variable. In contrast, the

conditional model assumes that a single variable is distributed

according to the tree and is influenced by the predictor variable

only at the tips of the tree. Of course, other evolutionary processes

are possible. In Methods, we describe a third process in which

variables coevolve, but only one variable influences the evolution

of the other.

Neither the undirected joint nor conditional model outper-

formed the other on all real data sets, suggesting that both models

should be considered when analyzing new data. Nonetheless, the

conditional model better fit most of the real data that we analyzed.

The conditional model better described the effects of immune

pressure on HIV evolution, and perhaps more surprising, better

described the correlation between HIV-1 p6 amino-acid pairs.

This observation may be due to the rapid evolution of HIV and

positive selection pressure from the immune response in

conjunction with compensatory mutations in the observed

sequences.

Our study has focused on the correlation of discrete (specifically

binary) variables. Generalization to multistate variables is

straightforward, although may suffer a loss in power. Our methods

can also be generalized to continuous and/or discrete predictor

and target variables. When the target variable is continuous, the

conditional model is a special case of a linear mixed-effects model

(K.M. Kang, N. Zaitlen, C.M. Wade, A. Kirby, D.H., M.J. Daly

and E. Eskin, submitted). The conditional model can also be

generalized to situations with multiple predictor and target

variables, thus producing a directed network (acyclic or otherwise)

of relationships among multiple variables. Potential applications of

multiple predictor variables include learning the combined effects

of drug and immune pressure on HIV evolution, identifying chains

of compensatory mutations, learning the influence of diploid genes

on phenotype, and learning networks of interacting genes and

proteins. Finally, one could also use the undirected joint or

conditional models to learn the structure of phylogenentic or

hierarchical relationships rather than learning the tree structure

with standard methods that ignore correlations.

The problem of population structure confounding association

studies is a ubiquitous problem across many biological disciplines.

Existing solutions vary across these disciplines, but typically focus

on correcting for shared population structure. As we have seen,

however, population structure in either variable can lead to loss of

discriminatory power and poor statistical calibration. The

flexibility and intuitive nature of generative models makes them

a natural and powerful choice for dealing with a variety of

biological processes.
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METHODS

Data sets
We obtained HIV aligned sequences and HLA data from the

Western Australia cohort (HIV sequence accession numbers

AY856956–AY857186 and EF116290–EF116445) [33,50]. We

noted some anomalies in the alignment of p6 and corrected them

by hand. We constructed the phylogenetic tree for Applications 1

and 2 from the full Gag DNA alignment by applying PHYML [51]

with the general reversible model, optimized tree topology,

maximum likelihood estimates for the base frequencies, estimated

proportion of invariable sites, and four substitution rate categories

with an estimated gamma distribution parameter. When identi-

fying associations, we binarized amino acids, such that a single

association test compared the presence or absence of the residue in

question. Ambiguous codons were treated as uncertainties. For

example, if a codon was X or Y, then it was treated as unknown for

codon X, but known to be false for any codon not equal to X or Y.

The Arabidopsis data set was taken from Aranzana et al. [23].

We built the genetic-similarity tree using PHYML from a set of

sequences consisting of positions in the locus alignments for which

at least two sequences differed from the consensus. Following [23],

for each genotyped locus, we defined haplotypes according to

sequence identity after removing positions for which only one

sequence varied from the consensus. All sequences that accounted

for less than five percent of the data were clustered together.

Synthetic data sets We generated synthetic data to

approximate real data as closely as possible. In the case of

synthetic conditional influence, we first ran the conditional model

on the real HLA data set to obtain reasonable parameter values.

To generate predictor variables, we permuted the real HLA alleles

to ensure the data were IID. For each association in the real data

set, we generated synthetic target data in one of two ways: (1) if the

association was significant (q,0.3), we took the corresponding

HLA allele and the parameters learned on the real allele-amino

acid pair and generated data for the target variable; otherwise (2)

we generated the target variable data using the parameters learned

by the single-variable model. Because there were only twenty six

significant associations, we generated five synthetic associations for

each real association. For each replicate, we chose a different HLA

allele, using the five HLA alleles whose frequencies most closely

matched that of the real HLA allele on which the association was

based.

In the case of coevolution, we first fit the undirected joint model

to the HIV p6 data set, and then generated synthetic associations

using the learned parameters. For these data, we generated one

synthetic association for each real association (q,0.3). For all non-

significant real associations, we generated the predictor and target

variables using the single-variable model with the parameters

learned by that model on the real data.

Inferring trees from synthetic data When analyzing the

sensitivity of results to tree structure, we needed to infer a phylogenetic

tree from synthetic data. To do so, we constructed binary sequences

from the synthetic target variables, such that each position in the

binary sequence corresponded to a target variable. We then used the

PHYML software as described above for real data to infer

a maximum likelihood phylogeny. In addition, we used the

dnapars program from the PHYLIP package [52] to infer

a phylogeny using parsimony. We ran dnapars using default

settings, with the exception that only a single tree was optimized.

Computing q-values
The independence (null) models are nested inside the undirected

joint and conditional models and contain one less parameter.

Therefore, the asymptotic distribution of the log-likelihood ratio is

x2-distributed with one degree of freedom from which p-values can

be computed. Simple p-values are, however, of limited use in the

context of high levels of multiple hypothesis testing. Whereas

a Bonferroni correction could be used to limit false positives, the

high number of tests (typically in the tens or hundreds of

thousands) forces an almost complete loss of power. Consequently,

we used q-values to control for multiple tests. To compute a q-

value, we first computed a False Discovery Rate (FDR), which

measures the expected fraction of true positives for any given p-

value threshold p0 [53]. For a given p0, we estimated FDR to be

the ratio of the expected number of associations with p,p0 under

the null distribution to the observed number of associations with

p,p0 in the real data. In our experiments, we generated ten

associations under the null model for each examined X–Y pair to

compute the expectation under the null. (As described by, e.g.,

Storey and Tibshirani [54], the true FDR should be computed

using null data that is generated only from observed values from

which clearly non-null data have been removed. As only a small

number of tested associations were real in our applications, the

inclusion of null data generated from these associations introduced

a small, conservative bias in our computation of FDR.) We then

computed the q-value as the minimum FDR seen for pi$p0 [54].

This guaranteed q to be a monotonic increasing function of p0. (In

general, FDR is expected to be a monotonic function of p0, but is

rarely monotonic in practice due to, e.g., variance in the statistic.)

Generating null data When testing for an association

between variables X and Y, null data can be generated in one of

four ways: permute the observations of X, permute the

observations of Y, parametrically bootstrap observations for X,

or parametrically bootstrap observations for Y. The best method—

the one that most accurately constructs the null data—will depend

on the data set being analyzed. For example, suppose we have data

where both the predictor and target variable follow a given tree.

Here, we should parametrically bootstrap observations for either

the target or predictor variable, as doing otherwise would produce

data that no longer follows the tree, introducing a bias in the null

data. In contrast, suppose observations of the predictor variable

are IID but observations of the target variable are not well

described by the tree. Here, we should permute the observations of

the predictor variable because (1) they remain IID under

permutation and (2) a parametric bootstrap of the target

variable under the assumption that the data follows the tree

would produce biased data. The best method for generating null

data may also depend on the model being used to analyze that

data as the undirected joint and conditional models can be

sensitive to different biases in the data.

We have developed and used a systematic approach for

determining which null-generation method to use for a given data

set and given model for analysis based on two observations. First,

as the computation of q-values depends on the distribution of p-

values under the null hypothesis, it was important to select a null-

generation method that produced an accurate distribution of p-

values. Second, in all the data sets that we analyzed, the vast

majority of variable pairs were not associated—that is, they

satisfied the null distribution. Consequently, given a data set and

a given model for analysis, we chose the data-generation method

by identifying the one that yielded a distribution of p-values that

most closely matched that produced by the given (real) data.

Our approach yielded the following choices: permutation

bootstrap of the predictor variable for Applications 1 and 3, and

parametric bootstrap of the predictor variable for Application 2.

For the analysis of synthetic data, we used null-generation methods

that would preserve the known distributions of the predictor and
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target variables: permutation bootstrap of the predictor variable

for the conditional influence data set, and parametric bootstrap of

the predictor variable for the coevolution data set.
Computing q-values on subsets of data When computing

q-values, it is sometimes useful to partition the tests into two or

more sets to obtain more informative values. For example,

suppose we partition a set of tests into two sets A and B

corresponding to positive and negative correlations, respectively.

For simplicity, assume the null distributions underlying A and B

are identical. If A and B have the same number of associations

with p,p0, then we expect qA(p0) = qB(p0) = qA<B(p0). If A has

a higher number of associations with p,p0 than does B, however,

then we expect qA(p0),qA<B(p0),qB(p0). That is, computing q-

values with respect to the merged set of associations will inflate

the q-values of the associations in A and deflate the q-values of the

associations in B. Whereas q is still the expected number of false

positives, computing qA<B(p0) assures that the majority of those

false positives are in B and some true positives in A are likely to be

lost. The disadvantage of partitioning the tests is that more null

data must be generated in order to preserve the variance of the

estimate for q.

In this work, we split our tests along natural boundaries. In our

experiments with the conditional model, we computed q-values

separately for each possible transition matrix (escape, attraction,

reversion, and repulsion). For the undirected joint model and

when computing FET, we computed q-values separately for

positive and negative correlations.

Performance Evaluation
Comparing discrimination curves To compute the

significance of the difference between the discrimination curves

of two methods A and B applied to synthetic data, we computed

the areas under each curve and tested whether the area under A’s

curve was significantly different from the area under B’s curve.

The permutation test was carried out as follows. Given a set T of

n association tests, a method A induces an ordering T(A) over T

such that ti
(A),tj

(A)(i?j) implies that ti is more significant than tj by

method A. Let a = [a1, a2,…,an] be a binary vector such that ai = 1

if and only if ti
(A) is an association. We computed the area under

the curve (AUC) of A as a function of a.

When comparing the discrimination curves of two methods A

and B, the null hypothesis is that the curves come from equivalent

methods, such that the i-th prediction of A is just as likely to be an

association as is the i-th prediction of B (that is,

Pr[ai = 1] = Pr[bi = 1]). We estimated this null distribution using

a permutation bootstrap, in which we randomly swapped the

assignments of ai and bi and recomputed AUC(a)–AUC(b). (For

a two-tailed test, we used the absolute value of the difference.)

With synthetic data, we have prior knowledge as to which method

will perform best (the model used to generate the data). Thus, we

report the one-tailed p-value.
Evaluating performance on Arabidopsis thaliana GWA

study To determine whether a set of predictions was likely to be

enriched for disease response proteins, we downloaded the

genomic positions of all genes whose description contained the

phrase ‘‘disease response’’ (data taken from http://www.

arabidopsis.org). There were 226 such target genes matching this

search criterion, including the known R genes, genes that are

known to be involved in the hypersensitive response cascade and

a number of putative proteins with high sequence similarity to the

known R genes. For each predicted locus, we calculated the

minimum distance to one of these genes. We used the fifty kb

threshold because it is the most conservative estimate of linkage

disequilibrium [55] and because, at higher distances, it becomes

unsurprising that a locus is proximal to one of the 226 target genes.

We computed the probability that m of the n predictions would

fall within fifty kb of some target genes using a permutation

bootstrap. In each iteration of the bootstrap, we randomly selected

(without replacement) n haplotypes from our study and counted

how many were within fifty kb of a target gene.

Directed joint model
The Pollock model for coevolution assumes a symmetric or

undirected relationship between two coevolving variables X or Y.

Alternatively, we can imagine a directed joint model, wherein X or Y

coevolve, but X influences the evolution of Y but not vice versa. In

this process, X evolves as in the single-variable model, and Y

evolves with a rate that depends on whether X is absent or present.

In particular, the transition probability matrix for the model is

given by

Qij~

xy

x�yy

�xxy

�xx�yy

{
P

lY jxp�yy lX p�xx 0

lY jxpy {
P

0 lX p�xx

lX px 0 {S lY j�xxp�yy

0 lX px lY j�xxpy {
P

0
BBB@

1
CCCA, ð3Þ

where the diagonal entries assure that the rows sum to 0. This

model, like the undirected joint model, has five parameters: px, py,

lX, lY|X, and lY|X̄. As in the undirected case, we compute the

probability that one instance of XY transitions to another along

a branch of length t by determining P = exp[Qt], using standard

numerical Eigen-decomposition techniques [36].

SUPPORTING INFORMATION

Dataset S1 HIV-1 p6 amino acid pairs that are correlated at

q,0.2.

Found at: doi:10.1371/journal.pone.0000591.s001 (0.36 MB

XLS)
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