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A B S T R A C T   

Background: This study introduces a novel prognostic tool, the Disulfidoptosis-Related lncRNA 
Index (DRLI), integrating the molecular signatures of disulfidoptosis and long non-coding RNAs 
(lncRNAs) with the cellular heterogeneity of the tumor microenvironment, to predict clinical 
outcomes in patients with clear cell renal cell carcinoma (ccRCC). 
Methods: We analyzed 530 tumor and 72 normal samples from The Cancer Genome Atlas (TCGA), 
employing k-means clustering based on disulfidoptosis-associated gene expression to stratify 
ccRCC samples into prognostic groups. lncRNAs correlated with disulfidoptosis were identified 
and used to construct the DRLI, which was validated by Kaplan-Meier and receiver operating 
characteristic curves. We utilized single-cell deconvolution analysis to estimate the proportion of 
immune cell types within the tumor microenvironment, while the ESTIMATE and TIDE algo-
rithms were employed to assess immune infiltration and potential response to immunotherapy. 
Results: The Disulfidoptosis-Related lncRNA Index (DRLI) effectively stratified ccRCC patients into 
high and low-risk groups, significantly impacting survival outcomes (P < 0.001). High-risk pa-
tients, marked by a unique lncRNA profile associated with disulfidoptosis, faced worse prognoses. 
Single-cell analysis revealed marked tumor microenvironment heterogeneity, especially in im-
mune cell makeup, correlating with patient risk levels. In prognostic predictions, DRLI out-
performed traditional clinical indicators, achieving AUC values of 0.779, 0.757, and 0.779 for 1- 
year, 3-year, and 5-year survival in the training set, and 0.746, 0.734, and 0.750 in the validation 
set. Notably, while the constructed nomogram showed exceptional predictive capability for short- 
term prognosis (AUC = 0.877), the DRLI displayed remarkable long-term predictive accuracy, 
with its AUC value reaching 0.823 for 10-year survival, closely approaching the nomogram’s 
performance. 
Conclusions: The study introduces the DRLI as a groundbreaking molecular stratification tool for 
ccRCC, enhancing prognostic precision and potentially guiding personalized treatment strategies. 
This advancement is particularly significant in the context of long-term survival predictions. Our 
findings also elucidate the complex interplay between disulfidoptosis, lncRNAs, and the immune 
microenvironment in ccRCC, offering a comprehensive perspective on its pathogenesis and 
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progression. The DRLI and the nomogram together represent significant strides in ccRCC 
research, highlighting the importance of molecular-based assessments in predicting patient 
outcomes.   

1. Background 

Renal cell carcinoma (RCC), with clear cell renal cell carcinoma (ccRCC) as its major subtype, represents about 4 % of all ma-
lignancies, contributing to the increasing global burden with approximately 180,000 deaths annually [1]. The biological behavior and 
clinical outcomes of RCC are remarkably diverse. A significant number of smaller, non-aggressive renal tumors remain undetected due 
to their asymptomatic nature [2,3], yet up to 30 % of patients experience recurrence or metastasis post-surgery, adversely affecting 
their prognosis [4]. 

There is a crucial need to develop a more accurate risk stratification system for RCC to inform and optimize treatment strategies. 
The current international standard for RCC staging is the TNM system by the American Joint Committee on Cancer (AJCC), which 
considers tumor size, local invasion, lymph node involvement, and distant metastasis. Despite its widespread use and iterative updates, 
the TNM system provides only a snapshot of the tumor’s cross-sectional status at diagnosis and fails to capture the longitudinal and 
biological aggression of the cancer [5,6]. Similarly, the University of California, Los Angeles Integrated Staging System (UISS), and the 
Mayo Clinic’s prognostic model, which includes renal cancer stage, size, grade, and necrosis, offer broader parameters but still 
insufficiently reflect the heterogeneity of kidney cancer, as indicated by their C-index scores in external validation [7–9]. These 
limitations underscore the demand for novel, more discriminating models for kidney cancer risk stratification. 

Among the emerging frontiers in RCC research is the characterization of cell death modalities, particularly disulfidoptosis—a form 
of programmed cell death driven by disulfide stress, known for its pivotal role in the pathogenesis and progression of various cancers, 
including RCC [10–12]. This novel cell death process offers a promising target for therapeutic intervention and serves as a potential 
prognostic marker, especially when considered in conjunction with long non-coding RNAs (lncRNAs). 

The intricate interplay between disulfidoptosis and lncRNAs has opened new avenues for constructing advanced prognostic models 
for ccRCC. By exploring disulfidoptosis-related lncRNAs, our study aims to build a prognostic model that transcends the capabilities of 
traditional clinical staging systems. This model endeavors to provide a more granular risk stratification by integrating molecular 
markers that reflect the underlying tumor biology more accurately. 

Single-cell deconvolution offers a sophisticated lens to dissect the cellular heterogeneity inherent in ccRCC [13,14]. It allows for the 
detailed estimation of tumor cell composition, revealing the subtleties of the tumor microenvironment at a cellular level. This 
high-resolution mapping of cellular populations within the tumor milieu contributes significantly to the understanding of RCC’s 
biological complexity. 

Lastly, the immune microenvironment plays a crucial role in the progression and treatment responsiveness of ccRCC [15]. Our 
model incorporates the assessment of immune infiltration, providing insights into the interplay between the tumor and its immune 
landscape. This approach not only informs prognosis but also has the potential to guide immunotherapeutic strategies, offering a 
tailored approach to patient management. 

Through this comprehensive methodology, combining the novel insights of disulfidoptosis with the regulatory landscape of 
lncRNAs, the precision of single-cell deconvolution, and the dynamics of the immune microenvironment, we aim to redefine the 
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prognostic framework for ccRCC. This integrative model is poised to enhance our ability to predict clinical outcomes and tailor 
therapeutic interventions, marking a significant advancement in the personalized care of RCC patients. 

2. Methods 

2.1. Study design and data acquisition 

This study sourced omics data for differential comparison and predictive model construction from The Cancer Genome Atlas 
(TCGA) database. The “TCGAbiolinks” package in R was utilized to download renal clear cell carcinoma (ccRCC) data [16,17]. 
Transcripts for mRNA and lncRNA were identified according to GRCh38. p13 reference [18]. The publicly available data did not 
contain identifiable patient information, thereby negating the need for ethical review. Transcriptome data were matched with clinical 
information, excluding samples lacking any data type or duplicates. 

2.2. Construction of the Disulfide Stress-Related Long Non-Coding RNA index (DRLI) 

To construct the Disulfide Stress-Related Long Non-Coding RNA Index (DRLI), we first employed the Wilcoxon test to identify 
lncRNAs with significant expression differences between cancerous and normal tissues. These selected lncRNAs were then subjected to 
correlation analysis with disulfide stress-related genes, considering an absolute correlation coefficient greater than 0.3 and a p-value 
less than 0.001 as significant. The lncRNAs significantly associated with disulfide stress were combined with clinical data for uni-
variate analysis. The prognostically significant lncRNAs were dimensionally reduced through Lasso regression, followed by the 
development of a prognostic model using multivariate Cox regression. Each sample’s score was calculated according to the DRLI 
formula, stratifying patients into high and low-risk groups. The discriminative ability of DRLI was validated through Kaplan-Meier 
(KM) survival curves and receiver operating characteristic (ROC) curves. 

2.3. Gene Set Variation Analysis (GSVA) 

For Gene Set Variation Analysis (GSVA), we used the GSVA package [19] in R to calculate enrichment scores for each sample in 
predefined gene sets, following the method described by Hänzelmann et al. Additionally, the h. all.v7.4. symbols.gmt subset was 
downloaded from the Molecular Signatures Database (MSigDB) [20]. 

The Hallmark gene sets used in our GSVA analysis represent key pathways and states in cellular biology. These gene sets have been 
carefully curated for co-expression across multiple datasets to evaluate the activity of relevant pathways in the samples. By computing 
enrichment scores for each gene set per sample, we generated an enrichment score matrix to aid in identifying potential biological 
markers and therapeutic targets. 

2.4. Single-cell transcriptome data 

Single-cell sequencing data for ccRCC samples from three patients included in the study were obtained from the GSE222703 dataset 
[21], prepared using the Chromium 10× platform post-nephrectomy and sequenced on the Illumina NovaSeq 6000 system. Specif-
ically, the analysis encompassed 27,963 cells from 3 ccRCC patients, with cell populations labeled as 23 distinct cell types. Clustering 
results were visualized using Uniform Manifold Approximation and Projection (UMAP) for dimension reduction [22]. 

2.5. Deconvolution of ccRCC bulk RNA-seq data 

A comprehensive analysis of the tumor microenvironment was conducted utilizing two distinct reference gene sets for deconvo-
lution, both implemented within the CIBERSORTx platform. Firstly, single-cell deconvolution was performed using the CIBERSORTx 
platform [14], with the log-normalized expression matrix of 10 major cell populations from the GSE222703 dataset [21], comprising 
27,963 cells from ccRCC patients, serving as the basis for generating a signature matrix. This matrix was utilized as a reference to 
estimate the proportions of 23 cell types in the TCGA ccRCC cohort, incorporating 1000 permutations and S-mode batch correction. 

In addition, an analysis of immune cell composition was conducted using the LM22 gene set [14], recognized for its reference to 22 
immune cell types and implemented within the CIBERSORTx platform. Transcriptome data from ccRCC patients were input into 
CIBERSORTx and applied to the LM22 signature to quantify the relative abundance of immune cells. This secondary analysis provided 
complementary insights into the immune landscape within the tumor microenvironment. 

2.6. Estimation of STromal and immune cells in MAlignant tumor tissues using expression data (ESTIMATE) 

The ESTIMATE algorithm [23] was employed to gauge tumor purity and the presence and extent of infiltrating stromal and immune 
cells in tumor tissues. This algorithm, based on single-sample Gene Set Enrichment Analysis, yields three distinct scores: ‘stromal score’ 
indicating the stromal cell abundance, ‘immune score’ quantifying immune cell infiltration, and ‘estimate score’ inferring overall 
tumor purity. These scores collectively enhance our comprehension of the tumor microenvironment, employing gene expression data 
to decipher the intricate interplay between tumor cells, stromal cells, and immune infiltrates. 
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2.7. Tumor immune dysfunction and exclusion (TIDE) 

The Tumor Immune Dysfunction and Exclusion (TIDE) scoring system [24,25] was used to predict tumor responsiveness to immune 
checkpoint blockade therapy. The TIDE algorithm assesses the likelihood of immune evasion from tumor gene expression data, 
indicating potential immunotherapy response. Scores obtained via the TIDE web tool from gene expression profiles were utilized to 
determine the efficacy of checkpoint inhibitors in treating these tumors, categorizing them based on their predicted response to 
immunotherapy. 

2.8. Correlation analysis 

Correlation analysis between gene expression levels was guided by data distribution. Pearson’s correlation coefficient was 
implemented for normally distributed data to capture linear relationships, while Spearman’s rank correlation was employed for non- 
normally distributed data, suitable for identifying monotonic relationships. The analysis set a stringent correlation threshold of 0.3 and 
a p-value threshold of 0.001 to ensure that only significant and relevant correlations were identified. 

3. Results 

3.1. Construction of mRNA clustering for disulfidptosis and Disulfidptosis-Related lncRNA index 

We retrieved renal clear cell carcinoma data from the TCGA database, which consisted of 530 tumor samples and 72 normal 
samples for control. The workflow of our study is illustrated (Fig. 1). Accompanying clinical information and transcriptome expression 
data were downloaded, from which mRNA and lncRNA expression matrices were extracted according to GENCODE 2021 [18] 
guidelines. In a related study [10], we identified 10 genes associated with disulfidptosis. We applied k-means clustering for unsu-
pervised classification of ccRCC samples into two distinct clusters, C1 and C2, as shown in the heatmap (Fig. 2A). Survival analysis 
revealed a significant prognostic difference between clusters C1 and C2, with C1 demonstrating a substantially better prognosis than 
C2 (Fig. 2B), signifying the relevance of disulfide-related genes to the prognosis of ccRCC patients. To further explore prognostic factors 
in ccRCC linked to the vital biological process of disulfidptosis, Spearman’s correlation analysis was conducted to identify lncRNAs 
from the expression data that correlated with the 10-gene disulfidptosis set, yielding 174 disulfidptosis-associated lncRNAs (Fig. 2C). 
Subsequently, through univariate Cox regression, we screened lncRNAs impacting prognosis, followed by dimensionality reduction 
using Lasso (Fig. 2D), and ultimately constructed the DRLI using multivariate Cox regression. The DRLI is composed of 8 lncRNAs, with 
the calculation formula as follows: DRLI = 0.824336231 × AC073896.2–0.596657862 × AC005281.1 + 1.396867877 × ALMS1-IT1 +
0.911216855 × ARHGAP29-AS1 - 0.208127865 × LINC02747–0.353676173 × SPINT1-AS1 - 1.548271173 × SUCLG2-AS1 - 
1.527521165 × ZRANB2-AS1, and the correlation of these 8 lncRNAs with the 10 disulfidoptosis genes is depicted in Fig. 2E. 

3.2. Validation of the discriminatory ability of the DRLI 

The median value of the Disulfidptosis-Related lncRNA Index (DRLI) was utilized as a cutoff to stratify patients in the training set 

Fig. 1. Workflow:This figure illustrates the workflow of our study. Initially, clear cell renal cell carcinoma (ccRCC) data were obtained from The 
Cancer Genome Atlas (TCGA) database. Subsequently, utilizing disulfidoptosis-associated long non-coding RNAs (lncRNAs) identified from the 
tumor, we constructed the Disulfidoptosis-Related lncRNA Index (DRLI) using LASSO-Cox regression. Finally, we evaluated and validated the 
predictive capability of DRLI. 
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into high and low-risk groups. A heatmap depicting the expression of the 8 lncRNAs in the TCGA-ccRCC cohort, along with Risk Score 
Plot and Survival Status Plot, are illustrated in Fig. 3A. Using the training set-derived DRLI formula and cutoff, stratification of the 
validation cohort was calculated. The OS survival curve (Kaplan-Meier) for the training set is presented in Fig. 3B. The PFS (Pro-
gression-Free Survival) Kaplan-Meier curves for the validation cohort confirmed that patients in the high-risk DRLI group had 
significantly worse survival outcomes compared to the low-risk group (P < 0.001) (Fig. 3C). In addition to the DRLI, we also analyzed 
the prognosis of the ccRCC cohort by combining the DRLI with the disulfidoptosis gene subtypes C1 and C2. Although the prognosis of 
subtype C2 was markedly worse than C1 (Fig. 2B), there was no significant difference in survival outcomes between the High + C2 
group and High + C1 group, as well as between the Low + C2 and Low + C1 groups (Fig. 3D). This suggests that the impact of DRLI on 
prognosis supersedes the influence of disulfidoptosis gene subtype classification on the prognosis of ccRCC. ROC curves for both the 
training and validation cohorts demonstrated that the AUC values for 1-year, 3-year, and 5-year survival were 0.779, 0.757, and 0.779 
for the training cohort (Figs. 3E), 0.746 and 0.734, and 0.750 for the validation cohort (Fig. 3F), respectively. Our DRLI effectively 
predicts patient prognosis in ccRCC, with comparable efficacy in both training and validation cohorts, indicating a well-fitted model. 
The predictive accuracy of DRLI, age, gender, and tumor staging parameters (T, N, M) for patient survival was assessed over time 
through the C-index, with DRLI outperforming other clinical indicators (Fig. 3G). 

3.3. Construction of the nomogram 

Single and multivariate Cox regression analyses were conducted to evaluate the impact of clinical information and the risk model 
on prognosis. Results indicated that T stage, N stage, M stage, age, and DRLI were all risk factors affecting the prognosis of ccRCC 
(Fig. 4A), with all but N stage serving as independent risk factors. DRLI, in particular, exhibited a hazard ratio (HR) of 2.996 (95 % CI: 
1.790–4.916) (Fig. 4B). A nomogram incorporating T stage, N stage, M stage, age, and DRLI was constructed using ‘regplot’ and ’rms’ 
package approaches in Cox regression (Fig. 4C). The nomogram demonstrated good predictive ability with a C-index of 0.798 (95 % CI: 
0.757–0.839) (Fig. 4D). We compared the predictive capabilities for prognosis using ROC curves for the nomogram score, DRLI, TNM 
staging, and ClearCode34 [reference]. Initially, we examined the prediction of 1-year prognosis, where the nomogram demonstrated 
remarkable predictive ability (AUC = 0.877), with DRLI also showing strong predictive power (AUC = 0.761), surpassing the pre-
dictive capability of TNM staging (T: AUC = 0.727; M: AUC = 0.719) (Fig. 4E). However, while TNM staging effectively reflects the 
cross-sectional status at diagnosis, its ability to predict long-term prognosis significantly decreases. In predicting 10-year prognosis, the 
AUC values for TNM staging did not exceed 0.7. In contrast, the AUC for DRLI reached 0.823, closely approaching the nomogram’s 
AUC of 0.826. As time progresses, the predictive accuracy of DRLI becomes even more precise, indicating that our model effectively 
reflects the long-term prognosis of ccRCC. 

3.4. Tumor microenvironment across DRLI subgroups 

Preliminary single-cell studies [21] unveiled heterogeneity in the ccRCC microenvironment cell population based on established 
markers, encompassing non-classical monocytes (Mono_nc), natural killer T cells (NK_T), CD8 T cells (CD8T), B cells (B_cell), CD4 T 
cells (CD4T), ccRCC cells, classical monocytes (Mono_c), proximal tubular cells expressing GPX3 (PT_GPX3), epithelial cells (Epith), 

Fig. 2. A: Heatmap of k-means clustering in ccRCC samples based on disulfidoptosis-associated gene expression, dividing samples into two clusters, 
C1 and C2. B: Kaplan-Meier survival curves showing the prognostic differences between C1 and C2 clusters in ccRCC patients. C: Correlation 
heatmap of 174 disulfidoptosis-associated lncRNAs with the disulfidoptosis gene set in ccRCC. D: Lasso regression plot demonstrating dimen-
sionality reduction in the selection of prognostic lncRNAs. E: Correlation matrix of the 8 lncRNAs constituting the DRLI and their associated 
disulfidoptosis genes. 
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Fig. 3. A: Heatmap with expression of 8 key lncRNAs in TCGA-ccRCC cohort, alongside Risk Score and Survival Status plots based on DRLI stratification. B: Overall Survival Kaplan-Meier curve for 
ccRCC patients in the training set, categorized by DRLI. C: Progression-Free Survival Kaplan-Meier curves for the validation cohort, stratified by DRLI. D: Overall Survival Kaplan-Meier curves comparing 
DRLI stratification with disulfidoptosis gene subtypes. E–F: ROC curves for 1-year, 3-year, and 5-year survival predictions in training (E) and validation (F) cohorts based on DRLI. G: The concordance 
index (C-index) over time comparing the predictive accuracy of the Disulfidoptosis-Related lncRNA Index (DRLI) against traditional clinical parameters in the ccRCC patient cohort. 
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proliferating cells (Prolif), plasma cells (PlasmaC), natural killer cells expressing CD160 (NK_CD160), proximal tubular cells expressing 
MT1G (PT_MT1G), neutrophils (Neutrop), natural killer cells (NK), endothelial cells (Endoth), conventional dendritic cells type 2 (cDC 
2), mast cells (Mast), plasmacytoid dendritic cells (pDC), regulatory T cells (Treg), conventional dendritic cells type 1 (cDC 1), 
macrophages expressing C1QA (Mac_C1QA), and fibroblasts (Fibro), totaling 23 cell types (Fig. 5A). To further explore the immune 
status and prognostic landscape of the ccRCC microenvironment, we applied CIBERSORTx (https://cibersortx.stanford.edu/), 
implementing digital cytometry to deconvolute gene expression data into cell type abundances using a reference panel derived from 
scRNAseq. Initially, cell type-specific expression signatures were inferred from annotated ccRCC scRNA-seq datasets (GSE222703), 
identifying 1568 genes as specific markers. Subsequently, these feature genes were employed to enumerate the 23 cell types within the 
ccRCC microarray data. Significant enrichment of ccRCC cells, PT_GPX3, Endoth, and Fibro was observed within the tumor samples, 
exhibiting considerable intertumoral heterogeneity (Fig. 5B). The DRLI-high subgroup presented with a relatively higher presence of 
ccRCC and Fibro cells, while PT_GPX3 and Endoth cells were more prevalent in the DRLI-low subgroup. Further analysis of the 
infiltration of 22 immune cell types within the ccRCC cohort revealed statistically significant distribution differences between the two 
DRLI subgroups for 11 immune cell types, including Tregs (Fig. 5C). The influence of different tumor microenvironment cell abun-
dances on the ccRCC cohort was calculated, indicating that Fibro, Macrophages M0, and T cells regulatory (Tregs) are predictive of 
poor outcomes in ccRCC patients. Higher infiltration of Dendritic cells resting, Endoth, Mast cells resting, and PT_GPX3 cells correlated 
with better ccRCC prognosis (Fig. 5D). Additionally, ESTIMATE was utilized to assess the tumor microenvironment score within the 
ccRCC cohort, with the immune score and estimate score being higher in the DRLI-high subgroup, suggesting greater immune infil-
tration in ccRCC with higher DRLI (Fig. 5E). The potential response to immune checkpoint therapy in the ccRCC cohort was evaluated 
using TIDE, indicating that the DRLI-high subgroup had higher TIDE scores than the DRLI-low subgroup, suggesting a likelihood of 
immune evasion and poor response to immune checkpoint therapy (Fig. 5F). Comparison of Tumor Mutation Burden (TMB) between 
the DRLI subgroups revealed no significant differences (Fig. 5G). 

3.5. Molecular characteristics of DRLI subgroups 

In our investigation, we conducted a principal component analysis (PCA) of the transcriptome to discern transcriptional disparities 
between the DRLI-high and DRLI-low subgroups in ccRCC. The PCA, executed using a script that processed expression data from a 
variety of sources, including genes and lncRNAs, displayed distinct clustering patterns, signaling significant transcriptional divergence 
between the two risk groups. These observations corroborate the potential utility of DRLI as a biomarker for ccRCC characterization 
and treatment stratification (Fig. 6A). 

GSVA was employed to analyze the ccRCC cohort for hallmark pathways (Fig. 6B), revealing that several meaningful pathways 
were more activated in the DRLI-high group compared to the low group, such as TNFA signaling via NFkB, epithelial-mesenchymal 
transition, p53 pathway, IL6 JAK STAT3 signaling, and others. 

Differential gene expression between the DRLI subgroups was identified using the ‘limma’ R package, revealing 344 genes 

Fig. 4. A: Single-factor Cox regression analysis evaluating the impact of clinical factors and DRLI on ccRCC prognosis. B: Hazard ratio (HR) of DRLI 
and other clinical factors in multivariate Cox regression analysis. C: Nomogram integrating T stage, N stage, M stage, age, and DRLI for survival 
prediction in ccRCC patients. D: Calibration curve for the nomogram in the ccRCC cohort. E: ROC Curves Comparing 1-Year Prognostic Predictions. 
F: ROC Curves for 10-Year Prognostic Predictions. 
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upregulated in the DRLI-high subgroup and 105 downregulated genes (Fig. 6C). GO and KEGG pathway enrichment analyses were 
performed on these differentially expressed genes. The KEGG pathways primarily enriched included the IL-17 signaling pathway, 
Cytokine-cytokine receptor interaction, and PPAR signaling pathway (Fig. 6D). GO analysis predominantly highlighted enrichment in 
immune and inflammatory responses (Fig. 6E). 

Fig. 5. A: Visualization of cell population heterogeneity in the ccRCC tumor microenvironment based on single-cell RNA sequencing data, cate-
gorizing cells into 23 types. B: Analysis of cell type distribution within ccRCC tumor samples, revealing significant variation in cell type abundance. 
C: Differential immune cell infiltration in DRLI subgroups, showing significant differences in 11 immune cell types between high and low DRLI 
groups. D: Kaplan-Meier survival curves correlating the prognostic impact of immune cell populations with patient outcomes in the ccRCC cohort. E: 
ESTIMATE scores within the ccRCC cohort, comparing immune and stromal scores between DRLI subgroups. F: TIDE analysis for ccRCC cohorts 
stratified by DRLI, predicting potential responses to immune checkpoint therapy. G： Waterfall plot of Tumor Mutation Burden (TMB) across the 
ccRCC cohort, detailing the mutational landscape relative to DRLI categorization. 

Fig. 6. A: Principal Component Analysis (PCA) displaying the divergence in transcriptional landscapes between the high and low DRLI-defined 
subgroups in the ccRCC transcriptome. B: Gene Set Variation Analysis (GSVA) illustrating differential pathway activations between high and low 
DRLI groups in the ccRCC cohort. C: Volcano plot of differentially expressed genes between DRLI subgroups; genes overexpressed in the DRLI-high 
group are marked in red, while those underexpressed are marked in green. D: KEGG pathway enrichment analysis of differentially expressed genes 
between DRLI subgroup E: GO analysis of genes differentially expressed between DRLI subgroups, elucidating their biological functions and 
associated processes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4. Discussion 

Our study’s development of the Disulfidoptosis-Related lncRNA Index (DRLI) represents a novel paradigm in the prognostication of 
clear cell renal cell carcinoma (ccRCC). The DRLI harnesses the prognostic power of lncRNAs associated with the oxidative stress 
pathway of disulfidoptosis, offering a more nuanced understanding of tumor biology and patient stratification. 

The concept of disulfidoptosis, a form of cell death marked by disulfide stress [26], has been implicated in various malignancies but 
has not been thoroughly investigated in ccRCC. Our findings indicate a profound difference in survival outcomes between clusters 
defined by disulfidoptosis-related gene expression, with the k-means derived clusters C1 and C2 demonstrating distinct prognostic 
outcomes (Fig. 2A–B). The better prognosis associated with cluster C1 suggests that the expression profile of disulfidoptosis-related 
genes could be leveraged to identify patients with potentially less aggressive disease. The inclusion of 10 such genes in our analysis 
provides a focused yet comprehensive insight into the oxidative stress landscape of ccRCC, and their correlation with survival times 
suggests their utility as targets for future therapeutic interventions [27]. 

Long non-coding RNAs have emerged as key regulatory molecules in cancer [28–30]. In our study, we identified 174 lncRNAs that 
showed significant correlation with the disulfidoptosis gene set (Fig. 2C). The prognostic significance of these lncRNAs was under-
scored by their association with the overall survival of ccRCC patients, emphasizing their potential as biomarkers for this subtype of 
kidney cancer. The DRLI, leveraging these lncRNAs, demonstrated a discriminative ability to categorize patients into high and low-risk 
groups with significantly different survival outcomes (P < 0.001) (Fig. 3C). Such differentiation is critical for guiding clinical 
decision-making and tailoring patient-specific treatment regimens. 

The single and multivariate Cox regression analyses underscored the individual impact of these factors on ccRCC prognosis, with 
DRLI demonstrating a particularly notable hazard ratio (HR) of 2.996 (95 % CI: 1.790–4.916) (Fig. 4B). This high HR highlights the 
substantial influence of DRLI in the disease progression and prognosis of ccRCC patients, asserting its vital role in the nomogram. 

The predictive capabilities of the nomogram, as evaluated through ROC curves, revealed its exceptional performance in short-term 
(1-year) prognosis prediction, boasting an AUC of 0.877. This impressive accuracy demonstrates the nomogram’s utility in clinical 
settings for immediate treatment strategy planning and patient counseling. In comparison, traditional TNM staging, while useful in 
reflecting the immediate clinical status of the disease, showed a diminished ability to predict long-term prognosis [31]. Its AUC values 
for 1-year prognosis, although substantial, were lower than that of the nomogram and DRLI (Fig. 4E). 

A critical observation from our analysis is the increasing precision of DRLI in long-term prognosis prediction. While the TNM 
staging’s predictive power wanes over time, with AUC values not exceeding 0.7 for 10-year prognosis, DRLI’s AUC ascends to 0.823, 
nearly mirroring the nomogram’s AUC of 0.826. This trend indicates that DRLI not only holds potential for immediate prognostication 
but also becomes increasingly reliable for predicting long-term outcomes. The capacity of DRLI to accurately reflect the long-term 
prognosis of ccRCC patients makes it a powerful tool in the armamentarium of clinicians managing this disease (Fig. 4F). 

The predictive accuracy of our model, as demonstrated by the AUC values, surpasses that of the established Clearcode34 system 
[32]. Traditional prognostic frameworks for renal cell carcinoma, such as TNM staging and UISS((University of California, Los Angeles 
Integrated Staging System) scores [33], are largely dependent on clinical and pathological details. While TNM staging is a cornerstone 
of current cancer staging protocols, its reliance on non-biological metrics limits its ability to differentiate between non-invasive and 
more aggressive tumor forms. Similarly, the UISS score, though widely adopted, falls short in providing a comprehensive prognosis for 
the broad spectrum of renal cell carcinoma subtypes, as it is tailored to specific renal cancers. These systems, primarily predicated on 
post-surgical staging and tumor grading, do not incorporate the molecular markers of kidney cancer which are pivotal for a thorough 
prognostic analysis. 

In contrast to the gene-centric RCClnc4 [34] and Clearcode34, which primarily use genetic predictors but omit critical clinical 
information, our model acknowledges the significance of incorporating both genetic and clinical data for a full-bodied prognosis of 
renal cell carcinoma. It is this integration of multifaceted diagnostic elements that sets our approach apart, offering a more complete 
and nuanced assessment of patient outcomes. 

The application of single-cell deconvolution techniques in our study has unveiled a complex portrait of the ccRCC microenvi-
ronment [35]. By analyzing the expression data from thousands of individual cells, we observed significant heterogeneity within the 
tumor microenvironment, characterized by varying abundances of specific cell types such as fibroblasts and endothelial cells (Fig. 5B). 
The relevance of these findings is further supported by the differential distribution of immune cell types like Tregs between the DRLI 
subgroups (Fig. 5C), hinting at a potential immunosuppressive milieu in higher-risk patients. This granularity of data provides a 
foundation for developing immunotherapeutic strategies tailored to the unique cellular composition of each tumor. 

The immune microenvironment of ccRCC, particularly in relation to immune checkpoint blockade, has become a focal point of 
cancer research. Our use of the TIDE algorithm to predict potential responses to immunotherapy revealed that higher DRLI scores, 
associated with worse prognosis, might also indicate a propensity for immune evasion (Fig. 5F). This raises important considerations 
for the use of immunotherapies in ccRCC, as patients with high DRLI scores may require combination therapies or novel immuno-
modulatory strategies to overcome this evasion. 

The transcriptional profiling conducted through principal component analysis (PCA) distinguished the DRLI subgroups with 
notable clarity, suggesting that the transcriptional divergence is reflective of underlying biological processes that could be exploited 
for therapeutic targeting (Fig. 6A). The activation of pathways such as TNFα signaling via NFκB and epithelial-mesenchymal transition 
in the high DRLI group (Fig. 6B) not only informs the aggressive nature of these tumors but also identifies potential molecular targets 
for drug development. 

The clinical integration of our findings, particularly the DRLI and associated molecular signatures, promises to enhance the pre-
cision of prognostication and therapy selection in ccRCC. The validation of these markers in clinical settings remains a priority, with 

R. Guan et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e32294

11

potential implications for screening, monitoring, and therapeutic intervention. Our study’s findings must be considered within the 
broader context of ongoing research into the genomics of cancer, where such indices could be combined with other molecular and 
imaging biomarkers for a more comprehensive prognostic model. 

The innovative core of this study lies in the novel integration of disulfidoptosis-associated lncRNAs with the prognostic modeling of 
clear cell renal cell carcinoma (ccRCC). The Disulfidoptosis-Related lncRNA Index (DRLI) is a pioneering tool that combines the 
specificity of genetic expression with the functional implications of cell death pathways, providing a predictive accuracy that surpasses 
traditional clinical parameters. The stratification of ccRCC patients using the DRLI offers a glimpse into the heterogeneity of tumor 
behavior and its response to oxidative stress, suggesting potential personalized therapeutic avenues. In light of our findings, there lies 
an opportunity to investigate the synergistic effects of targeting disulfidoptosis pathways in conjunction with established treatment 
protocols. The robust correlation between DRLI and patient outcomes may reflect an underlying biological cascade that can be har-
nessed to enhance therapeutic efficacy. For instance, the exploration of drugs that modulate oxidative stress or amend lncRNA 
expression could yield novel combinations that potentiate the anti-tumor response in high DRLI score patients. Our study’s approach 
underscores the value of integrating molecular diagnostics with clinical prognostication, advocating for a more dynamic treatment 
strategy that adapts to the molecular profile of the tumor. Future investigations should also delve into the potential crosstalk between 
disulfidoptosis and other cell death pathways, unraveling the complexity of ccRCC’s pathophysiology and its implications for resis-
tance or sensitivity to specific treatments. These efforts are essential in advancing the frontier of precision medicine and offering ccRCC 
patients a beacon of tailored therapeutic hope. 

Despite these advancements, the study has limitations that need to be acknowledged. The reliance on retrospective TCGA data, 
while robust, cannot substitute the insights gained from a prospective study design. As with any bioinformatics approach, the con-
clusions drawn from computational models must be validated experimentally. The functional roles of the identified lncRNAs in 
disulfidoptosis and their impact on the immune microenvironment remain to be elucidated through in vitro and in vivo studies. 
Moreover, the prognostic applicability of the DRLI needs to be tested across diverse patient populations, with varying disease stages 
and treatment backgrounds, to fully understand its utility and limitations. Lastly, while the study breaks ground in the intersection of 
disulfidoptosis and lncRNAs, the clinical translation of these findings into actionable therapeutic strategies will require a concerted 
effort and poses a significant challenge for future research. 

In conclusion, our study contributes a novel and clinically relevant prognostic model that could significantly influence the man-
agement of ccRCC. The DRLI and the insights gained from our extensive single-cell and molecular analyses provide a deeper under-
standing of ccRCC pathophysiology and lay the groundwork for personalized patient care. Future research should aim to translate 
these biomarkers into therapeutic targets and validate their utility in prospective clinical trials, with the ultimate goal of improving 
patient outcomes in ccRCC. 
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