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Abstract

Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes
ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect
detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/
control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling
approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to
quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering
meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were
much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher
than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site
elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy
fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus)
summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The
marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests,
together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked
by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable
assessment of infestation rates in the context of control program management. The approach we present here, combining
oviposition traps and site-occupancy models, could greatly contribute to that crucial aim.
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Introduction

Dengue is the most common arboviral disease of humans [1–3].

About 50 million people contract dengue annually, and an

estimated 22,000 die from severe forms of the disease [3,4].

Dengue virus is transmitted by mosquitoes of the genus Aedes,

particularly Aedes aegypti and Ae. albopictus [5]. In the absence of

effective drugs or vaccines, prevention of dengue infections and

severe dengue forms heavily relies upon vector control. However,

despite massive spending and some encouraging results (e.g., [6–

9]), neither vector populations nor, consequently, dengue trans-

mission are currently under control; on the contrary, they are both

clearly expanding [2,10]. In South America, dengue incidence

increased from ,16/100,000 population in the 1980s to ,72/

100,000 in 2000–2007 [11].

Aedes aegypti, a species native to Africa, has successfully adapted

to urban environments around the world; it preferentially breeds

in artificial containers (where desiccated eggs can remain viable for

months), rests within houses, and feeds on human blood [12,13].

These traits have favored its man-mediated dispersal throughout

the tropics [14,15], and, together with its capacity to transmit

dengue virus, have transformed Ae. aegypti in a major public health

concern [16]. Ae. albopictus is more eclectic: it exploits both urban

and rural tropical-subtropical habitats, makes use of natural and

artificial breeding sites, and feeds on either humans or non-human

vertebrates [17,18]; this species, however, is less efficient than Ae.

aegypti at transmitting dengue virus [18].

Dengue vector control is largely based on a combination of

strategies aimed at eliminating Aedes breeding sites (either

physically or by means of larvicides) and reducing adult mosquito

populations (through environmental insecticide application) [6–9].

The design, implementation, and assessment of such strategies

require detailed knowledge of vector population ecology, including

the estimation of dwelling infestation rates [19,20]. In general,

vector control interventions are expected to have a negative effect
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on infestation by Ae. aegypti and Ae. albopictus at the local scale.

Measuring such an effect requires reliable methods for ascertain-

ing infestation; yet, detection of most animal species, including

disease vectors, is rarely, if ever, perfect [21,22]. Here, we treat

infestation as the probability that a dwelling is occupied by vectors

(i.e. site-occupancy) and use a hierarchical modeling approach to

analyze the dynamics of site-occupancy by Ae. aegypti and Ae.

albopictus. Our analysis is based on three years of oviposition trap

(ovitrap) data from a central-Amazon urban setting. Taking

imperfect detection into account, we quantify the effects of routine

control interventions and selected environmental variables on the

main indicator used in vector control program management –

dwelling infestation rates – and on its temporal change.

Materials and Methods

Study Setting
With a population of about 1.8 million, Manaus (3u69S,

60u19W) is the largest urban center of the Amazon basin

(Figure 1). The city lies on the north bank of the Negro river

and is surrounded by rainforest. The climate is tropical, warm and

humid, with a relatively strong seasonality of rainfall and, to a lesser

extent, temperature (Figure 2). After being declared eradicated

from Brazil in the 1950s [15], Ae. aegypti reinfested Manaus in the

late 1990s [23] and is currently widespread across all its

neighborhoods [24]. Ae. albopictus was first recorded in 2002

[25], and is now also widespread [24]. Dengue transmission is

endemic (i.e., occurs continuously) in the city, with recurrent

epidemics and records of all known dengue virus serotypes [26]. As

in other settings, dengue control in Manaus relies on dwelling visits

by municipal or state agents, who physically eliminate breeding

sites or treat them with larvicides; in ‘‘emergency’’ situations (in

practice, when dengue cases begin to soar), environmental

insecticide spraying aimed at reducing adult mosquito density is

also used [27]. Vector control agencies also conduct regular

infestation surveys on a random sample of dwellings in each

neighborhood (see details in ref. [28]). The results of these ‘rapid

larval surveys’ are used to set priorities and make decisions about

control interventions, with control teams usually deployed to

a neighborhood when dwelling infestation rises above 2%;

officially, the Brazilian control program aims to keep dwelling

infestation below 1% [20].

Sampling Strategy
We selected an area of ,250,000 m2 within the Manaus

neighborhood of Tancredo Neves (Figure 1) for vector monitoring.

This neighborhood is frequently infested by both target mosquito

species, and about 1500 dengue cases were notified during the

study period (refs. [24,29,30] and unpublished Municipal Health

Department data). The typical Tancredo Neves dwelling – our

unit of occupancy analysis – consists of a brick-walled house with

a courtyard in a ,10620 m plot. In 2008, we randomly selected

50 dwellings for monthly sampling, and in 2010 we added five

more dwellings, which were also sampled on a monthly basis; all

residents gave informed consent. During the first 25 months, we

used a combination of 2–4 ovitraps and 0–2 Adultraps [31];

afterwards, only the more sensitive ovitraps (3 per dwelling and

month) were used. Traps contained hay infusion [32] and were

operated for six days/month. In total, our analyses use data from

nearly 5800 trap-weeks. Each month, mosquito larvae were

identified to species, with the result of each individual trap

recorded separately. Thus, for each dwelling and month between

September 2008 and October 2011, we have a ‘detection history’

consisting of a series of binary outcomes (present = 1 and

absent = 0), with one outcome per trap and per mosquito species.

These ‘detection histories’ are central to our approach: by

repeatedly sampling each dwelling in each month and recording

each trap’s result separately, we can derive an estimate of the rate

of false-negative trap results and use it to correct infestation

estimates (see below). This summarizes the hierarchical nature of

our models – detection histories result from the interplay of two

hierarchically juxtaposed processes, where the sampling process of

detecting a species in one trap is conditioned on the biological

process of dwelling occupancy by that species. The use of multiple

traps per dwelling enables formal separation of the two processes.

Covariates
In order to model the relation between environmental variables

and infestation we obtained daily data on total rainfall, as well as

on maximum, mean, and minimum temperature, from the

Brazilian National Meteorological Institute (INMET). We chose

these environmental metrics, or covariates, because we considered

them potentially relevant for the spatial-temporal distribution of

our two target species [33–36]. Because we had no prior

information on possible time lags between meteorological changes

and their effects on local mosquito populations, we decided to

relate meteorological information and each month’s occupancy in

three different ways: (i) looking at meteorological covariates

measured, for each month, during sampling and the previous

week (denoted 1-week-lag below); (ii) looking at covariates measured

during sampling and the previous two weeks (2-week-lag); and (iii)

looking at covariates measured during the four weeks before

sampling (4-week-lag). All meteorological measurements were

standardized to mean zero and standard deviation one before

analysis.

Apart from rainfall and temperature, we also registered

dwelling-level traits throughout the last 13 months of monitoring.

Following criteria from Tun-Lin et al. [36] adapted to our setting,

we separately assessed houses and courtyards; for each of these, we

defined a covariate with values of 1 (poor overall maintenance,

garbage accumulation, and, for courtyards, overgrown vegetation)

or 0 (well-maintained houses or courtyards). Finally, we noted

whether routine control interventions were or were not performed

in our study area in each of the last 13 months of monitoring.

These interventions were carried out by municipal/state agents

and military staff, and involved elimination of breeding sites,

physically or with larvicides [20,27]; while campaigns are designed

to target all dwellings, interventions are effectively limited to

houses whose owners are present at the time of the visits and allow

control agents to inspect their property.

Data Analyses
Our analytical approach involved two main steps. First, we used

descriptive statistics, tables, and graphs to explore the data [37],

and calculated naı̈ve infestation rates (i.e., rates that assume perfect

detection of vectors) of both target species for later comparison

with model-based estimates (see below). Second, we implemented

a set of hierarchical models of occupancy dynamics. These models

explicitly account for imperfect detection, providing estimates of

detection probability (denoted p) conditioned on occupancy

(denoted y), and treat temporal changes in occupancy as a first-

order Markov process [38–40]. Thus, the probability of a site

being occupied in month t depends on the occupancy state of that

site in the previous month, t21. This also accounts for a form of

temporal autocorrelation: when observations on the same sam-

pling unit are positively correlated, values close in time are more

similar than those separated by longer periods [40]. Apart from p

and y, our occupancy dynamics models also provide information

Aedes Occupancy Dynamics
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Figure 1. Study area. Manaus, state of Amazonas, Brazil (A) and Tancredo Neves neighborhood (B).
doi:10.1371/journal.pone.0058420.g001

Figure 2. Observed dwelling infestation and meteorological variables during the study period. Dwelling infestation (%; left y axis) by
Aedes aegypti and Ae. albopictus; total monthly rainfall (mm; right y axis); and monthly averages of daily mean, minimum, and maximum temperatures
(uC; left y axis).
doi:10.1371/journal.pone.0058420.g002
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about the probability that a dwelling that is infested at time t21

will become uninfested at time t (named local extinction

probability, or e) or that an uninfested dwelling at time t21

becomes infested at time t (colonization probability, c). Models can

use a variety of parameterizations to represent the same

occupancy-dynamic process: we chose to focus on the estimation

of y and c, which, combined, can yield information on e.
Parameters p, y, e, and c can be modeled as functions of sampling

or environmental covariates. For simplicity, we model covariates

on p and y.

The main assumption of the models is population closure – i.e.,

site-specific occupancy remains unchanged within each sampling

month. In our case, closure was guaranteed by the simultaneous

assessment of all traps set within each dwelling. This design could

however result in nonindependence of traps set within a single

dwelling: if detection in one trap increases detection probabilities

in the others, this would result in some overestimation of p and,

therefore, a negatively biased y estimate. Finally, the usual

assumption of independence of dwellings with regard to infestation

also applies; if violated, this would inflate the precision of

occupancy estimates.

As summarized above, estimation of p requires detection

histories from repeated samples or multiple traps. A ‘011’

detection history for a dwelling and month, for example, indicates

that one trap was false-negative; on the other hand, all-zero

histories may result from two scenarios: either the dwelling was

truly uninfested or it was infested yet all traps failed to detect the

vectors [38–40]. Since detection probability (p) is conditional on

site-occupancy, it can be interpreted as the sensitivity of the vector-

detection method – its ability to detect the presence of the vectors

in dwellings that are actually infested.

Models were fit by likelihood maximization and ranked

according to the Akaike information criterion corrected for small

sample size (AICc) [41]. Model fitting and ranking were carried

out with the freely-available software PRESENCE 4.0 [42]. To

avoid repetition, further details on model specification, compar-

ison, and selection are presented in the Results section and in

Tables 1, 2, and S1.

We fit occupancy dynamic models separately to (i) the 13-month

subset of data for which we recorded vector control interventions

and house/courtyard covariates and (ii) the full 38-month dataset.

This resulted in a two-stage analysis. On the first stage, we focused

on modeling the effects of control interventions on y, looking both

at interventions that took place in the same month as sampling

(denoted controlno-lag) and during the preceding month (lagged

effect, control4-week-lag). These models also consider meteorological

and dwelling conditions. Since two teams were involved in vector

monitoring, we also modeled detection probability (p) as a function

of the observer team to account for possible differences in team

performance [39,40].

On the second stage, we set aside control interventions and

focused on estimating time-dependent occupancy for the whole

Table 1. Effects of control interventions, meteorological variables, and dwelling traits on infestation rates by dengue vectors:
dynamic site-occupancy models fitted to a 13-month dataset.

Species/model DAICc Covariate b SE CI-lower CI-upper

Aedes aegypti, 13 months

y(tmax-2-week-lag),c(.),p(observer) 0

tmax-2-week-lag –0.65 0.25 –1.14 –0.16

y(tmax-2-week-lag,controlno-lag),c(.),p(observer) 0.73

tmax-2-week-lag –0.87 0.36 –1.58 –0.16

controlno-lag –0.81 0.62 –2.03 0.41

y(tmax-2-week-lag,house),c(.),p(observer) 2.41

tmax-2-week-lag –0.66 0.25 –1.16 –0.17

house 0.22 0.66 –1.08 1.51

Aedes albopictus, 13 months

y(tmin-1-week-lag,house),c(.),p(.) 0

tmin-1-week-lag –0.26 0.12 –0.49 –0.03

house 0.78 0.40 –0.0005 1.56

y(tmin-1-week-lag,control4-week-lag,house),c(.),p(.) 0.87

tmin-1-week-lag –0.27 0.11 –0.49 –0.05

control4-week-lag –0.27 0.21 –0.69 0.14

house 0.79 0.40 –0.002 1.58

y(tmin-1-week-lag,controlno-lag,house),c(.),p(.) 2.51

tmin-1-week-lag –0.27 0.12 –0.50 –0.03

controlno-lag 0.028 0.19 –0.33 0.39

house 0.78 0.40 –0.0002 1.56

‘‘(.)’’ denotes that no covariates entered this part of the model; see text for further details. DAICc, variation of Akaike information criterion (corrected for small sample
size) values with respect to the first-ranking model in each set; b, slope coefficient estimated for each covariate in the corresponding model; SE, standard error; CI-lower
and CI-upper, limits of the 95% confidence interval; tmax-2-week-lag, standardized mean of maximum daily temperatures over sampling days and the 15 days prior to
sampling; tmin-1-week-lag, standardized mean of daily minimum temperatures during sampling days and the previous week; house, house condition covariate; controlno-lag,
vector control covariate (same month); control4-week-lag, vector control covariate (previous month); observer, observer team covariate; see main text for further details on
covariates.
doi:10.1371/journal.pone.0058420.t001
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38-month dataset, including the final 13 months of control-

intervention monitoring. This second set of models also considered

the effects of meteorological covariates on occupancy, albeit with

a larger amount of data. Since we used two trapping devices

during the first phase of monitoring, detection probabilities were

modeled as a function of trap type, and, once again, as a function

of the observer team. We also assessed the amount of bias present

in naı̈ve vs. model-derived infestation rate estimates (bias = 1 2

[naı̈ve/model-derived values]).

Ethics Statement
Sampling was carried out with permission from dwelling

owners, and did not involve endangered or protected species.

SLBL holds a permanent license (27733-1) from the Brazilian

Institute for the Environment and Natural Resources (IBAMA) for

sampling insect vectors such as the Aedes species we studied.

Results

Descriptive Results: Observed Infestation
Both vector species were detected in a high proportion of

dwellings throughout the study period (Figure 2), with harmonic

mean values of 0.68 for Ae. aegypti (range, 0.50–0.91) and 0.61 for

Ae. albopictus (range, 0.28–0.86). There was an apparent relation-

ship between site-occupancy and weather (Figures 2 and 3). The

particularly hot and dry period of June-September 2009 coincided

with a sharp decrease of Ae. albopictus infestation: observed values

fell from ,0.70–0.80 to ,0.30–0.50. A less marked decline was

also apparent for Ae. aegypti. Both species, however, quickly

recovered with the onset of the rainy season. Dwelling infestation

indices (the World Health Organization ‘house index’) reported by

routine municipal surveillance for our study neighborhood, based

on 13 ‘rapid larval surveys’ [28] carried out between October 2008

and October 2011 (Figures 3 and 4), yielded a harmonic mean of

just 0.033 (range, 0.015–0.089). These descriptive results rely on

the assumption that vectors were absent from sites where they

were not observed; however, no perfect vector-detection method is

available. The modeling results summarized in the next section

address this key limitation.

Modeling Results I: Effects of Control Interventions
On the first stage of our analysis we modeled the effects of

vector control interventions carried out by local health authorities

on site-occupancy by Ae. aegypti and Ae. albopictus. These models

used data from 55 dwellings monitored from October 2010 to

October 2011 with up to three ovitraps per dwelling and month.

Overall, the data encompass results from 1907 ovitraps, of which

849 detected Ae. aegypti and 828 detected Ae. albopictus.

Aedes aegypti detection/non-detection data are best explained by

a model with just one covariate on y, the average of maximum

daily temperatures measured with a 2-week-lag (tmax-2-week-lag),

which had a negative effect on site-occupancy (Table 1). The

second-ranking model is also substantially supported by the data

(DAICc = 0.73); it includes the additive effects of tmax-2-week-lag and

control interventions carried out during the same month (controlno-

lag) on y. The effect of temperature was again negative; this model

also yielded a negative point estimate of the control coefficient, but

uncertainty about this estimate is large and the 95% confidence

interval overlaps zero (Table 1). Among candidate models

including dwelling covariates, the one with the lowest AICc

estimates a weak, positive effect of poor house condition on

infestation, but, again, the estimate of this effect is too uncertain to

draw any strong conclusions (Table 1).

The top-ranking model for Ae. albopictus estimates a negative

effect of 1-week-lagged minimum temperatures (tmin-1-week-lag) on

infestation; in addition, the model suggests that houses in poor

condition might have been at a slightly higher risk of infestation,

albeit the estimated coefficient’s 95% confidence interval includes

zero (Table 1). Adding control interventions carried out the month

before (control4-week-lag) resulted in a model that fits reasonably well

(DAICc,1). For this second model, the negative coefficient of

control4-week-lag on y is nevertheless small and imprecise, with

Table 2. Meteorological covariate effects on dwelling infestation rates by Aedes aegypti and Ae. albopictus: dynamic site-
occupancy models fitted to a 38-month dataset.

Species/model DAICc Covariate b SE CI-lower CI-upper

Aedes aegypti, 38 months

y(tmax-2-week-lag),c(.),p(trap,observer) 0

tmax-2-week-lag –0.63 0.14 –0.90 –0.35

y(tmax-1-week-lag),c(.),p(trap,observer) 0.98

tmax-1-week-lag –0.57 0.12 –0.81 –0.33

y(r1-week-lag),c(.),p(trap,observer) 6.29

r1-week-lag 0.50 0.14 0.23 0.77

Aedes albopictus, 38 months

y(tmin-1-week-lag),c(.),p(trap) 0

tmin-1-week-lag –0.59 0.09 –0.77 –0.41

y(r4-week-lag),c(.),p(trap) 21.4

r4-week-lag 0.46 0.09 0.28 0.64

‘‘(.)’’ denotes that no covariates entered this part of the model; see text for further details. DAICc, variation of Akaike information criterion (corrected for small sample
size) values with respect to the first-ranking model in each set; b, slope coefficient estimated for each covariate in the corresponding model; SE, standard error; CI-lower
and CI-upper, limits of the 95% confidence interval; tmax-2-week-lag, standardized mean of maximum daily temperatures during sampling and the previous 15 days; tmax-1-

week-lag, standardized mean of maximum daily temperatures during sampling days and the previous week; r1-week-lag, standardized mean of daily rainfall during sampling
days and the previous week; tmin-1-week-lag, standardized mean of daily minimum temperatures during sampling days and the previous week; r4-week-lag, standardized
mean of daily rainfall over the month before sampling; trap, trap-type covariate; observer, observer team covariate; see main text for further details on covariates.
doi:10.1371/journal.pone.0058420.t002
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Figure 3. Observed and model-estimated dwelling infestation by Aedes aegypti (A) and Ae. albopictus (B). Monthly model-derived site-
occupancy estimates (solid circles, with 95% confidence intervals); monthly observed infestation (empty circles); and Ae. aegypti infestation indices
derived from 13 ‘rapid larval surveys’ [28] (red circles in panel A). On the x axis, grey boxes highlight the periods in which city-wide, massive Aedes
control campaigns, called Operação Impacto [29,30], took place. Arrows indicate months in which control activities were performed in our study
neighborhood (red arrows, interventions included as model covariates).
doi:10.1371/journal.pone.0058420.g003
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confidence intervals including zero (Table 1). Finally, a model with

tmin-1-week-lag, house condition, and controlno-lag as covariates also

performed reasonably well; it estimated a small positive coefficient,

again not different from zero, of control interventions (Table 1).

The null model (without any covariates) and those models

exploring the effects of courtyard covariates all had DAICc$3

(see Table S1).

Modeling Results II: Long-term Site-occupancy Dynamics
The results in the previous section show that modeling time-

specific occupancy as a function of control interventions or

dwelling-level covariates did not improve the ranking of the

models. Therefore, we felt justified to extend modeling to the full

dataset – focusing on the potential effects of meteorological

variables on site-occupancy by Aedes species. The analyses make

use of a 38-month dataset including individual results of 5799 trap-

weeks, which detected Ae. aegypti on 2641 occasions and Ae.

albopictus on 2538 occasions. In these models, colonization

probability (denoted c) was constrained to be constant across

months, while monthly local (dwelling-level) extinction probabil-

ities (e), of primary interest in the context of vector control, were

derived from y and c estimates as described in MacKenzie et al.

[39,40].

The full Aedes aegypti data were best explained by a model

including the 2-week-lagged average of daily maximum tempera-

tures (tmax-2-week-lag), which had a negative effect on site-occupancy

probabilities (Table 2). The model with tmax-1-week-lag as a covariate

on y also fitted the data well, and estimated a similar effect to that

of tmax-2-week-lag (Table 2). The remaining models that we examined,

including a null model without any covariates, performed

substantially worse than these two top-ranking models (see Table

S1). Among models that included rainfall covariates, the best-

performing one had a DAICc = 6.29 and estimated a positive effect

of total rainfall (r1-week-lag) on y (Table 2).

Figure 3A shows monthly site-occupancy estimates for Ae. aegypti

derived from the lowest-AICc model. With few exceptions, point

estimates were consistently .90% (harmonic mean 0.91; range,

0.79–0.97) and showed a weak seasonal pattern (Figure 3A).

Model-based infestation estimates are about 30% higher than

observed values based on ovitrap results (median bias, 0.29)

(Figure 4). The estimated average sensitivity of ovitraps at

detecting infestation by Ae. aegypti varied from p= 0.48 (95%

confidence interval 0.45–0.51) to p= 0.65 (0.63–0.67), depending

on which field team performed monitoring (details not shown);

1355 out of 4553 ovitrap-weeks and 450 out of 1246 Adultrap-

weeks did not detect Ae. aegypti in dwellings where other traps

yielded evidence of infestation. Local extinction probability

estimates were overall very low (harmonic mean e= 0.04; range,

0.01–0.18), reaching higher values in hotter months (Figure 5A);

mean site-colonization probabilities were estimated as c= 0.66

(95% confidence interval 0.54–0.76) over the study period.

The best-ranking Ae. albopictus model included only one site-

occupancy covariate, tmin-1-week-lag, which had a negative effect on

y (Table 2). The remaining models performed substantially worse

(DAICc.20), but several of the candidate specifications we tested

had convergence problems. The only model with a rain covariate

estimates a positive effect of 4-week-lagged rainfall on site-

occupancy by Ae. albopictus (Table 2). Site-occupancy estimates

derived from the best-ranking model are presented in Figure 3B.

As with Ae. aegypti, monthly y values were always high (harmonic

mean 0.83; range, 0.66–0.94), with minimum y= 0.66 (95%

confidence interval 0.59–0.72) in October 2011. Monthly Ae.

albopictus y estimates were more unstable than those of Ae. aegypti,

with relatively strong fluctuations after the dry-hot summer of

2009 (Figure 3B). Observed infestation (based on ovitraps) was also

biased downwards (by ,26%) in our Ae. albopictus data (Figure 4),

yet ovitraps were fairly sensitive at detecting Ae. albopictus (p= 0.63,

95% confidence interval 0.62–0.65). Monthly local extinction

probabilities were low: harmonic mean e= 0.07, range 0.02–0.32,

Figure 4. Bias in Aedes aegypti (left) and Ae. albopictus (right) observed infestation. Model-derived point estimates (‘‘Model’’) correspond to
the top-ranking, 38-month dynamic model for each species; observed dwelling infestation recorded during our surveys (‘‘Observed’’) and indices of
dwelling infestation by Ae. aegypti reported by the regular vector surveillance system, derived from ‘rapid larval surveys’ [28] (‘‘RLS’’). Monthly values
(empty circles) and quartiles 50% (horizontal line within box), 25%–75% (box lower-upper limits), 10%–90% (short lines), and 0%–100% (bottom-top
lines) are shown. All values are presented as proportions.
doi:10.1371/journal.pone.0058420.g004
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with the maximum value estimated for October 2011 (Figure 5B).

Mean dwelling colonization probability was estimated as c= 0.59

(95% confidence interval 0.51–0.66).

Discussion

Reliable dwelling infestation estimates are critical for decision-

making in the context of dengue vector surveillance and control.

The definition of programmatic goals, the management of

resources, and the assessment of intervention effects all rely

heavily upon such estimates. Using a large dataset and a sound

Figure 5. Derived estimates of local extinction probabilities (e) for Aedes aegypti (A) and Ae. albopictus (B). For each species, e estimates
(bold black lines) and 95% confidence intervals (thin grey lines) were derived from the best-performing (lowest AICc) 38-month model. We also plot
variation (z-scores) of average maximum temperatures during sampling days and the previous two weeks (tmax-2-week-lag, right y axes in each panel;
colored areas); this was the meteorological covariate in the best Aedes aegypti model. On the x axis, grey boxes highlight the periods in which city-
wide, massive Aedes control campaigns, called Operação Impacto [29,30], took place; note that they coincide with months of very low e values.
doi:10.1371/journal.pone.0058420.g005
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analytical approach we have shown that routine vector surveil-

lance and control are both performing poorly: at least in our study

setting, (i) ‘rapid larval surveys’ yielded dwelling infestation indices

that were markedly lower than the site-occupancy rates based on

ovitrap data, and (ii) control campaigns had negligible effects on

site-occupancy. Our results suggest that combining ovitrap-based

surveillance (e.g., [43–45]) with analytical methods that account

for imperfect detection (e.g., [21,22,38–40]) would help quantita-

tively assess, and likely enhance, dengue control programs.

Moreover, from a disease transmission perspective, the presence

of foraging gravid females in a dwelling, which ovitraps detect with

reasonable sensitivity, is arguably more important than the

presence of larvae, which is what ‘rapid larval surveys’ aim to

detect.

Before discussing our findings any further, we identify several

study limitations to keep in mind when interpreting the present

results. First, we used detection/non-detection data, ignoring

variations in vector abundance. However, presence-absence and

abundance data seem to correlate well (e.g., refs. [46,47]), and,

importantly, both empirical and modeling results suggest that Ae.

aegypti abundance thresholds (above which dengue transmission is

maintained) are typically very low, i.e., ,0.5–1 female per person

or ,0.5–1.5 pupae per person [48,49]; therefore, the probability

that at least one gravid female is present in a dwelling, which we

modeled here, is clearly an epidemiologically relevant parameter.

Second, some of our data may violate the assumption of

independence of traps with regard to detection and of dwellings

with regard to infestation; this may result in negatively biased y
estimates with overly narrow confidence intervals. The high y
estimates we found suggest that this problem was, in practice,

negligible – our conclusions would not change because of

somewhat broader confidence intervals. In addition, we measured

only, and coarsely, a small number of covariates, but these were

selected because of their known importance for our target species

(e.g., [33–36,50]). Our ‘control’ covariate included control

interventions in just three out of 13 months of assessment, and

this clearly lowered the precision of effect-size estimates: it seems

possible that with more intervention data we might be able to

detect a small effect whose 95% confidence interval could exclude

zero. Yet, since ,70–90% of dwellings remained infested despite

control interventions, ‘statistical significance’ would in this case be

of no practical importance [49]. Acknowledging these caveats, we

feel confident that our models adequately estimate infestation rates

as well as some of the major determinants of those rates in our

study area. The main difference between our approach and

previous attempts to assess infestation by dengue vectors is that we

go beyond measuring indirect indices of infestation (i.e., adult or

larvae presence/absence or counts) to produce statistical estimates

of the probability that our study units (dwellings) are occupied by

the target vector species.

We found little evidence that dwelling infestation rates de-

creased measurably as a result of the vector control campaigns

carried out by local health authorities in our study neighborhood.

These campaigns involved the elimination/treatment of thousands

of artificial breeding containers [29,30], and were expected to

have larger effects on Ae. aegypti, which unlike Ae. albopictus rarely

breeds in natural water collections [5,17]. Our results show,

however, no measurable effect of control interventions on any of

the two vectors (Table 1); indeed, females of both species

consistently continued to lay eggs, and probably forage, in most

of the dwellings we surveyed, irrespective of whether control

interventions had or had not taken place in the neighborhood.

Our models suggest that this lack of effect could be related to the

fact that interventions are usually planned to coincide with the

wet-cool season, which is when local extinction probabilities drop

to their lowest values (Figure 5). Summer interventions might

perhaps be more effective [51], since they could synergize the

negative effects of high temperatures on Ae. albopictus and Ae. aegypti

detected by our models and in previous studies (e.g., [50–53]).

These negative effects of high temperature, however, have to be

considered in the particular context of our study. First, the

extrinsic incubation period of dengue virus and the vector’s

gonotrophic cycle can both be shortened by warmer weather,

increasing transmission risk; second, relatively high temperatures

probably favor vector development in overall cooler climates [10].

One practical implication of our findings is that Aedes breeding

sites appear to be often overlooked by vector control agents during

active surveillance and, principally, in control campaigns. This

suggests a key drawback to be addressed in the development of

novel Aedes control strategies, which should not heavily depend on

the ability of control agents to detect breeding sites while

inspecting premises. Two major candidate strategies address this

problem from very different, but complementary, perspectives: (i)

the use of adult mosquitoes to transfer potent larvicidal particles

from contaminated ‘dissemination stations’ to clean breeding sites

[54], and (ii) the release of mosquitoes carrying transgenes [55,56]

or specific Wolbachia strains [57] that impair reproduction and/or

reduce competence to transmit dengue virus.

Conclusions
The reported bias of infestation indices that do not account for

imperfect detection suggests that the findings of most dengue

vector ecology studies must be interpreted with caution. Even

ovitraps, which performed relatively well, yielded naı̈ve infestation

rates that were consistently biased downwards by about 30%. The

analytical strategy we used here incorporates this sampling-process

uncertainty, and could therefore substantially contribute to this

field of inquiry.

Finally, our results suggest two promising avenues for the much-

needed improvement of dengue vector surveillance [58]. First,

simple hay infusion-baited ovitraps [32] should be preferred to

‘rapid larval surveys’: they are more sensitive and provide

a measure of dwelling infestation by foraging gravid females (see

also, e.g., refs. [43–45,59]). Second, the repeated-sampling

approach we used considerably improves infestation rate estimates

by explicitly taking imperfect detection into account. Enhanced

entomological surveillance systems and data analyses that explic-

itly account for the detection process would, in turn, allow for

reliably assessing the effects of control interventions, irrespective of

the specific tactics employed. Without such an assessment, the

grounds on which massive public spending is directed towards

dengue vector control (e.g., [60]) remain questionable.

Supporting Information

Table S1 The complete sets of site-occupancy dynamic
models.
(XLSX)
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