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ABSTRACT
Background: Starchy foods can have a profound effect on
metabolism. The structural properties of starchy foods can affect their
digestibility and postprandial metabolic responses, which in the long
term may be associated with the risk of type 2 diabetes and obesity.
Objectives: This systematic review sought to evaluate the clinical
evidence regarding the impact of the microstructures within starchy
foods on postprandial glucose and insulin responses alongside
appetite regulation.
Methods: A systematic search was performed in the PUBMED,
Ovid Medicine, EMBASE, and Google Scholar databases for data
published up to 18 January 2021. Data were extracted by 3
independent reviewers from randomized crossover trials (RCTs) that
investigated the effect of microstructural factors on postprandial glu-
cose, insulin, appetite-regulating hormone responses, and subjective
satiety scores in healthy participants.
Results: We identified 745 potential articles, and 25 RCTs (n = 369
participants) met our inclusion criteria: 6 evaluated the amylose-to-
amylopectin ratio, 6 evaluated the degree of starch gelatinization,
2 evaluated the degree of starch retrogradation, 1 studied starch–
protein interactions, and 12 investigated cell and tissue structures.
Meta-analyses showed that significant reductions in postprandial
glucose and insulin levels was caused by starch with a high amylose
content [standardized mean difference (SMD) = −0.64 mmol/L∗min
(95% CI: −0.83 to −0.46) and SMD = −0.81 pmol/L∗min (95%
CI: −1.07 to −0.55), respectively], less-gelatinized starch [SMD =
−0.54 mmol/L∗min (95% CI: −0.75 to −0.34) and SMD = −0.48
pmol/L∗min (95% CI: −0.75 to −0.21), respectively], retrograded
starch (for glucose incremental AUC; SMD = −0.46 pmol/L∗min;
95% CI: −0.80 to −0.12), and intact and large particles [SMD =
−0.43 mmol/L∗min (95% CI: −0.58 to −0.28) and SMD = −0.63
pmol/L∗min (95% CI: −0.86 to −0.40), respectively]. All analyses
showed minor or moderate heterogeneity (I2 < 50%). Sufficient evi-
dence was not found to suggest how these structural factors influence
appetite.
Conclusions: The manipulation of microstructures in starchy
food may be an effective way to improve postprandial glycemia
and insulinemia in the healthy population. The protocol for

this systematic review and meta-analysis was registered in the
international prospective register of systematic reviews (PROS-
PERO) as CRD42020190873. Am J Clin Nutr 2021;114:472–
487.

Keywords: starchy foods, food structure, postprandial, glucose,
insulin, appetite, randomized crossover trials

Introduction
Type 2 diabetes (T2DM) and obesity produce the greatest

global burden on public health services worldwide (1). Global
rates of obesity have surpassed 300 million (2). Concurrently,
T2DM affects 460 million people worldwide (3). High-glycemic
foods play a significant role in the increased incidence of T2MD
and development of obesity (4, 5).

Starch is a carbohydrate that accounts for a significant
proportion of global nutrient intake. Glycemic responses (GRs)
to starchy foods depend on the rate and extent of diges-
tion in the small intestine. Starch is classified into rapidly
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FIGURE 1 Hierarchical microstructures that can control the rate and extent of starch digestibility. Figure adapted and modified from Tran et al. (6), Tian
et al. (7), and Ogawa et al. (8).

digested starch (RDS), slowly digested starch (SDS), and
resistant starch (RS) (9). RDS evokes a high GR (10),
while SDS is steadily absorbed as glucose, attenuating the
postprandial GR (11). Several studies have associated a
higher SDS intake with increased satiety and lower reduced
body weight (12). RS is starch that cannot be digested
in the small intestine and reaches the colon for fermenta-
tion by gut microbiota. SCFAs, derivatives of fermentation,
trigger release of anorectic gut hormones [peptide tyrosine–
tyrosine (PYY) and glucagon-like peptide 1 (GLP-1)], pro-
moting satiety (13). Acute feeding studies have shown RS
improves the postprandial glycemic response and appetite control
(14).

Food structure regulates the rate and extent of starch digestion.
Food structure is the arrangement of food constituents at
multiple-length scales (15), whether formed naturally, by food
processing, or both (16). Food macrostructure refers to structures
visible to the eye. Microstructure is the organization of food
constituents at the microscopic level (<100 μm) (15).

Starch, at a molecular level, exists as 2 forms of glucose
polymers: amylose and amylopectin (Figure 1A), which form
the semi-crystalline starch granule (Figure 1B and C). Starch
granules, alongside proteins and lipids, are embedded in cell
wall structures (Figure 1D). The ratio of amylose to amylopectin
(17), morphology of the starch granule (18, 6), starch–lipid
interactions (19), and starch–protein interactions (20) influence
digestibility. Variations in thickness and permeability determine
a cell wall’s capacity to limit digestive enzyme penetration into
and carbohydrate diffusion out of cells (7, 21).

Many starchy foods undergo processing before consumption,
including particle size reduction (mechanical processing or
mastication), thermal treatment, and storage (22). Particle size is

directly associated with cell wall rupture (23, 24). Smaller food
particles tend to have lower cellular integrity and a larger surface
area for enzyme action, resulting in greater starch digestibility
than larger particles (24, 25, 8). The combination of heat and
water promotes starch gelatinization, whereby granules swell,
losing their molecular organization. Gelatinization is positively
associated with starch digestibility (26). Gelatinized starch
retrogrades when refrigerated. Retrograded structures are not
recognized by enzymes and are less digestible (27).

Starch digestibility can be controlled through structural
changes at molecular, starch granular, cellular, and food process-
ing levels (7); however, their effects upon metabolic outcomes
have yet to be reviewed. This systematic review and meta-
analysis aims to assess the value of targeting the food structure
at each level as a strategy toward promoting desirable metabolic
responses to lower rates of T2DM and obesity.

Methods
This systematic review was conducted in accordance with

the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) Statement (28). The review was
prospectively registered on a Systematic Literature Review
registration website, PROSPERO, as CRD42020190873.

Eligibility criteria

The PICOS (patients, intervention, comparator, outcome,
study design) criteria were used to establish study eligibility and
focus the research question (Table 1).



474 Cai et al.

TABLE 1 PICOS criteria for inclusion and exclusion of studies

Parameter Criteria Exclusion

Population Healthy adults Animals
Intervention Consumption of starchy foods with limited starch digestibility

caused by their microstructural properties
—

Comparator Consumption of starchy foods with higher starch digestibility
caused by their microstructural properties

Unmatched energy or macronutrients intake
(difference > 10%)

Outcome Acute postprandial glycemic response, gut hormone response,
and appetite

Studies which do not contain these outcomes of interest

Study design RCTs Not RCTs

Abbreviations: PICOS, patients, intervention, comparator, outcome, study design; RCT, randomized crossover trial.

Search strategy

Research literature databases PubMed, Embase, Ovid
Medicine, and Google Scholar were searched for peer-reviewed
articles published up to 18 January 2021. The PubMed database
was searched for the following combination of terms: blood
glucose[MeSH Terms] OR glycemic index[MeSH Terms]
OR insulin[MeSH Terms] OR C-Peptide[MeSH Terms] OR
appetite regulation[MeSH Terms] OR appetite regulating
hormone[MeSH Terms] OR Peptide YY[MeSH Terms] OR
Glucagon-Like Peptide 1[MeSH Terms] OR energy intake
OR satiety response[MeSH Terms] AND (human[MeSH
Terms] OR adult[MeSH Terms] OR health, women s[MeSH
Terms] OR health, men s[MeSH Terms]) AND (starch[MeSH
Terms]) OR carbohydrate[MeSH Terms]) AND “diet”)
AND trials, randomized clinical[MeSH Terms]. The search
strategies for other databases are presented in Supplemental
Table 1.

Study selection

All articles identified by the search strategy were imported to
Endnote, which was used to eliminate duplicated articles. All
articles were reviewed by 3 reviewers independently (MC, BD,
and JEP). In the first pass, article’s titles and abstracts were
screened to determine their possible suitability for inclusion.
Selected studies then underwent full-text screening by MC, BD,
and JEP independently. For both screening and assessments of
study eligibility, disagreements as to the suitability of certain
papers were resolved by either consulting a third party (AML)
or by discussion until a consensus was reached.

Risk of bias assessment

The risk of bias (RoB) within eligible studies was inde-
pendently assessed by 3 authors (MC, BD, and JEP) using
the Cochrane RoB2 tool (29). This tool identifies the level of
RoB (low risk, some concerns, and high risk) on 5 domains,
including the randomization process, deviations from intended
intervention, missing outcome data, measurement of outcomes,
and selection of the reported result. Studies that were judged
to be at low RoB for all domains were considered to have
an overall low risk. Studies that were judged to raise some
concerns in at least 1 domain but not to be at high RoB for
any domain were classified as having some concerns. Studies
that were judged to be at high RoB for at least 1 domain were
classified as high risk, and studies judged to have some concern
of RoB in multiple domains were also labeled as high risk, since
multiple concerns may substantially reduce the credibility of the

results. Inconsistencies between authors’ RoB assessments at the
study level were resolved through discussion until reaching a
consensus.

Data extraction

Upon completion of eligibility screening and RoB assess-
ments, data were independently extracted from each eligible
article by 3 authors (MC, BD, and JEP). Data collected included
a reference (authors, year of publication), study design and
level of blindness, participant characteristics (population, sex,
health status, age, and BMI), and intervention and control (test
foods, grams of carbohydrate, outcomes of interest (postprandial
glucose response, gut hormone response, and subjective satiety
score).

Demographic data and described outcome values were ex-
tracted as standardized mean differences (SMDs) ± SEs between
intervention and control groups. The GR was reflected as blood
glucose and insulin incremental AUCs (iAUCs). Appetite was
measured by a subjective appetite score iAUC, using a visual
analogue scale, and an appetite-regulating hormone response
iAUC. These iAUCs were calculated using the trapezoidal
rule. The averages of fasting measurements were used as
baseline values, and areas below baseline were subtracted. When
iAUCs for multiple periods were reported, the iAUC0–120min was
included, as it is a dynamic representation of postprandial GR
to a carbohydrate-rich meal, which is the primary outcome in
this review. Missing data were obtained either by contacting
the original investigators or extracting from the figures using
a web-based plot-digitizing tool (WebPlotDigitizer) (30). When
multiple intervention and control groups (>2) existed in 1
study, all relevant intervention groups were combined into
a single intervention group, and all relevant control groups
were combined into a single control group. A single pair-wise
comparison was created by calculating the combined mean and
SD based on the formulas in the Cochrane Handbook (31).

Calculation of summary measures

Effect sizes and variances for each randomized crossover
trial (RCT) were calculated in accordance with the Cochrane
Handbook (31). When studies did not report the SDs for paired
differences, SDs were calculated from available statistics (e.g.,
P values or t statistics). When these statistics were lacking, the
SD was estimated assuming a correlation at a conservative level
of 0.5 between intervention and control groups to approximate
the paired analyses.



Postprandial glycemic and appetite responses to starchy food structure 475

FIGURE 2 PRISMA flow diagram of the literature search and screening process. Abbreviation: PRISMA, Preferred Reporting Items for Systematic
Reviews and Meta Analyses; RCT, randomized controlled trial; T2DM, type 2 diabetes.

Data analysis

Review Manager version 5.3 (the Cochrane Collabora-
tion, Software Update) was used for random effect model
meta-analyses. SMDs with 95% CIs for continuous outcomes
(iAUCs for glucose, insulin, gut hormone, and satiety score) were
assessed. Heterogeneity was quantified with the I2 statistic. An
I2 value greater than 50% represents significant heterogeneity.
When heterogeneity was significant, a sensitivity analysis was
conducted to detect the influence of a single study on the overall
estimate. A meta-analysis was performed in cases where at least 2
studies were included for each characteristic. A P value of < 0.05
was considered to be statistically significant.

Additional analyses

Sensitivity analyses were performed to determine whether the
overall results were affected by imputing different correlation
coefficient factors (0, 0.25, 0.75) to approximate paired analyses.

Results

Identified trials

A total of 745 articles were identified by the conducted search
strategy. Of these, 522 remained after removing duplicates. The
initial screening for title and abstract excluded 474 articles that

were not relevant to the topic. Of the remaining 48 records, 25
were excluded due to unhealthy populations (n = 3), unmatched
macronutrient intakes (n = 7), unclear nutrient profiles (n = 7),
and inappropriate study methods (not an RCT; n = 6). A total
of 25 articles were eligible and included in this systematic
review. The literature search and screening process are presented
in Figure 2.

A total of 369 healthy subjects, aged from 18 to 70 years,
were investigated in the 25 included trials. The mean participant
BMI ranged from 20.2 kg/m2 to 28.8 kg/m2. The year of
published articles ranged from 1983 to 2020. Studies were
grouped according to the microstructures used in the intervention,
including the amylose-to-amylopectin ratio (32–37), degree of
gelatinization of starch (38–43), degree of retrogradation of
starch (32, 44), starch–protein interaction (45), and cell and tissue
structures (37, 41, 46–56). More detailed characteristics of the
included studies are listed in Table 2.

Risk of bias

Evaluation by the Cochrane RoB 2 tool identified 12 studies
(48%) in the current review as having some concerns overall.
Of these, 3 studies (38, 45, 52) had bias due to deviations from
the intended intervention and 11 studies (32, 34, 38, 39, 47, 48,
50–53, 56) had bias in measurements of outcomes. The other 13
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studies were assessed as having low risks. The results of the RoB
assessment are presented in Figure 3.

Glycemic response

High compared with low amylose starch.

Six studies (32–37) investigated the effect of the amylose-
to-amylopectin ratio on the glycemic response (Figure 4A).
A meta-analysis (n = 154) indicated that high amylose starch
significantly reduced the postprandial glucose response, as shown
by the calculated iAUC (SMD = −0.64 mmol/L∗min; 95% CI:
−0.83 to −0.46; P < 0.0001). Interstudy heterogeneity was
minimal (I2 = 0%; P = 0.62). Similarly, a meta-analysis on the
insulin response [5 studies (32–35, 37); n = 141] indicated that
high amylose starch significantly reduced the insulin response,
also demonstrated by the calculated iAUC (SMD = −0.81
pmol/L∗min; 95% CI: −1.07 to −0.55; P < 0.0001; Figure
4B). Interstudy heterogeneity was moderate (I2 = 45%;
P = 0.12).

Degree of gelatinization.

Six studies (38–43) explored the effect of the degree of
gelatinization on the plasma glucose response in healthy subjects
(Figure 5A). The less-gelatinized starch (intervention group)
was defined as the starchy food that had a lower degree of
thermal processing (38, 40, 41), showed a lower extent of starch
granule swelling when examined by microscopy (39, 43), or had
a smaller amount of gelatinized starch detected by a quantitative
method (42). The more-gelatinized starch (control group) was
defined in the opposite way. A meta-analysis of the 6 studies
(n = 114) indicated that less-gelatinized starch significantly
reduced the plasma glucose iAUC in healthy subjects (SMD =
−0.54 mmol/L∗min; 95% CI: −0.75 to −0.34; P < 0.0001).
Interstudy heterogeneity was minimal (I2 = 0%; P = 0.79). In
addition, 4 of the 6 studies (39, 40, 42, 43) (n = 66) examined
the effects of the degree of gelatinization on the insulin response
(Figure 5B). A meta-analysis of these 4 studies found that
less-gelatinized starch resulted in a significant reduction in the
insulin iAUC (SMD = −0.48 pmol/L∗min; 95% CI: −0.75 to
−0.21; P = 0.0004). Statistical heterogeneity between studies
was minimal (I2 = 0%; P = 0.58).

Degree of retrogradation.

Two studies (32, 44) investigated the effect of retrograded
starch on the glycemic response (Figure 6). A meta-analysis
(n = 36) indicated a significance reduction in the glucose
iAUC response (SMD = −0.46 pmol/L∗min; 95% CI: −0.80
to −0.12; P = 0.008) when comparing retrograded starch
with non- or less-retrograded starch. Very low heterogeneity
was observed (I2 = 0%; P = 0.67). A single study (32)
measured the insulin iAUC response, and found a 26.8%
reduction for retrograded starch compared with nonretrograded
starch.

Starch–protein interaction.

Greffeuille et al. (45) found that a high-temperature
drying treatment strengthened the protein network in faba
bean pasta, resulting in a decrease in the in vitro starch
digestion. However, the altered starch–protein network in
starch meals did not significantly reduce the postprandial
glucose level (7.0% in iAUC) or insulin level (3.0% in
iAUC). A meta-analysis was not performed due to insufficient
data.

Particle size (cell wall structure).

Twelve studies (37, 41, 47–56) examined the effect of
particle size on glucose in healthy subjects (Figure 7A).
These studies manipulated particle size either by industrial
processing [9 studies (37, 41, 47–53)] or mastication [3 studies
(54–56)]. Starchy foods made from larger-granule materials
with a lower degree of milling/grinding (37, 41, 47–53) or
bearing less chewing (54–56) were classified as being in the
larger-particles group, while the smaller-particles group was
defined in the opposite manner. The overall finding of these 12
studies (n = 192) was that an intact cell wall structure induced a
significant decrease in glucose iAUC (−0.43 mmol/L∗min; 95%
CI: −0.58 to −0.28; P < 0.0001) with minimal heterogeneity
(I2 = 1%; P = 0.43). A subgroup analysis found no significant
heterogeneity between industrial processing and mastication
(I2 = 0%; P = 0.50).

Seven studies (37, 48–53) investigated the effect of the level
of industrial processing on insulin response (Figure 7B). A meta-
analysis (n = 103) found that a larger particle size significantly
reduces insulin iAUC in healthy subjects (SMD = −0.63
pmol/L∗min; 95% CI: −0.86 to −0.40; P < 0.0001). Statistical
heterogeneity between studies was moderate (I2 = 33%;
P = 0.18).

Satiety and energy intake

High compared with low amylose starch.

Three studies (32, 34, 35) investigated the effect of the
amylose-to-amylopectin ratio on postprandial satiety (Figure
8). The study by van Amelsvoort and Weststrate (32) found
that high-amylose starch significantly increased satiety (iAUC)
compared to low-amylose starch, while the other 2 studies
(34, 35) found no significant differences. A meta-analysis
was performed on the 2 studies (32, 35) that supplied data
(n = 76), suggesting that the amylose-to-amylopectin ratio
had no significant effect on the satiety iAUC (SMD = 0.07
mm∗min; 95% CI: −0.25 to 0.38; P = 0.68). Statistical
heterogeneity between studies was moderate (I2 = 33%;
P = 0.22).

Degree of gelatinization.

Two studies (38, 40) investigated the effect of the de-
gree of gelatinization on subjective satiety score iAUCs
in healthy subjects (Figure 9). One study (38) reported
a significant reduction in less-gelatinized starch compared
to more-gelatinized starch, while the other (40) showed a
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FIGURE 3 Risk of bias of included studies.

null effect. A meta-analysis (n = 19) suggested that the
degree of gelatinization had no significant effect on the
satiety iAUC (SMD = 0.89 mm∗min; 95% CI: −0.17 to
1.94; P = 0.10), with substantial heterogeneity (I2 = 71%;
P = 0.06).

Particle size (cell wall structure).

Seven studies (46, 47, 50–53, 56) evaluated the
effect of particle size on subjective satiety score iAUCs
in healthy subjects. A meta-analysis was completed

van Amelsvoort 1992 a (32)
Ang et al. 2020 (36)

Hospers et al. 1994 (34)
Petropoulou et al. 2020 a (37)

Behall & Hallfrisch 2002 (33)

Zenel & Stewart 2015 (35)

van Amelsvoort 1992  (32)

Hospers et al. 1994 (34)
Petropoulou et al. 2020 a (37)

Behall & Hallfrisch 2002 (33)

Zenel & Stewart 2015 (35)

P
P

P
P

FIGURE 4 Effects of amylose content on (A) glucose (iAUC mmol/l∗min) and (B) insulin response (iAUC pmol/l∗min) in healthy subjects. Horizontal
lines represent 95% CIs. The diamond represents the pooled estimate, determined using the generic inverse-variance method with a random effects model.
Abbreviation: iAUC, incremental AUC.
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Burton & Lightowler 2006 (38)
Eelderink et al. 2015 (39) 
Gustafsson et al. 1995 (40) 
Jenkins et al. 1983 b (41) 
Jung et al. 2009 (42) 
Pansasigui et al. 1991 (43) 

Eelderink et al. 2015 (39) 
Gustafsson et al. 1995 (40) 
Jung et al. 2009 (42) 
Pansasigui et al. 1991 (43) 

P

P
P

P

FIGURE 5 Effects of degree of gelatinization on (A) glucose (iAUC mmol/l∗min) and (B) insulin response (iAUC pmol/l∗min) in healthy subjects.
Horizontal lines represent 95% CIs. The diamond represents the pooled estimate determined using the generic inverse-variance method with a random effects
model. Abbreviation: iAUC, incremental AUC.

(Figure 10) on the studies that supplied data (46, 47, 51–
53, 56) (n = 98), and indicated that the particle size has no
significant effect on subjective satiety scores (SMD = 0.02
mm∗min; 95% CI: 0.19–0.24; P = 0.83). Statistical
heterogeneity between studies was moderate (I2 = 15%;
P = 0.32).

Gut hormone response

Five studies (37, 49, 50, 53, 56) investigated the effect of
particle size upon the gut hormone response (Figure 11). Four
studies (37, 49, 50, 53) (n = 48) investigated the effect of
particle size on the GLP-1 (Figure 11A), whilst 1 study (50)
reported a significant difference in iAUCs of GLP-1 responses
between the larger-particles group and smaller-particles group.
A meta-analysis demonstrated no significant difference between
the larger- and smaller-particle conditions (SMD = −0.25

pmol/L∗min; 95% CI: −0.85 to 0.35; P = 0.41). Statistical
heterogeneity between studies was significant, with an I2 of
65% (P = 0.03). A sensitivity analysis showed that the overall
conclusion was not affected by a single study.

All 5 studies (n = 71) investigated the effect of particle size
on gastric inhibitory peptide (GIP; Figure 11B). Four studies
(37, 49, 53, 56) demonstrated a decrease in the iAUC of GIP
in response to the larger-particle intervention, whereas 1 study
(50) saw no significant difference between the larger-particles
group and smaller-particles group. A meta-analysis allowed for
the conclusion that the larger (intact) particle size induced a
significantly lower GIP iAUC response than the smaller particle
size (SMD = −0.56 pmol/L∗min; 95% CI: −1,06 to −0.06;
P = 0.03). Statistical heterogeneity was moderate (I2 = 43%;
P = 0.14).

Two studies (49, 53) (n = 15) investigated changes in
the secretion of PYY in response to particle size (Figure
11C). Neither study reported a significant difference in PYY

van Amelsvoort 1992 b (32)
Sonia at al. 2015 (44)

P
P

FIGURE 6 Effects of degree of retrogradation on glucose (iAUC mmol/l∗min) in healthy subjects. Horizontal lines represent 95% CIs. The diamond
represents the pooled estimate determined using the generic inverse-variance method with a random effects model. Abbreviation: iAUC, incremental AUC.
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FIGURE 7 Effects of particle sizes on (A) glucose response (iAUC mol/L∗min) and (B) insulin response (iAUC pmol/L∗min) in healthy subjects.
Horizontal lines represent 95% CIs. The diamond represents the pooled estimate determined using the generic inverse-variance method with a random effects
model. Abbreviation: iAUC, incremental AUC.

secretion between the smaller and larger particle size con-
ditions. The meta-analysis results were in agreement with
this conclusion (SMD = 0.09 pmol/L∗min; 95% CI: −0.49
to 0.66; P = 0.77). Heterogeneity was minimal (I2 = 0%;
P = 0.77).

Two studies (50, 56) (n = 31) measured cholecystokinin
secretion, and in both studies the difference in secretion
between larger and smaller particles was determined to be
insignificant (Figure 11D). A meta-analysis determined a
similar result (SMD = −0.14 pmol/L∗min; 95% CI: −0.49
to 0.22; P = 0.45). Heterogeneity was minimal (I2 = 0%;
P = 0.59).

Sensitivity analyses

Sensitivity analyses showed that the results were consistent
when different correlation coefficients (r = 0, 0.25, or 0.75) were
estimated for imputing SDs to approximate the paired analyses
(Supplemental Table 2).

Discussion

Overall summary

This study was designed to determine the effects of iso-caloric
starchy foods—foods with a similar nutrient composition but

van Amelsvoort 1992 a (32)
Zenel & Stewart 2015 (35)

P
P

FIGURE 8 Effects of amylose content on subjective satiety score (iAUC mm∗min) in healthy subjects. Horizontal lines represent 95% CIs. The diamond
represents the pooled estimate determined using the generic inverse-variance method with a random effects model. Abbreviation: iAUC, incremental AUC.
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FIGURE 9 Effects of gelatinized starch on subjective satiety score (iAUC mm∗min) in healthy subjects. Horizontal lines represent 95% CIs. The diamond
represents the pooled estimate determined using the generic inverse-variance method with a random effects model. iAUC, incremental AUC.

differing in structure—on postprandial glycemic, insulinemic,
and appetite responses in healthy adults. Evaluation of 25
RCTs involving 369 participants found that postprandial blood
glucose and insulin levels could be reduced by the addition
of high-amylose starch ingredients, when maintaining botanical
structures (starch granule, cellular, and tissue structures) by
minimizing thermal or mechanical processing. However, there
was insufficient evidence to suggest the influence of structural
factors upon appetite control.

Relevance of this systematic review

This review is unique, as it provides insight into the impact
of food structures on the metabolic response. There is a
wide variation in glycemic, insulinemic, and appetite responses
when different starchy foods are consumed. The variations
can be attributed to multiple factors, such as cultivars and
processing (57), resistant starch components (58), and dietary
fiber components (59). This review, to the best of our knowledge,
is the first to conduct qualitative and quantitative analyses to
determine which structural factors affect postprandial metabolic
responses after the consumption of starchy foods. These results
provide a better understanding of the extent to which factors
other than macronutrient profiles influence metabolic responses.
Moreover, this study can inform ingredient formulation and
food processing, such as by increasing the amylose content
or reducing industrial processing to improve the postprandial
metabolic response.

Food structure and glucose and insulin response

The rate of starch digestion is the major determinant of
the postprandial glycemic and insulinemic response. A set of

methods to reduce in vitro starch digestion by altering the
microstructures has been summarized by Tian and colleagues (7).
However, there is limited evidence as to whether microstructural
changes that reduced in vitro starch digestion can predict
an attenuated blood glucose and insulin response in vivo. In
the present review, the postprandial metabolic outcomes of
these structural factors were investigated. Structural factors,
including a high amylose-to-amylopectin ratio, less-gelatinized
starch, retrograded starch, and a larger particle size, significantly
reduced the magnitudes of the glucose and insulin responses.
Furthermore, GIP was significantly lower in the group with
intact particles compared to that with disrupted particles. This
may be the result of slower or less digestion as a result of
the intact particles present in the small intestine, causing a
reduction in GIP synthesis by K cells and inhibited insulin
secretion. Overall, this study affirms the value of targeting
food structure at several scales as a strategy to promote
glycemic control. This improved knowledge will facilitate
the design of food products to promote favorable metabolic
outcomes.

Food structure and appetite regulation

It has been suggested that food structure can affect appetite
control (16). Food structure determines the volume of fer-
mentable metabolites reaching the ileum and colon, therefore
impacting colonic fermentation, during which SCFAs are pro-
duced (16). SCFAs bind to receptors to stimulate the secretion of
appetite-regulating hormones, such as PYY and GLP-1, thereby
triggering the gut–brain signals to suppress appetite (13, 60). It is
hypothesized that less processed foods—that is, those retaining

FIGURE 10 Effects of particle sizes on subjective satiety score (iAUC mm∗min) in healthy subjects. Horizontal lines represent 95% CIs. The diamond
represents the pooled estimate determined using the generic inverse-variance method with a random effects model. Abbreviation: iAUC, incremental AUC.



484 Cai et al.

FIGURE 11 Effects of particle sizes on (A) GLP-1 response (iAUC pmol/L∗min), (B) GIP response (iAUC pmol/L∗min), (C) PYY response (iAUC
pmol/L∗min), and (D) CCK response (iAUC pmol/L∗min) in healthy subjects. Horizontal lines represent 95% CIs. The diamond represents the pooled estimate
determined using the generic inverse-variance method with a random effects model. Abbreviations: CCK, cholecystokinin; GIP, gastric inhibitory peptide; GLP-
1, glucagon-like peptide 1; iAUC, incremental AUC; PYY, peptide tyrosine–tyrosine.

intact structures—are more satiating compared to highly pro-
cessed foods (16). However, the results of this study do not seem
to support this hypothesis. Meta-analyses have shown that there
were no significant differences in PYY and GLP-1 responses
between less-processed foods (with large particles) and more-
processed foods. Furthermore, the combined mean difference in
subjective satiety between small and large particles was not sta-
tistically different. Based on current evidence, the less-processed
starchy foods had no significant effect on appetite regulation
in healthy participants. It should be acknowledged that results
were extracted from a limited number of trials, 1 of which (49)
recruited ileostomy participants and excluded effects from the
ileum and colon. Moreover, the judgement on appetite was based
on the subjective fullness score, which has a greater risk of partic-
ipant bias. Further investigation using objective measures of sati-
ety, such as ad libitum food intake, is required to better understand
the impact of food structure on appetite regulation and energy
intake.

Limitations

This review has some limitations. Firstly, the few conclusions
drawn are based on a limited number of studies, which may lead
to low-powered analyses. The number of studies identified did not
allow for subgroup analyses based on treatment duration, parti-
cipant characteristics, or starchy food types. A subgroup analysis
on the basis of starchy food types could have proven beneficial,
as structural components may have a varying effect dependent
upon the starchy food in question. For example, the findings for
particle size were mainly based on wheat, and therefore may not
necessarily represent the metabolic responses following different
particle sizes in pulses. It should be noted, however, that the meta-
analyses showed little or moderate heterogeneity, suggesting that
there was limited variation between studies.

Secondly, some of the included studies lacked quantitative
measurements of starchy food structures. For example, the degree
of gelatinization and retrogradation of the starch was determined
by the degree of cooking (cooking time or temperature); however,
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the extent to which the starch morphology was altered was
unclear.

Finally, chronic effects have not been investigated. There are
insufficient studies to determine how long-term treatment using
structures shown to have an acute effect on blood glucose would
improve metabolic markers of glucose control when consumed
habitually.

Implications

Our study supports the growing body of evidence that
carbohydrate quality, in addition to quantity, has a determinant
effect on major health outcomes (59, 61). In a recent review
and meta-analysis, Riccardi et al. (61) showed that intakes
of dietary fiber or whole grain, an important indicator of
carbohydrate quality, were highly associated with noncommu-
nicable disease risk factors. In this review, we reported that
independent of the nutrient profile, different food structures
had various postprandial metabolic outcomes. These results
highlight important elements of food structure, which could
be used as indicators of carbohydrate quality and may reduce
the risk of T2DM or obesity. When making decisions on
future policies or recommendations for product reformulation or
healthier food choices, structural properties, such as the amylose
content, structural integrity, or level of processing, should be
considered.

Future research

This study provides convincing evidence that food structure
can influence postprandial metabolic responses, although the
mechanisms remain undetermined. A greater understanding of
the effect of food structure on the delivery of nutrients and
gastrointestinal dynamics is required. Much of our current
knowledge is based on ileostomy patients (49), which may
not represent the physiology of individuals with an intact
intestine. More studies in healthy subjects are expected in
the future. A naso-gastric (62) or naso-intestinal tube (63)
can be used to sample digestive fluids, better facilitating the
understanding of how the gastrointestinal tract senses dietary
content and the resulting effects on postprandial glycemia and
appetite.

Overall conclusion

In conclusion, the manipulation of starchy food structures can
modulate postprandial metabolic responses in healthy subjects.
Starchy foods with certain structural properties may benefit
carbohydrate-sensitive individuals. In the future, when designing
dietary strategies for glycemic control and prevention of chronic
disease, it will be important to consider not only the impact of
individual nutrient intakes, but also the way these nutrients are
delivered. Risk factors for the development of chronic diseases,
such as T2DM, may be improved by simple changes in food
structure.
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