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ABSTRACT Ferrigenium kumadai An22T (= JCM 30584T = NBRC 112974T = ATCC TSD-
51T) is a microaerophilic iron oxidizer isolated from paddy field soil and belongs to the
family Gallionellaceae. Here, we report the complete genome sequence of F. kumadai
An22T, which was obtained from the hybrid data of Oxford Nanopore long-read and
Illumina short-read sequencing.

Microaerophilic iron-oxidizing bacteria, which are capable of oxidizing ferrous iron
(Fe) under circumneutral pH and microoxic conditions, are a key player in the Fe

redox cycle in environments (1). However, only a few strains of microaerophilic Fe(II)
oxidizers have been identified thus far from freshwater environments (2), and their genome
information has been limited. In our previous study, a novel microaerophilic Fe(II) oxidizer,
Ferrigenium kumadai, isolated from paddy soil has been described (3). Here, we report the
complete genome sequences of F. kumadai An22T (= JCM 30584T = NBRC 112974T = ATCC
TSD-51T).

Cultivation of strain An22T and DNA preparation were described previously (3). Genome
sequencing analysis was performed on the Illumina MiSeq platform (San Diego, CA) with
paired-end libraries (,500bp) and GridION with R9.4.1 flow cell (Oxford Nanopore Techno-
logies [ONT], Oxford, UK). DNA libraries for MiSeq and ONT sequencing were prepared with
a KAPA HyperPlus kit (Kapa Biosystems, Wilmington, MA) and FastGene adapter kit (Nippon
Genetics, Tokyo, Japan) and with a rapid barcoding kit (ONT), respectively. Basecalling of
ONT sequences was performed with Albacore v2.3.1 (ONT). Default parameters were
used for all software in this study unless otherwise specified. In total, 151,075,784 (read
1, 74,493,341; read 2, 76,582,443) and 1,812,690,122bp were obtained from MiSeq and ONT
sequencing (= 58.7-fold and 704.6-fold genome coverage), respectively. The N50 value of raw
ONT reads was 1,790bp with a maximum length of 222,018bp. Low-quality MiSeq reads
(Q score, ,20; single read, ,127bp) were removed with Sickle v1.33 (https://github.com/
najoshi/sickle). Short ONT reads (,1,000bp) were filtered out with Filtlong v0.2.0 (https://
github.com/rrwick/Filtlong), and then error correction of the reads was carried out on
FMLRC v0.1.2 (4) with the MiSeq reads as references. The quality-controlled MiSeq and ONT
reads were assembled on MaSuRCA v3.2.8 (5). The assembled sequences were polished with
Pilon v1.22 (6), followed by circularization of the contigs with Circlator v1.5.5 (7). The assem-
bly quality was confirmed with BUSCO v5 (8) on gVolante v2.0.0 (9), and there was 98.63%
completeness when examined with the ortholog set of Betaproteobacteria. Genes were
annotated with DFAST v10 (10). Genes for fundamental metabolic pathways were searched
on BlastKOALA v2.2 (11). The orthologous genes for Fe(II) oxidation, encoding MtoAB (12),
PioAB (13), and Cyc2 (14, 15), were searched on the MBGD update 2018 (16) with the
genome sequences of Sideroxydans lithotrophicus ES-1 (GenBank accession number
CP001965.1), Rhodopseudomonas palustris TIE-1 (CP058907.1), Mariprofundus ferrooxydans
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PV-1T (DS022294.1), and Acidithiobacillus ferrooxidans ATCC 23270T (CP001219.1). An ortholo-
gous gene cluster table among the genome sequences used was created (17), after
which candidate genes were searched with the homology search program in MBGD
based on BLASTP (18).

The genome size of strain An22T was 2,572,603bp with a G1C content of 60.6%. The ge-
nome contains 2 sets of rRNA operons, 50 tRNA sequences, and 2,428 protein-coding genes,
including a gene for Rubisco and a gene set for nitrogenase. A gene encoding putative Cyc2
(BBI98728.1) was found as a sole candidate gene of Fe(II) oxidation.

Data availability. The genome sequence of F. kumadai An22T was deposited to the
DDBJ database under the accession number AP019536.1. The raw sequencing data
were deposited under BioProject accession number PRJDB7995 and SRA accession
numbers DRR168795 and DRR168796.
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