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Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic
dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly
contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both
can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the
effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins,
ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide) on
adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism,
inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by
these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were
identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already
in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in
dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle
cardiovascular disease.

1. Introduction

Metabolic syndrome (MS) is a clustering of metabolic abnor-
malities that increase the risk of developing type 2 diabetes
mellitus (T2DM) and cardiovascular disease (CVD). It can
be defined as a state of disturbed metabolic homeostasis
characterized by aggregation of visceral obesity, atherogenic
dyslipidemia, arterial hypertension, and insulin resistance
[1]. CVD is the leading cause of mortality worldwide [2],
and the growing prevalence of MS will certainly contribute
to its burden. Since obesity and dyslipidemia are main
features of MS and both can present with adipose tissue
(AT) dysfunction, we revised the effects, and underlying
mechanisms, of the current approved drugs for both
conditions on AT main functions. Our belief is that a

thorough understanding of these drug impact on AT is of
great clinical value.

2. The Adipose Tissue

AT is an active endocrine organ, secreting several hormones
called adipokines that act locally and systemically. AT has a
major role in several physiological functions, such as in the
regulation of food intake and body weight, insulin sensitivity,
inflammation, coagulation, or vascular function. AT is popu-
lated by different cell types, such as mature adipocytes, prea-
dipocytes, vascular cells, and macrophages [3]. Adipokines
and cytokines secreted from these cells influence each other
[3] and also a variety of organs. AT also modulates cortisol
concentrations through the action of 11B-hydroxysteroid
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dehydrogenase type 1 (11B-HSD1) that converts cortisone
into cortisol [4] (Figure 1). Adiponectin and leptin are the
main adipokines produced by adipocytes. Tumour necrosis
factor α (TNFα), interleukin 6 (IL6), IL1, CC-chemokine
ligand 2 (CCL2 or MCP1), fractalkine, plasminogen activator
inhibitor type 1 (PAI-1), visfatin, and complement factors are
also produced by adipocytes, though in lesser extent, and
mostly by stromal vascular cells. The main role of adipokines
is described below, and the interplay between them is
summarized in Figure 1.

Adiponectin is the classical anti-inflammatory cytokine,
acting through adiponectin receptor (AdipoR) 1/2 to
enhance the AMP-activated protein kinase (AMPK) path-
way. Adiponectin acts mainly in macrophages, reducing their

phagocytic capacity [5], inducing IL10 and IL1 receptor
antagonist (IL1RA) production [5], suppressing interferon
γ (IFNγ) production [5], and inhibiting the activation of
Toll-like receptor- (TLR-) induced nuclear factor kappa B
(NFκB) pathway [6]. Although the differences between low-
(LMW) and high- (HMW) molecular weight adiponectins
are not completely clarified, both forms induce activation of
the AMPK pathway and suppression of scavenger receptor
class B type 1 (SRB1) expression by macrophages [7]. Never-
theless, only the LMW form is responsible for inducing IL10
and for suppressing IL6, through peroxisome proliferator-
activated receptor (PPAR) stimulation [7]. In contrast, the
HMW adiponectin can induce CXC-chemokine ligand 8
(CXCL8; also known as IL8) expression in response to an
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Figure 1: Schematic illustration of the main intracellular pathways and the effects of drugs used in dyslipidemia and obesity in (A)
differentiation of preadipocytes into mature adipocytes. This process is on dependence of the PKA pathway, which activates
transcriptional factors such as C/EBPB, C/EBPd, C/EBPa, and PPARG that ultimately lead to increase of adipogenesis gene expression.
Statins and liraglutide inhibit adipogenesis while niacin and fibrates stimulate, by inducing upregulation of adipogenesis genes (∗leptin;
adiponectin, FABP4, perilipin, and GLUT4, SCD1) expression and (B) immune and endocrine functions of WAT. Adipocyte exerts
autocrine and paracrine actions, through secreting adipokines and also endocrine actions in distant organs. Most of the drugs exhibit an
anti-inflammatory role through modulation of adipokine expression. Through modulation of leucocyte chemotaxis, they also affect NK
cell activity and macrophage phagocytosis. See text for more details. →: stimulates; ⊣: inhibits; AC: adenylyl cyclase; cAMP: cyclic
adenosine monophosphate; PKA: cAMP-dependent protein kinase A; C/EBP: CCATT enhancer-binding proteins; PPARs: peroxisome
proliferator-activated receptors; SREBP1: sterol regulatory element-binding protein-1; RXTα: retinoid X receptor-α; SRE: sterol response
elements; SRB1: scavenger receptor 1; NK cells: natural killer cells; CD40: cluster of differentiation 40; CD40L: CD40 ligand; 11B-HSD1:
11B-Hydroxysteroid dehydrogenase type 1; TNFα: tumour necrosis factor α; IL: interleukin; CCL2 or MCP1: CC-chemokine ligand 2;
PAI-1: plasminogen activator inhibitor type 1; AdipoR: adiponectin receptor; IL1RA: IL1 receptor antagonist; IFN-γ: interferon-γ; TLR:
Toll-like receptors; NFκB: nuclear factor kappa B; SRB1: scavenger receptor 1; VCAM1: vascular cell adhesion molecule-1; E-selectin:
endothelial-leukocyte adhesion molecule-1; ICAM1: intracellular adhesion molecule-1; OBRb: leptin receptor; ERK: extracellular signal-
regulated kinase; MAPK: p38 mitogen-activated protein kinases; iNOS: inducible nitric oxide synthase; ROS: reactive oxygen species;
TNFR: TNF receptor; IKKB: NFκB kinase-B; JNK: Jun N-terminal kinase; ER: endoplasmic reticulum; IR: insulin receptor (IR); IRS:
insulin receptor substrate; UCP: uncoupling protein; CAP1: adenylyl cyclase-associated protein 1; ET1: endothelin-1.
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inflammatory stimulation [7]. In endothelial cells, adiponec-
tin modulates the inflammatory atherosclerosis process, by
inhibiting the expression of adhesion molecule vascular cell
adhesion molecule-1 (VCAM1), endothelial leukocyte adhe-
sion molecule-1 (E-selectin), and intracellular adhesion
molecule-1 (ICAM1) induced by TNFα [8]. Moreover, it
can induce B-oxidation in the liver while decreasing the
expression of sterol regulatory element-binding protein 1
(SREBP1) therefore inhibiting lipogenesis. Leptin is a
proinflammatory cytokine that acts through the leptin
receptor (OBRb), activating the cyclic adenosine monopho-
sphate- (cAMP-) dependent protein kinase A (PKA) extracel-
lular signal-regulated kinase (ERK) 1/2 and p38 mitogen-
activated protein kinase (MAPK) pathways [9]. Through the
activation of these intracellular signaling pathways, leptin
upregulates the expression of TNFα, IL6, and IL12 in macro-
phages [10]. It also has a role in controlling appetite, angio-
genesis, haematopoiesis, the neuroendocrine system, and
immunity [11]. Indeed, leptin can regulate neutrophil chemo-
taxis and natural killer cell (NK cell) activity [12]. It also upre-
gulates inducible nitric oxide synthase (iNOS) expression in
AT thereby increasing the production of reactive oxygen
species (ROS), mostly from macrophages [13, 14]. By this
mechanism, leptin induces macrophage phagocytosis and
differentiation of monocytes. TNFα activates TNF receptor
(TNFR) which activates the inhibitor of NFκB kinase-B
(IKKB) that in turn stimulates the NFκB pathway [15]. In
addition, TNF (and also TLR stimulation) can also stimulate
the JUN N-terminal kinase (JNK) family of serine/threonine
protein kinases [16], a mechanism that promotes insulin
resistance [17], and also decrease of insulin sensitivity since
endoplasmic reticulum (ER) stress leads to insulin receptor
substrate 1 (IRS1) phosphorylation [18]. TNFα increases the
expression of iNOS in adipocytes, which appears to suppress
uncoupling protein (UCP) 2 expression decreasing white
AT (WAT) energy expenditure [19]. Resistin, a proinflamma-
tory cytokine, whose production is enhanced by other proin-
flammatory cytokines [20], acts through the activation of
adenylyl cyclase-associated protein 1 (CAP1) in monocytes,
which increases cAMP concentration, PKA activity, and
NFκB, therefore increasing the expression of IL1, IL6, TNFα,
and IL12 upon different types of cells [20, 21]. Moreover,
resistin is able to induce the expression of VCAM1, ICAM1,
and CCL2 in endothelial cells, inducing endothelin-1 (ET1)
secretion [22]. This mechanismmight explain resistin contri-
bution to atherosclerosis. MCP1 is a potent chemoattractant
of both monocytes and macrophages to AT that acts through
theCCL2 receptor (CCR2) [23]. Fractalkine (or CX3CL1) and
its receptor (CX3CR1) are also involved in this process [24].
PAI-1 is a prothrombotic agent, inhibitor of plasminogen
activators, whose expression is induced by TNFα and oxida-
tive stress [25], insulin, glucocorticoids, angiotensin II, fatty
acids (FA), TNFα, and TGFB [26, 27]. It negatively affects
metabolism and local vascular biology by interacting with
the renin-angiotensin-aldosterone system. Moreover, PAI-1
suppresses adipocyte differentiation in adipocytes [28].Visfa-
tin acts as a proinflammatory cytokine [29] through binding
to the insulin receptor, though at a different site than insulin
[30]. It also induces adipocyte differentiation [30].

AT is the main regulator of the whole body fat storage.
Lipid deposition and mobilization are complex metabolic
pathways highly modulated and affected by several
hormones. Lipid mobilization is enhanced in fasting condi-
tions. Likewise, glucagon, catecholamines (through B-
adrenoceptors (AR)), and atrial or brain natriuretic peptide
(ANP/BNP) promote lipolysis [31] releasing glycerol and
FA. Our results showing that FA affect catecholamine han-
dling by chromaffin cells suggest not only that these amines
are mediators in the well-known relationship between unsat-
urated FA,MS, andCVDbut also that a releasing vicious cycle
can aggravate and perpetuate these conditions [32]. In lipoly-
sis, after hormonal stimulation, there is an activation of ade-
nylate cyclase (AC), which triggers the cAMP-PKA pathway
and consequently phosphorylation of lipases [33]. Natriuretic
peptides (NPs) trigger a distinct intracellular path as they act
trough the cyclic guanosine monophosphate- (cGMP-)
dependent protein kinase (PKG) pathway, by activating
NPR-A-dependent guanylyl cyclase (GC) [34]. These path-
ways activate adipocyte triglyceride (TG) lipase (ATGL),
hormone-sensitive lipase (HSL), and monoacylglycerol lipase
(MGL) [35], and their sequential action leads to the hydrolysis
of TG into diglycerides and ultimately into monoglycerides.
Also, phosphorylation of perilipin, a lipid droplet-associated
protein, causes its decoupling from lipid droplets, which pro-
motes lipolysis by allowing HSL to gain access to it [36–38].
This process culminates with the release of FA and glycerol
and their uptake by other tissues (FAmainly used by the skel-
etal muscle, liver, and heart in energy production and glycerol
by the liver in gluconeogenesis). In contrast, catecholamines,
through a2AR, and insulin inhibit lipid mobilization [31].
Insulin inhibits this process through the phosphoinositide
3-kinase-dependent (PI3K) pathway, protein kinase B (PKB/
Akt), and activation of phosphodiesterase 3B (PDE3B),
which degradates cAMP. By lowering cAMP levels and
by inhibiting adenylyl cyclase (AC) through an inhibitory
GTP-binding protein- (Gi-) coupled receptor, insulin inhibits
the PKA pathway and ultimately lipolysis [39].

FA B-oxidation is responsible for mitochondrial break-
down of long-chain acyl-CoA to acetyl-CoA used for mito-
chondrial energy production. The PPARs and PPARγ
coactivator 1 (PGC1α) are the most well-known transcrip-
tional regulators of FA B-oxidation [40]. Both regulators
enhance the expression of proteins involved in this process
such as acyl-CoA synthetase (ACS), fatty acid translocase
(CD36/FAT), malonyl-CoA decarboxylase (MCD), and
carnitine palmitoyl transferase 1 (CPT1). In this context,
FA can undergo the action of ACS and CPT1 and thereby
be used to B-oxidation. AMPK phosphorylates PGC leading
to its activation, and on the contrary, sirtuin 1 (SIRT1) (a pro-
tein deacetylase involved in stress cellular regulation) deace-
tylates PGC-1α. PGC-1α induces the expression of PPARα,
mostly expressed in highly metabolic tissues such as the liver,
heart, skeletal muscle, and brown AT (BAT), enhancing the
expression of mitochondrial and B-oxidation genes [40].

In lipid mobilization, high-density lipoproteins (HDLs)
are responsible for reversing cholesterol transport, transport-
ing cholesterol from extrahepatic tissues (including arterial
macrophages and AT) to the liver [41]. These lipoproteins

3International Journal of Endocrinology



are composed of cholesterol, triglycerides, phospholipids,
and apolipoprotein A (mainly apoA-I and apoA-II), apo-C,
and apo-E. The interaction between apoA-I and surface
receptors in peripheral tissues, namely, ATP binding cassette
A1 (ABCA1) transporters and SRB1, is responsible for cho-
lesterol transportation [41], and once filled, HDL delivers
cholesterol into the liver [41]. Lipid deposition can occur by
uptake of circulating FA (in a higher extent) and lipogenesis
de novo from nonlipid precursors. The former is driven by
lipoprotein lipase (LPL), secreted by adipocytes, and located
in the capillary lumen [42]. This enzyme catalyzes TG hydro-
lysis associated to lipoproteins (such as very low-density
lipoprotein (VLDL) or chylomicrons) into FA, facilitating
their uptake by adipocytes [43]. Upon uptake, FA can suffer
re-esterification with glycerol-3-phosphate (glycerol-3P)

leading to TG synthesis [44]. This process is catalyzed by
diacylglycerol acyltransferase (DGAT) and stimulated by
insulin [44]. Through lipogenesis de novo, insulin induces
glucose uptake by adipocytes (via glucose transporter type 4
(GLUT4)) that is then converted to acetyl-coenzyme A
through glycolysis. Acetyl-CoA is converted by acetyl-coA
carboxylase (ACC) to malonyl-CoA, leading to FA synthesis
[45]. At the same time, insulin inhibits FA translocation to
mitochondria and therefore B-oxidation [46]. The metabolic
functions of AT are summarized in Figure 2.

Adipogenesis (summarized in Figure 1) is a tightly
regulated cellular differentiation process through which
preadipocytes are converted into mature adipocytes. It is
essential to the renewing of AT and modulation of fat depots.
Adipogenesis comprises two phases: (1) the commitment of
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pluripotent stem cell to a unipotent preadipocyte and (2)
differentiation of preadipocytes into mature adipocytes
(Figure 1). In the first phase, bone morphogenetic proteins
(BMPs) and TAK1 pathways are involved, whereas in the
second terminal differentiation phase, other transcription
factors such as PPARγ, CCATT enhancer-binding proteins
(C/EBP), and SREBP1 take action [47]. After hormonal stim-
ulation, there is an increase in intracellular cAMP, leading to
transcription of C/EBPB and C/EBPD in preadipocytes,
which translocate to the nucleus and enhance the expression
of C/EBPa and PPARγ [48]. PPARγ heterodimerizes with
retinoid X receptor-α (RXRα) and binds to DNA, promoting
transcription of the adipocyte-specific genes, leptin, adipo-
nectin, fatty acid-binding protein-4 (FABP4), and perilipin
[49]. In addition, C/EBPa also enhances the transcription of
leptin and FABP4, as well as other genes, such as GLUT4
and stearoyl-CoA desaturase-1 (SCD1) [50]. During differ-
entiation, SREBP1 is activated and translocated into the
nucleus, where it binds to sterol response elements (SRE)
and induces the expression of lipogenic enzymes such as
ACC, fatty acid synthase (FAS), LPL, and SCD1 [47, 51].

3. Obesity and Dyslipidemia: Two Disorders
Walking Together

Obesity and dyslipidemia are two main features of MS. Dys-
lipidemia refers to a range of lipid profile disorders, resulting
from quantitative (higher or lower lipid and/or lipoprotein
levels) or qualitative modifications (structural lipoprotein
changes) [52] and is a primary major risk factor for CVD
[53]. Obesity is a multifactorial disease, characterized by a
local and systemic chronic low-grade inflammatory state
causing metabolic abnormalities and adipocyte dysfunction
[54], that ultimately leads to CVD. This state has also been
implicated in the development of obesity-related comorbidi-
ties [55], and the growing MS prevalence seems to be closely
related to the obesity epidemic [56]. Additionally, obesity
also seems to be associated with the rising prevalence of
dyslipidemia, as several studies have suggested a positive
correlation between body mass index (BMI) and dyslipid-
emia [57, 58]. Moreover, when obesity is concomitant with
AT dysfunction, ectopic fat accumulation, especially in
liver, and inflammation, it favours the development of
dyslipidemia [59].

4. Drugs Used in Dyslipidemia

4.1. HMG-CoA Reductase Inhibitors (Statins). 3-Hydroxy-3-
methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibi-
tors, also known as statins, act by inhibiting in a competitive
manner the conversion of HMG-CoA to mevalonic acid.
Statins increase the expression of LDL receptors in the liver,
increasing LDL catabolism and lowering total cholesterol
causing a reduction of 21–55% and 6%–30%, respectively,
of LDL and TG and an increase of 2%–10% in HDL. New-
onset diabetes may be increased in patients treated with
statins, though seeming to be dose related and less common
with pravastatin and possibly pitavastatin [53].

4.1.1. Effects on Adipocyte Metabolic Functions. AT acts as
buffer of plasmatic cholesterol, and statins have an important
role decreasing basal cholesterol release [60] and content [61]
in adipocytes. In fact, statins are capable of reverting basal
cholesterol release from adipocytes, though not after apoA1
stimulation (inducing cholesterol release and apoE secretion
by adipocytes) [60]. In mature adipocytes, pitavastatin upre-
gulates HSL expression, enhancing lipolysis and decreasing
lipid accumulation, preventing adipocyte hypertrophy, and
increasing the number of small adipocytes [62]. Intensive
treatment with atorvastatin also leads to the regression of epi-
cardial AT volume [63]. Statins seem to increase mRNA LPL
expression in preadipocytes [64, 65] as well as LPL activity in
3T3-L1 preadipocytes [64] and adipocytes [65]. Different
transcription factors, such as SREBP and PPARγ [64], are
involved, and these effects contribute to lower TG and VLDL
levels [64, 65]. In contrast, it has been shown that in a bone
marrow stromal cell model statin can reduce LPL mRNA
expression [66].

4.1.2. Effects on Inflammation. Many studies propose an
anti-inflammatory role for statins in AT. In response to
a stressful and inflammatory stimulus, there is an increase
of proinflammatory adipokine and cytokine expression,
such as leptin [67–71], resistin [67, 72, 73], IL-6 [67, 74–78],
PAI-1 [79–81], MCP-1 [77, 78, 80, 82, 83], visfatin [71], and
TNFα [67, 68, 71, 77, 82, 83]. Statins can reduce the expres-
sion of these cytokines and adipokines [62, 67–77, 79–82],
while enhancing anti-inflammatory adipokine expression
and secretion by adipocytes [62, 67, 68, 73, 76, 80]. For
instance, by upregulating PPARγ expression in adipocytes,
statins decrease IL6 expression and plasma concentration
[74]. Statins have shown to reduce proinflammatory cyto-
kines, such as high-sensitivity C-reactive protein (CRP)
plasma levels [68]. They inhibit leptin expression due to
RNA-processing changes that reduce heterogeneous nuclear
RNA abundance [69] and also act by decreasing IL-6 [70].
Statins can also contribute to inhibit ER stress [82] by
decreasing cholesterol levels. Moreover, the combination of
statins and fibrates [67] or the combination of ezetimibe
and simvastatin causes even a greater effect in reducing pro-
inflammatory adipokines and increasing adiponectin levels
[71]. Statins inhibit the PI3K pathway through the suppres-
sion of protein prenylation, activating PKA and consequently
suppressing leptin expression in 3T3-L1 cells. The reduced
mRNA C/EBPa expression seems to be partially involved in
this last effect, emphasizing the importance of leptin in adipo-
cyte differentiation [69]. Statins reduce the expression of
resistin in human monocyte/macrophages in vitro and in
3T3-L1 adipocytes [73, 82]; however, these results were not
confirmed in in vivo studies after 6 months of atorvastatin
treatment [82].

Statins appear to inhibit PAI-1 promoter activity,
through mitogen-activated protein kinase kinase kinase 1
(MEKK1) and, in a lesser extent, NFκB. Since isoprenoids,
such as geranylgeranyl pyrophosphate and farnesyl pyro-
phosphate, are able to revert rosuvastatin effect on PAI-1
expression, protein geranylation or/and farnesylation could
be one involved mechanism [69].
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In animal studies, statins are able to decrease inflamma-
tion in pericarotidal AT from high-fat diet- (HFD-) treated
mice [77] and in WAT of hypercholesterolemic pigs [84].
This effect is achieved by downregulation of 5lipoxygenase,
decrease of macrophagic infiltration [77], and downregula-
tion of proinflammatory adipokines/cytokines [77]. In
hypercholesterolemic pigs, statins also prevent WAT adipo-
cyte hypertrophy and diminish T lymphocyte infiltration
[84]. Statins can partially refrain AT inflammation in
obese mice [78], through the downregulation of mRNA
MCP1 and IL6 expression [78] and also through inhi-
bition of TLR4-induced expression of interferon-γ in
macrophages [78].

Statins have distinct roles in the regulation of iNOS
according to the cell type. In 3T3-L1 preadipocytes, these
drugs inhibit NO production in response to inflammatory
stimuli, via the decrease of iNOSmRNA expression mediated
by NFκB pathway inhibition [75]. In contrast, in 3T3-L1
mature adipocytes, statins enhance iNOS expression and
NO levels [85]. This effect is dependent on the type of statin
[85], and NFκB activation seems to be the underlying mech-
anism, which contributes to upregulation of the iNOS gene
and ultimately to NO production [85]. Moreover, NFκB
activation is also achieved through diminishing the metabo-
lites of cholesterol synthesis, such as isoprenoid and small
G proteins [85].

4.1.3. Effects on Atherogenesis. Atherogenesis is a degenera-
tive process in which artery walls become occupied with
excessive and modified lipids from circulation [86]. The
ingestion of LDL and modified or oxidized LDL (oxLDL)
by macrophages causes accumulation of cholesterol esters
and formation of “foam cells” leading to atherogenesis.
Moreover, vascular smooth muscle cells migrate from the
media into the intima and proliferate, giving rise to athero-
sclerotic plaques [87]. During the process of atherogenesis,
macrophage phagocytosis of oxLDL is mediated by SRB1
[86]. Adipocytes can also uptake oxLDL, a mechanism posi-
tively correlated with PPARγ and SRB1 expression and neg-
atively with LDL levels [88, 89]. Statins are able to induce
PPARγ and SRB1 expression in adipocytes [88, 90], suggest-
ing both indirect and direct effects, respectively, through low-
ering cholesterol and SRB1 stimulation [90]. Moreover, as
statins reduce lipid accumulation in adipocytes [62], there
is a disinhibition of PPARγ expression per se potentially
enhancing the oxLDL uptake by adipocytes [90].

By decreasing the expression of proinflammatory adipo-
kines and increasing the anti-inflammatory ones, statins have
a fundamental role in inflammatory-related processes like
atherosclerosis [68, 73].

4.1.4. Effects on Insulin Sensitivity. Recently, evidence on the
association between insulin resistance, T2DM de novo, and
statin treatment has been increasing. Caveolae are plasma
membrane microdomains, composed by cholesterol, sphin-
golipids, and different coat proteins named caveolins, consid-
ered anchor points to molecules (in this context, insulin
receptor and GLUT4), facilitating their interaction, in order
to activate cell signaling and transport [91–93].

Caveolins are modulated by cavins, and cavin2 is pointed
out as a cholesterol-dependent protein essential to define
caveolar structure [89]. Through cholesterol depletion,
statins cause caveolae collapse in adipocytes inducing protea-
somal degradation of cavin2 and redistribution of cavin-1 to
the cytosol [89]. Taking into account the importance of cave-
olae in insulin signaling [91, 92], insulin resistance can result,
at least partially, from caveolae dysfunction. Moreover, statin
disruption of caveolar formation seems to reduce HMW adi-
ponectin secretion by adipocytes [61], a mechanism that
reduces insulin sensitivity.

Lipophilic statins can also induce GLUT structural
alterations [94] and impair GLUT4 protein expression [95]
inhibiting GLUT4 translocation and consequently decreas-
ing insulin-stimulated glucose uptake in 3T3-L1 adipocytes
[96]. Although lipophilic, atorvastatin can improve insulin
sensitivity in an obese mice model [97], through an increase
in mRNA and protein expression of the slc2a4 gene (which
codifies GLUT4) and a decrease in mRNA and protein
expression of IL6 in subcutaneous AT (SCAT) [97]. The
same authors suggest the involvement of the IKK/NFκB
pathway in these effects [97]. On the other hand, hydrophilic
statins generally improve insulin sensitivity, even in HFD-
induced overweight mice, with no changes in body weight,
AT mass, and adipocyte size [98, 99]. These statins also
increase PPARγ and GLUT4 expression and reduce leptin
expression in AT [98, 99]. Hydrophilic statins augment basal
and insulin-stimulated glucose uptake in AT [83, 100], thus
improving hyperglycemia.

4.1.5. Effects on Adipogenesis. Statins inhibit preadipocyte
differentiation through downregulation of PPARγ 2 and
422aP. Instead, they induce upregulation of RunX2/Cfbal,
promoting osteoblastic differentiation [101]. It has been
shown that statins stimulate osteoblastic differentiation,
proliferation, maturation, and synthesis of the new bone
[66, 101, 102]. Statins also inhibit adipogenesis through the
reduction of LPL mRNA expression [66]. In a 3T3-F442A
cell model, statins markedly inhibit adipocyte differentiation
comparing to 3T3-L1 cells [103].

An exception is pitavastatin that does not affect preadi-
pocyte differentiation/maturation in vitro [62]. On the other
hand, mevastatin inhibits orbital preadipocyte differentiation
through blockage of PPARγ expression [104]. In the early
phase of adipogenesis, statins seem to induce cellular pheno-
typic changes leading to 3T3-L1 cell rounding-up and
detachment [105], an absent effect in the late phase of adipo-
genesis [105]. Statins downregulate the expression of crucial
genes for adipocyte differentiation including C/EBPa,
PPARγ, SREBP1, and maturation markers such as leptin,
FABP4, and adiponectin [103]. The inhibition of isoprenoid
synthesis and the PI3K and Ras-Raf1-MAPK pathways are
possible mechanisms behind this effect [105]. More recently,
it has also been proposed that statins, by reducing
mevalonate-derived nonsterol isoprenoids (intermediate
metabolites of cholesterol biosynthesis, crucial to adipocyte
differentiation [106]), can cause compensatory upregulation
of HMG-CoA reductase [103]. On the other hand, in vivo
studies have shown that statins stimulate adipocyte
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differentiation [107, 108], contradictory results emphasizing
the complex mechanisms underlying AT differentiation.

4.2. Fibric Acid Derivatives (Fibrates). Fibrates decrease
plasma TG-rich lipoproteins [109]. These drugs are able to
increase lipoprotein lipolysis, but they also increase FA
hepatic uptake and reduce hepatic TG production [110],
achieving TG reductions of 35 to 50%. Fibrates increase
HDL cholesterol by 5–20%, owing to an increase in apoA1
and apoA2 production in the liver, which may contribute to
a more efficient reverse cholesterol transport [110], and also
to activation of PPARα [111]. LDL cholesterol generally
decreases in individuals with elevated baseline plasma con-
centrations [109] with reductions of 20–25% [53]. Fibrates
convert small cholesterol-depleted LDL particles to large-
cholesterol-enriched LDL particles, more efficiently removed
from circulation [110] thus improving atherogenic profile
[53]. Fibrates are synthetic ligands for PPARα [112] that by
stimulating the peroxisome proliferator response element
(PPRE) increase FA hepatic B-oxidation, reduce TG hepatic
secretion, and increase LPL activity and subsequently VLDL
clearance [111]. However, the PPARα agonist gemfibrozil
may increase LDL levels by 10%–15% [53].

4.2.1. Effects on Adipocyte Metabolic Functions. Bezafibrate, a
nonselective PPAR (A, D/B, and G) agonist, regulates energy
homeostasis by the upregulation of PPARα and UCP-1, 2,
and 3 [113, 114]. It stimulates FA oxidation in adipose
mitochondria and peroxisomes by increasing the mRNA
acyl-CoA oxidase (ACO) expression [113–115]. The oxida-
tive rate is higher in preadipocytes than in mature adipocytes
[113]. Moreover, the decrease in FA levels leads to the inhibi-
tion of lipogenesis [113]. On the contrary, gemfibrozil
induces a fast increase in TG synthesis in both preadipocytes
and adipocytes [116]. Indeed, gemfibrozil improves cellular
capacity for substrate uptake (glucose and oleate) and
enhances the activity of the enzymes needed for this synthesis
[116]. By increasing FA uptake and TG synthesis in periph-
eral tissues, gemfibrozil decreases FA plasma levels, which
in turn enhances extracellular hydrolysis by LPL present on
endothelial cells [116].

Fenofibrate, another PPARα agonist, is able to decrease
body mass, independently of food intake [117], and to reduce
visceral AT (VAT) mass [103] through PPARα stimulation
and upregulation of FA oxidation enzymes in AT, such as
CPT1 [118, 119] and ACO [119]. This drug also increases
the number of small adipocytes to the detriment of large ones
in diet-induced obese and insulin-resistant mice [103]. Feno-
fibrate can increase energy expenditure in diet-induced obese
mice [117] owing to its ability to upregulate via PPARα
pathway thermogenesis-related genes such as UCP1,
PRDM16, PGC1α, nuclear respiratory factor 1, and mito-
chondrial transcription factor A [117, 120]. Moreover, by
increasing PGC1α expression, fenofibrate increases irisin
levels and therefore UCP1 expression [120]. Interestingly,
through the same mechanism, fenofibrate induces the brow-
ning of WAT adipocytes in SCAT [120]. Fenofibrate
decreases uptake of FA in AT due to the reduction of LPL

activity [121] and the increase of HSL activity [122], respec-
tively, decreasing lipogenesis and increasing lipolysis [121].

On the other hand, fenofibrate was also found to increase
adiposity in epididymal, liver, and kidney AT in an insulin-
resistant and hypertriglyceridemic rat model [123]. In
humans, fenofibrate treatment has been shown to increase
TG synthesis in the liver, leading to hepatic steatosis [112].

Most of the evidence suggest that fibrates, by decreasing
body weight [114, 117–120, 124, 125], reduce plasma leptin
concentration and increase caloric intake [114].

4.2.2. Effects on Inflammation. Fenofibrate enhances adipo-
nectin [67, 126] (HMW form in hypertriglyceridemic
patients [126]) and vaspin expression and secretion [124]
and in high concentrations diminishes MCP1 [127] and
TNFα secretion [67, 125, 127, 128]. In a coculture of 3T3-
L1 adipocytes and RAW264 macrophages, the TNFα lower-
ing effect induced by fenofibrate was related to the inhibition
of the NFκB pathway [127], without changes in macrophage
infiltration and lipolysis [127].

In an obesogenic environment, there is a reduction of
VAT AdipoR1 and 2 protein expression [129] supporting
that VAT is more prone to inflammatory processes. Fenofi-
brate upregulates AdipoR2 expression in 3T3-L1 adipocytes
[129] and in combination with statins lowers other proin-
flammatory adipokines [67]. Furthermore, bezafibrate also
downregulates PPARD and TNFα expression, while upregu-
lating FABP4 [113] and adiponectin expression (partially
through PPARα, enhancing the PPRE site located in adipo-
nectin promoter) in adipocytes [130, 131]. In contrast with
other species, in human adipocytes, fenofibrate does not
seem to regulate visfatin [126].

In TNFα-stimulated adipocytes, fenofibrate upregulates
the expression of SIRT1 through the activation of the AMPK
pathway [132], thus inducing NFkBp65 deacetylation and
the expression of adipocyte cluster of differentiation 40
(CD40) (a costimulatory protein present in antigen-
presenting cells, essential for their activation in inflammatory
pathways), attenuating the obesity-related low-grade chronic
inflammation state [132].

Bezafibrate lowers 11B-HSD1 mRNA expression in AT
and the liver and its activity in adipocytes [130].

Aldehyde oxidase 1 (AOX1) is an enzyme responsible for
drug catabolism and activation [133] producing ROS. Feno-
fibrate, partially by PPARα stimulation, reduces protein
AOX1 expression [133] leading to both antioxidant and
anti-inflammatory effects [133].

4.2.3. Effects on Atherogenesis. Fenofibrate increases the
uptake and degradation of oxLDL by adipocytes [134], and
the downregulation of PPARγ and upregulation of SRB1
expression in AT are the mechanisms known to be involved
in these effects [134]. Thus globally, fibrates seem to reduce
adiposity and atherogenesis, despite the underlying molecu-
lar mechanisms that remain to be elucidated [119, 128, 134].

4.2.4. Effects on Insulin Sensitivity. Fenofibrate can improve
insulin sensitivity even in insulin-resistant models. This drug
increases basal and insulin-stimulated glucose uptake by
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adipocytes [119] and lowers plasma FFA, TG, insulin, and
glucose concentrations [120, 125]. Besides lowering TNFα
expression, fenofibrate also decreases leptin expression
[120, 125] improving insulin secretion in the postprandial
period [120]. Fibrates upregulate phosphoenolpyruvate
carboxykinase expression in adipocytes [135] retaining the
FA output from AT to the bloodstream [123, 135].

4.2.5. Effects on Adipogenesis. Through direct binding to
PPARα, fibrates induce adipogenesis [115], increasing the
activity of enzymes involved in FA synthesis and leading
to lipid accumulation in small and numerous droplets in
adipocytes [116, 122, 136]. In orbital fibroblasts, fibrates
also upregulate mRNA and protein expression of the non-
histone chromosomal high-mobility group AT-hook 2,
leptin, and functional TSH receptor inducing preadipocyte
differentiation [137].

Furthermore, fibrates reduce LPL activity, which suggests
that they could rise the concentration of serum lipoproteins
serving as substrates for TG storage in adipocytes [122].

4.3. Niacin (Nicotinic Acid). Niacin is one of the most effec-
tive agents currently available for increasing HDL levels
[138]. It acts as an inhibiting hepatocyte HDL-apoA-I holo-
particle receptor responsible for HDL catabolism. Moreover,
studies have demonstrated that niacin increases PPAR
expression, through macrophage ABCA1, which affects
reverse cholesterol transport [139]. Niacin also affects the
remaining lipid profile, decreasing total cholesterol, LDL,
TG, and lipoprotein (a) levels [138, 140]. Niacin is able to
decrease TG synthesis and its availability for VLDL assembly,
resulting in increased posttranslational intrahepatic apo-B
degradation, thus decreasing plasma TG and liver secretion
of apo-B-containing lipoproteins, including VLDL and LDL
particles [139]. In respect to deleterious effects, at high
dosages, niacin increases uric acid levels and can aggravate
glucose levels [53]. Niacin is used in high doses in refractory
dyslipidemia treatment, despite its limited use due to poor
tolerability [141, 142].

4.3.1. Effects on Adipocyte Metabolic Functions. Niacin,
through HM74a receptor (coupled to Gi/o proteins
[143]), reduces basal [140, 144, 145] and noradrenaline-
(NA-) induced release of plasma FFA [146] and inhibits
lipolysis [144–146].

Chronic treatment with niacin was shown to decrease
plasma FFA levels, despite a rebound effect that can later
occur [147]. The prolonged treatment with niacin enhances
B-AR responsivity via postreceptor signaling modifications
[147, 148]. Moreover, niacin also decreases the expression
of genes involved in TG synthesis and FFA re-esterification
[147]. Additionally, a decrease in perilipin and adipose
phospholipase A2 protein expression could also contribute
to FFA rebound [147].

Long-term niacin treatment also increases n-3-
polyunsaturated fatty acid (PUFA) synthesis in AT, but not
in the liver [149], thus suggesting that the main source of n-
3 PUFAs is AT through lipolysis [149]. In this regard, niacin
leads to upregulation of unsaturated FA biosynthesis genes

(namely, Elovl6, Elovl5, and Tecr) in hyperlipidemic mice,
thus increasing elongation, but not desaturation of FA
[149]. Although prolonged niacin treatment enhances plasma
n-3 PUFA levels, it does not significantly alter arachidonic
acid-derived proinflammatory oxylipins [149]. This effect
on n-3 PUFAs also contributes to CV protection since these
fatty acids directly compete with n-6 PUFAs [149].

4.3.2. Effects on Inflammation. Niacin reduces MCP1,
RANTES, fractalkine (involved in macrophage and T cell
inflammatory recruitment) gene, and protein expression,
thus inhibiting macrophage chemotaxis [150]. It also
decreases TNFα-induced iNOS gene expression lowering
ROS synthesis [150]. Niacin increases adiponectin gene
expression in adipocytes without affecting its secretion
[150]. Binding of niacin to HM74a receptor increases adipo-
nectin secretion in adipocytes from MS patients [145]. In
these patients, acute treatment with niacin decreases plasma
NEFA concentrations (without affecting both resistin and
leptin concentrations) [145]. However, others described that
chronic niacin treatment increases leptin levels even without
changing other adipokines [151].

4.3.3. Effects on Atherogenesis. Niacin enhances the choles-
terol efflux rate in adipocytes through, at least partly, PPARγ
activation and consequently LXRα (liver X receptor α, an
essential transcriptional factor for metabolism and transport
of cholesterol in peripheral tissues) and ABCA1 transporter
expression [140, 152]. Through this mechanism, niacin is
able to increase HDL-induced cholesterol efflux from adipo-
cytes and plasma HDL levels [140, 152]. The mechanism
involved in the overexpression of these factors is unclear,
although it has been pointed out as a role for HM74a as the
initial trigger [140].

Niacin stimulates PPARγ expression and activity increas-
ing anti-inflammatory prostaglandin synthesis and secretion
by macrophages [153]. Nevertheless, prolonged treatment
with niacin seems not to modify endothelial function and
inflammatory activity in MS patients [151].

4.3.4. Effects on Insulin Sensitivity. Prolonged treatment with
niacin seems to induce insulin resistance [148, 151]. In fact,
in dyslipidemic mouse models, niacin downregulates genes
involved in insulin (such as INSR and PDE3B) and B-
adrenergic (such as B-1,2,3-AR) signaling pathways [148],
whereas prolonged treatment enhances B-AR responsivity
[147, 148]. The authors suggest that the duration needed to
increase adiponectin levels could be counterbalanced by
other adverse effects, such as the rebound increase in plasma
FFA [151].

4.3.5. Effects on Adipogenesis. Niacin stimulates adipogenesis
(enhancing PPARγ, FABP4, adiponectin, and leptin expres-
sion) in 3T3-L1 cells, while it suppresses C/EBPB and thereby
cyclooxygenase-2 expression, responsible for PGF2a (antia-
dipogenic factor) decrease in adipocytes [154].

4.4. Ezetimibe. Ezetimibe acts by inhibiting intestinal
cholesterol absorption (through Niemann-Pick C1-Like 1
(NPC1L1) transporter) and by decreasing its delivery to the
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liver, leading to upregulation of hepatic LDL receptors [53].
This drug can reduce LDL levels by 10%–18% or 34%–61%,
respectively, used as monotherapy or in combination with
statins [53]. Ezetimibe is also able to reduce Apo-B levels
(by 11%–16%) [53].

4.4.1. Effects on Adipocyte Metabolic Functions. Ezetimibe
decreases fat visceral accumulation, without affecting total
body weight [155] and improves hepatic steatosis [155].

4.4.2. Effects on Inflammation. Ezetimibe was shown to
reduce visfatin, while increasing adiponectin plasma levels
[155, 156]. The combination of ezetimibe-simvastatin treat-
ment for 30 days was able to partially revert AT dysfunction
and decrease systemic inflammation, independently of the
lipid-lowering effect [157]. The same combination also seems
to decrease leptin, visfatin, and TNFα and increase adiponec-
tin levels [157].

4.4.3. Effects on Insulin Sensitivity. Ezetimibe is able to
improve insulin resistance, particularly in patients with MS
[155] and seems to be more potent in insulin-resistant
patients [156].

The effects of drugs used in dyslipidemia on AT functions
are summarized in Table 1 and Figures 1 and 2.

5. Drugs Used in Obesity

5.1. Orlistat. Orlistat inhibits gastric and pancreatic lipases
[158], enzymes that play a pivotal role in the digestion of
dietary fat. Thus, orlistat by impairing fat intestinal absorp-
tion leads to body weight reduction (weight loss of 3%
(https://www.gene.com/download/pdf/xenical_prescribing
.pdf, accessed on 15th February 2017)), improves glucose
intolerance, and ameliorates lipid parameters (total choles-
terol and LDL) [159, 160]. Interestingly, orlistat can reverse
liver steatosis but not adipocyte hypertrophy [159].

5.1.1. Effects on Adipocyte Metabolic Functions. Orlistat
partially inhibits lipolysis in adipocytes by suppressing
AMPK activation and decreasing the AMP/ATP ratio
induced by forskolin, isoproterenol, and IBMX (agents able
to increase cAMP levels), without altering PKA activity and
cAMP levels [161]. On the other hand, others reported that
orlistat has a lipolytic effect, inducing TG degradation in
AT and the liver [160].

5.1.2. Effects on Inflammation. Orlistat combined with a
hypocaloric diet was able to produce a marked reduction in
plasma concentrations of leptin, CRP, IL-6, TNFα, and resis-
tin, while increasing adiponectin levels [162, 163]. Globally,
the available literature points to a role of orlistat in improving
obesity-related AT dysfunction [162, 163].

5.2. Anorexiants/Central Nervous System Stimulants

5.2.1. Sibutramine. Sibutramine is an inhibitor of NA and
5-hydroxytryptamine (5-HT) neuronal reuptake, no longer
used due to deleterious cardiovascular side effects. This
drug induces a weight loss of 5%, decreases waist circum-
ference, serum TG, and CRP, while increasing serum HDL

levels and insulin sensitivity [164]. Globally, this drug
exhibits an anti-inflammatory role, as it lowers leptin
and resistin levels and increases adiponectin [164].

5.2.2. Diethylpropion. Diethylpropion, a sympathomimetic
amine similar to amphetamine, is a prodrug metabo-
lized to 2-ethylamino-1-phenyl-propan-1-one and N,
N-diethylnorephedrine metabolites [165], the latter being
responsible for its effects. This metabolite acts as substrate
for NA transporter, inhibiting NA reuptake, while stimulat-
ing its release [165]. Therefore, higher NA concentrations
in the brain could justify the anorexiant effect and the side
effects common to amphetamine use [165]. It also acts as a
reuptake inhibitor of both DA and 5-HT transport [165].

5.2.3. Phentermine and Lorcaserin. Phentermine is a sympa-
thomimetic amine similar to amphetamine but with residual
additive potential. It also acts as DA receptor agonist and as
NA receptor partial agonist or antagonist [166], while lorca-
serin [167, 168] is a 5-HT 2c receptor agonist. Both drugs
decrease food intake and increase satiety and cause weight
losses of [166–168], respectively, 5% (https://www.accessdata.
fda.gov/drugsatfda_docs/label/2012/085128s065lbl.pdf,
accessed on 15th February 2017) and 8% (https://www.belviq.
com/-/media/Files/BelviqConsolidation/PDF/belviqxr_
prescribing_information-pdf.pdf?la=en, accessed on 15th
February 2017).

5.3. Antidepressants

5.3.1. Naltrexone and Bupropion. Naltrexone is an antagonist
of opioid receptors in pro-opiomelanocortin (POMCs) neu-
rons and bupropion, a NA and DA reuptake inhibitor. The
combined treatment with these drugs decreases food intake,
body weight (weight loss exceeding 8% of baseline (http://
general.takedapharm.com/content/file.aspx?filetypecode=
CONTRAVEPI&CountryCode=US&LanguageCode=EN&
cacheRandomizer=bc8d4bba-8158-44f2-92b3-1e1ba338af0a&
cacheRandomizer=5fa7daab-0bf1-44e1-8c26-f51e7f3a6c09,
accessed on 15th February 2017)), and fat mass (without
changing lean mass) in diet-induced obese rats [169, 170].
One of these studies also reported the decrease of VAT mass
with this combination [170]. Adding amylin (a peptide core-
leased with insulin by pancreatic B cells) to these drugs seems
to result in better outcomes [169], due to the modulation of
the melanocortin (MC) pathway (increasing the expression
of MC4 receptor in hypothalamic neurons) [169].

5.4. Antiepileptics

5.4.1. Topiramate. Topiramate is an antiepileptic drug that
acts as antagonist of AMPA (a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) receptors and positively modu-
lates γ-aminobutyric acid (GABA) receptors. Topiramate
significantly induces weight loss and decreases glycemia,
insulinemia, insulin resistance, and TG, while increases adi-
ponectin plasma levels in diet-induced obesity rats [171].
Topiramate does not affect arterial pressure or anxiety, by
not fully understood mechanisms. Nonetheless, inhibition
of food ingestion, downregulation of leptin expression, and
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upregulation of UCP-2 and 3 expression in WAT and BAT
seem to be involved [172].

5.5. Liraglutide. Liraglutide is a glucagon-like peptide 1
receptor agonist (GLP-1RA), firstly approved as antidiabetic
drug and, more recently, in higher doses as antiobesity drug,
providing a weight loss of 9% (http://www.novo-pi.com/
saxenda.pdf accessed on 15th February 2017). GLP-1 is an
endogenous incretin secreted by L cells in the distal intestine
[173, 174]. Liraglutide, by increasing GLP-1 levels, reduces
food ingestion and appetite [175–180] and modifies food
preferences, namely, improving eating e and decreasing emo-
tional eating, which increases weight loss [175, 177]. Liraglu-
tide can also slow gastric emptying [178], a mechanism that
helps to reduce food intake. Moreover, this drug can have
broader effects on metabolism, as GLP-1 was described as
having antiadipogenic, antilipogenic, and prolipolytic effects
in human mature adipocytes [181] and as activating GLP-1R
in the central nervous system (CNS) leading to an increase in
BAT activity and energy expenditure [180].

5.5.1. Effects on Adipocyte Metabolic Functions. Liraglutide
reduces total fat mass and fat thickness from different depots
[175, 182–188]. Noteworthy, liraglutide is also capable of
changing regional distribution of fat depots [175, 176, 178,
182–187], acting mainly by decreasing VAT [175–178,
182–187], a result not confirmed by another study describ-
ing a preferential effect on SCAT [184].

The liraglutide-induced weight loss seems to increase NP
concentrations [182], which induce lipid oxidation [182,
188]. The ANP and BNP increase is higher in patients losing
more than 5% of weight and significantly correlate with lira-
glutide effects on body composition [182]. In addition, lipid
storage reduction in WAT decreases lipogenesis [176]. These
effects seem to be driven by downregulation of Akt and PI3K
pathways and upregulation of AMPK and ACC genes [176].
Furthermore, liraglutide was shown to increase energy
expenditure, by inducing WAT and BAT browning and
increasing thermogenesis [180, 182, 188]. This browning
effect was also shown to be driven by an increase in NP
through MAPK pathway stimulation [182]. Nevertheless,
the magnitude of BAT activity increase is modest and does
not justify the extent of liraglutide effect in weight loss
[180]. Liraglutide, through stimulation of CNS GLP-1R on
ventromedial hypothalamic nuclei and modulation of AMPK
pathway, was shown to decrease body weight [188], indepen-
dently of the 5-HT2CR and MC4R pathways [179].

5.5.2. Effects on Inflammation. Liraglutide has been described
to regulate adipokine secretion in opposite directions. In
T2DM patients, this drug decreases total adiponectin levels
while increasing pentraxin 3, a marker of inflammatory
CVD, and proinsulin levels [184]. This latter effect demon-
strates a beneficial role on pancreatic B cells [184]. Con-
versely, in obese patients, liraglutide increases adiponectin
expression and inhibits glucose uptake in adipocyte stem
cells [189] and, in human adipocytes, decreases TNFα and
adiponectin expression [181].

5.5.3. Effects on Atherogenesis. Liraglutide decreases CRP
levels and soluble ICAM-1 [175] seeming therefore to have
pleiotropic and antiatherosclerotic effects [175].

5.5.4. Effects on Obesity-Related Cardiovascular
Comorbidities. GLP-1R is more expressed in adipocytes from
VAT of obese T2DM patients, comparing to lean patients
[181]. Liraglutide can improve insulin sensitivity, even in
insulin-resistant models. Omentin (an adipokine mainly pro-
duced by VAT), through Akt/PKb signaling pathway stimu-
lation [190, 191], increases glucose transport induced by
insulin hence improving insulin sensitivity and glucose
metabolism [192]. The omentin plasma levels are decreased
in T2DM and liraglutide can increase its levels [192]. Liraglu-
tide increases ZAG (zinc α2 glycoprotein), a protein involved
in multiple effects such as body weight control and lipolysis,
and adiponectin plasma levels. Moreover, liraglutide
improves insulin secretion [178, 182, 185, 192] and conse-
quently glucose uptake in peripheral tissues [179]. This drug
also increases PPARγ activity and therefore liver production
of fibroblast growth factor-21 (FGF21) that leads to an
increase in FGF21 plasma levels [179]. In obese and T2DM
patients, FGF21 mRNA expression and plasma levels are ele-
vated, a compensatory mechanism to decrease insulin
resistance. The resultant decrease of FGF receptor (FGFR)
supports FGF21 resistance in these conditions [185]. Fur-
thermore, liraglutide also upregulates the expression of
FGFR3 and B-Klotho (necessary to the binding of FGF21
to its receptor) in AT, while in the liver upregulates
FGFR1-3, B-klotho, and phospho-FGFR1 expression
[185]. Since FGF21 is an important regulator of insulin
effects on glucose and lipid metabolism, liraglutide could
contribute to improve insulin action [179, 185].

Conversely to other studies, showing no effect on fat liver
parameters [183], liraglutide has been shown to decrease
hepatic fat, including in obese and/or T2DM patients [184,
186, 193]. The decrease in intrahepatic lipids does not corre-
late with changes in weight, abdominal fat, VAT, SCAT, or
adiponectin levels, but rather with a decrease in HbA1c
[193]. Authors anticipated that this effect is due to an
increase in glucose tolerance, thus reducing hyperinsuline-
mia [193] followed by a decrease in lipogenesis rate and an
increase in FA oxidation. Moreover, treatment with liraglu-
tide improves systolic blood pressure and lipid profile,
decreasing plasma total cholesterol and TG while increasing
HDL levels [175, 178, 182, 185, 186].

5.5.5. Effects on Adipogenesis. GLP-1 and GLP-1RA are able
to regulate preadipocyte differentiation, even though they
act differently according to adipocyte origin or differentia-
tion stage.

Liraglutide stimulates the early phase of adipogenesis in
3T3-L1 cells by inducing the expression of PPARγ, C/EBPB
and d, and GLP-1R, a target gene of PPARγ [194]. It modu-
lates both the survival and proliferation pathways, mainly
ERK1/2, PKCB, and Akt [194]. In contrast, liraglutide
inhibits both proliferation and differentiation of ASCs
obtained from obese patients by binding directly to GLP-1R
[189]. GLP-1RA decreases the expression of adipogenesis-
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and lipogenesis-related genes, while increasing the expres-
sion of the lipolytic ones [181]. Unlike 3T3-L1 cells, in
human adipocytes, GLP-1 antiadipogenic effect is driven
through inactivation of the AC/cAMP pathway [181]. The
effects of drugs used in obesity on AT are summarized in
Table 2 and Figures 1 and 2.

6. Conclusion

AT is a complex organ with marked effects on whole-body
physiology. AT dysregulation, rather than the amount of fat
mass, seems to be a key factor in the pathophysiology of
obesity and related morbidities. Despite the increase in the
number of drugs available to treat these conditions, dyslipid-
emia and obesity prevalence still remains rising. AT dysregu-
lation is a main feature present in both dyslipidemia and
obesity. The clinical outcomes of AT modulation by these
drugs, as well as differences between them in the modulation
of pathways involved in metabolism, inflammation, athero-
genesis, insulin sensitivity, and adipogenesis, were identified.
Whether solutions to these issues will be found in further
adjustments and combinations between drugs already in
use or necessarily in new advances in pharmacology is
not known. To better understand the impact of drugs used
in dyslipidemia and obesity on AT function not only is
challenging for physicians but could also be the next step
to tackle CVD.
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